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A BLOCK RAYLEIGH QUOTIENT ITERATION WITH LOCAL QUADRATIC
CONVERGENCE �

JEAN-LUC FATTEBERTy

Abstract. We present an iterative method, based on a block generalization of the Rayleigh Quotient Iteration
method, to search for thep lowest eigenpairs of the generalized matrix eigenvalue problemAu = �Bu. We prove
its local quadratic convergence whenB�1A is symmetric. The benefits of this method are the well-conditioned
linear systems produced and the ability to treat multiple or nearly degenerate eigenvalues.
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1. Introduction. Many scientific applications require the solution of a generalized eigen-
value problem

Au = �Bu;

whereA andB are realN �N sparse matrices, andB is positive definite. A well-known ex-
ample is the electronic structure calculation of molecules or solids. In the context of density
functional theory, some recent developments in the numerical schemes forab initio electronic
structure calculation methods have been obtained by describing the electronic wave functions
in finite dimensional vector spaces of larger and larger dimension, or more recently by the
use of finite difference schemes on tridimensional grids. In this field, a discretized stationary
Schrödinger-like eigenvalue problem (the Kohn-Sham equations) has to be solved. Typically,
we are interested in the lowest one hundred eigenpairs from matrices of order larger than105.
Due to the diagonal dominance of the matrices, Davidson’s method and the preconditioned
Lanczos method [2, 3, 15] are very popular in this field. Other methods based on the simulta-
neous Rayleigh-Quotient minimization methods [12] or subspace preconditioning algorithms
[1] are also very common, sometimes in combination with conjugate gradient techniques [5].

These approaches require only a very approximate resolution of linear systems (by con-
jugate gradient for instance) or the solution of very simple linear systems (typically diagonal).
But the resolution of large linear systems is improving because of ever more powerful com-
puters and sophisticated algorithms such as the multigrid method. As a result, iterative eigen-
solvers requiring an accurate resolution of numerous linear systems have to be considered
from a new point of view. New preconditioners can be investigated for classical methods,
or direct implementation of methods based on the inverse iteration algorithm can be used. If
sufficiently accurate linear solvers are available, subspace iterative methods based on inverse
iteration can be implemented without expanding the dimension of the search subspace at each
step.

In this article, we present an iterative eigensolver based on a block generalization of the
Rayleigh Quotient Iteration (RQI) method [13] and prove its local quadratic convergence. We
consider matricesA andB such thatB�1A is symmetric (for instanceA symmetric,B the
identity matrix) with eigenvalues�1 � �2 � : : : � �p < �p+1 � : : : � �N 2 R. We look
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for the subspace

E0 =

pX
j=1

Ker(B�1A� �jI);

that is, the subspace spanned by the eigenvectors associated to the lowest eigenvalues of
B�1A. To prove the local convergence of the algorithm, the main assumptions will be on the
starting trial subspace.

The algorithm concerned here is described in Section 2 and a small numerical example is
provided to illustrate its convergence rate. In Section 3, technical results are derived concern-
ing the subspaces spanned by the Ritz elements obtained by the Rayleigh-Ritz procedure.
These results will be used in Section 4 where a precise description of the algorithm and a
proof of its local quadratic convergence are presented. Concluding remarks are presented in
Section 5. Some technical lemmas and proofs are given in the Appendix. A variant of the
method was first applied to the electronic structure calculations in [7]. More details on its
application in this field can be found in [6, 8].

Notations and general assumptions.Throughout this paper we consider the spaceRN

with the usual scalar product(x; y) =
PN

i=1 xiyi and the induced normkxk = (x; x)1=2,
x; y 2 RN . To the setMN of the real matricesN �N we associate the spectral norm

kMk = max
x2RN ;kxk=1

kMxk

for M 2 MN . We denote byI the identity matrix.
The orthogonal complement of a subspaceV � RN is denoted byV?. If V =

Spanfv1; : : : ; vmg, we denoteMV = SpanfMv1; : : : ;Mvmg for M 2MN .
Let z 2 RN , V andW be two subspaces ofRN . According to Kato [10], we define the

distance fromz to V by

�(z;V) = min
v2V

kz � vk;(1.1)

and the distance fromV toW by

�(V ;W) = max
v2V;kvk=1

�(v;W):(1.2)

For an intervalI of R and a matrixM 2 MN , symmetric, with eigenvalues�1 � �2 �
: : : � �N , we define the subspace ofRN

EM (I) =
X
�i2I

Ker(M � �iI):(1.3)

2. The Block Rayleigh Quotient Iteration method.

2.1. The algorithm. The algorithm we address here contains two main parts. In the
first part, for a given subspace whose dimension is the number of searched eigenpairs, we
compute approximate eigenvectors applying the Rayleigh-Ritz procedure (Step 2 of Algo-
rithm 2.1). In the second part, this subspace is updated by computing corrections for each
of these trial eigenvectors using a generalization of the RQI method (Steps 3-5 of Algorithm
2.1). A general outline of the Block Rayleigh Quotient Iteration method (BRQI) algorithm is
as follows:
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ALGORITHM 2.1. BRQI
1. Let the tolerance� and an initialN � p matrixW 0 = (w0

1 ; : : : ; w
0
p) be given. Let

k = 0.
2. Let X be a realp � p matrix andUk = (uk1 ; : : : ; u

k
p) = W kX , be such that

Uk TUk = I and Uk TB�1AUk = � where� is a real diagonalp � p matrix whose
diagonal elements are ordered by (�11 � : : : � �pp). Check for convergence by testing the
condition

kAUk �BUk�k � �:

3. For j = 1; : : : ; p, let mj andnj be given integers such that0 � mj < j and
0 � nj � p� j. Define the subspace

Uk
j = (ukj�mj

; : : : ; ukj+nj )

(of dimension1 +mj + nj � 1) and letQk
j be the orthogonal projector onto the subspace�

BUk
j

�?
.

4. For j = 1; : : : ; p, compute the correctionzj such that

Qj(A� �jjB)(ukj + zj) = 0(2.1)

andzTj BU
k
j = 0.

5. SetW k+1 = (u1 + z1; : : : ; up + zp). Incrementk by1 and go to step 2).
At Step 3, the parametersmj andnj are integers chosen such thatQk

j (A� �jjB)
(BUk

j
)?

is well-conditioned. For instance, select

mj = max
fij�jj��ii��g

j � i; nj = max
fij�ii��jj��g

i� j

for a given real constant� > 0. It is easy to see that, in the caseB = Identity, this would
ensure that

kQk
j (A� �jj)xk � min(�; �p+1 � �j)kxk; 8x 2 (Uk

j )
?

at convergence of the algorithm. We will be more precise on this point inx4.1.
It is easy to see that in the particular casemj = nj = 0, the vectorukj + zj (Step

2.1) is equal (in exact arithmetic), once properly normalized, to the vectoruk+1j updated by a

classical RQI iteration [7] (we have in factuk+1j = (ukj+zj);  2 R). In this particular case,
the equation defining the correctionzj is the same as the one used in the Jacobi-Davidson
method [16]. Ifmax(mj ; nj) > 0, zj is restricted to be in a smaller subspace—meaning
that we do not to correctukj in some directions considered before—and the arguments used
to prove the convergence of the Jacobi-Davidson method or classical RQI are no longer valid.
Nevertheless, because those directions are included in the subspaceBUk (providedmj < j
andnj � p � j), convergence can still be attained (as it will be shown in Section 4) by
the “mixing” of the updated trial eigenvectors in the Rayleigh-Ritz procedure. Moreover, an
appropriate choice of the coefficientsmj andnj leads to well-conditioned linear problems
at Step 4 of the algorithm, even for multiple or nearly degenerate eigenvalues. A related
algorithm can be found in [9] where the purpose is to build a multigrid eigensolver. Also, the
method is designed to get well-conditioned linear systems adapted to a multigrid resolution
in the inverse iteration steps.
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For small systems, the pseudo-inverse of the matrixQj(A��jjB)Qj can be computed
and applied to�Qj(A � �jjB)ukj to find zj at Step 4. However whenA andB are large
sparse matrices, the application of the composed operatorQj(A � �jjB) on a vector is not
expensive and iterative linear solvers are more appropriate to solve (2.1). In addition to the
well conditioned linear systems, the iterative resolution is also made easier by the fact that
we just look for a small correctionzj that we can approximate by zero at the first iteration.

As presented here, the algorithm BRQI require building and diagonalizing the matrix
W k TB�1AW k which is assumed to be symmetric. Nevertheless, in practical applications,
the inversion ofB can be avoided, replacing Step 2 of Algorithm 2.1 with the resolution of
the generalized eigenvalue problem

W k TAW kX =W k TBW kX�

(seex5).
The algorithm BRQI requires a relatively good starting trial subspace (as in the RQI

method). If this subspace is not accurate enough, it may converge to another eigenspace
corresponding to larger eigenvalues. But BRQI has proved to be efficient for electronic struc-
ture calculations. In this case, due to the nonlinearity of the operator, a series of eigenvalue
problems has to be solved (one at each step of a fixed point algorithm for an operator that is
slightly modified between two steps). Here the solutions of the eigenvalue problem at a given
step provide good approximations to start the calculation at the next step.

Compared to the Jacobi-Davidson algorithm [16], where the same kind of projected in-
verse iteration equations are used, the method described here requires a more precise resolu-
tion of better conditioned linear systems, but does not require generating search subspaces of
larger dimension than the number of eigenpairs we look for.

2.2. Example. Let us consider the symmetric eigenvalue problem

Au = �u;

where

A =

0
@ Y1 Y2 0

Y2 Y1 Y2
0 Y2 Y1

1
A 2M27

is defined by

Y1 =

0
@ X1 X2 0

X2 X1 X2

0 X2 X1

1
A 2M9; Y2 =

0
@ X2 0 0

0 X2 0
0 0 X2

1
A 2M9

and

X1 =

0
@ 6 �1 0

�1 6 �1
0 �1 6

1
A ; X2 =

0
@ �1 0 0

0 �1 0
0 0 �1

1
A :

(The matrixA is obtained for a finite difference discretization of the Laplacian with Dirichlet
boundary conditions in 3D.) The first eigenvalues ofA are�1 = 6� 3

p
2; �2 = �3 = �4 =

6� 2
p
2; �5 = �6 = �7 = �8 = �9 = �10 = 6�p2. We apply the algorithm BRQI (with

B = I) to find the four smallest eigenvalues ofA. At Step 3 of the algorithm BRQI, we use
a subspaceUk

j of dimension1 for j = 1 (containing the vector of index1 only) and3 for
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j = 2; 3; 4 (containing the vectors of indices2; 3; 4). The trial eigenvectors at Stepk = 0 are
chosen to be the exact ones plus a random error of small amplitude. The numerical results in
Figure 2.1 show the distance from the trial subspace to the exact one (as defined in (1.2)), and
the errors on the eigenvalues as a function of the number of iterations. The method’s quadratic
convergence rate can be observed— note that the errors on the eigenvalues are already within
the 15 decimals working precision after the third step.
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FIG. 2.1.Distance between the trial subspace and the exact one and errors on the eigenvalues as a function of
the iteration number for the example ofx2.2.

3. Some properties of the Ritz elements.In this section, we review the Rayleigh-Ritz
algorithm. Then we derive some results on the eigenvectors approximations obtained by this
procedure, and on the invariant subspaces approximations spanned by these vectors. These
results will be useful in Section 4.

Let:
� S 2MN be a symmetric matrix,
� �1 � �2 � : : : � �p < �p+1 � : : : � �N 2 R be the eigenvalues ofS,
� E0 =

Pp
i=1 Ker(S � �iI),

� �, be the orthogonal projector ontoE0,
� W � RN be a subspace of dimensionp, approximation ofE0, given byW =

Spanfw1; : : : ; wpg, where the vectorswj , j = 1; : : : ; p are orthonormalized,
� P be the orthogonal projector ontoW ,
� �W = (w1; : : : ; wp) 2 MN�p.

3.1. Rayleigh-Ritz procedure. We define the Rayleigh-Ritz procedure (see [13] for
example) by the following algorithm:

ALGORITHM 3.1 (Rayleigh-Ritz).
(i) Compute thep� p symmetric matrixH = �W TS �W:
(ii) Compute thep orthonormalized eigenvectorsgj 2 Rp and thep eigenvalues�j 2

R, solutions ofHgj = gj�j ; j = 1; : : : ; p:
(iii) Compute thep Ritz vectorsyj = �Wgj ; j = 1 : : : ; p.

REMARK 3.1. The Ritz elements(�j ; yj); j = 1; : : : ; p, constructed in Algorithm 3.1,
are independent of the chosen orthonormalized basisfwjgpj=1 of W . The vectorsyj are
orthonormalized and give a basis forW . Moreover, they satisfy the property

P (S � �j)yj = 0; j = 1; : : : ; p:(3.1)
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Using this remark with Lemmas A.1 and A.2, we easily prove the following result:
LEMMA 3.2. Let rj = (S � �j)yj for j = 1; : : : ; p. Then, we have

krjk � 4�(E0;W)kSkkyjk:

With respect to the Ritz values, we have the following lemma (see [13]):
LEMMA 3.3. There exists an injective application

� : f1; : : : ; pg ! f1; : : : ; Ng

such that

j�j � ��(j)j � k(I � P )SPk; j = 1; : : : ; p:(3.2)

Moreover, the right hand-side of (3.2) satisfies the following lemma:
LEMMA 3.4.

k(I � P )SPk � 4
p
p�(E0;W)kSk:

Proof. We have

k(I � P )SPk = sup
v2RN ;kvk=1

k(I � P )SPvk

= sup
�2Rp;k�k=1

k(I � P )S

pX
j=1

�jyjk

� sup
�2Rp;k�k=1

pX
j=1

j�j jk(I � P )Syjk;

where�j denotes the componentj of �. By property (3.1), we obtain

k(I � P )SPk � sup
�2Rp;k�k=1

pX
j=1

j�j jkSyj � �jyjk:

Applying Lemma 3.2 gives

k(I � P )SPk �
0
@ sup
�2Rp;k�k=1

pX
j=1

j�j j
1
A 4�(E0;W)kSk:(3.3)

Using the Cauchy-Schwarz inequality, we also have

pX
j=1

j�j j � p
p

0
@ pX
j=1

�2j

1
A

1=2

=
p
p:(3.4)

The desired result follows by (3.3) and (3.4).



ETNA
Kent State University 
etna@mcs.kent.edu

62 A block Rayleigh quotient iteration method

The next results will require�(E0;W) to be small enough. In the following we will
assume that:

ASSUMPTION3.5.

�(E0;W) <
�p+1 � �p
8
p
pkSk :

PROPOSITION3.6. If Assumption 3.5 holds, then

�j � �j � �j + 4
p
p�(E0;W)kSk:

Proof. The first inequality follows by the Courant-Fischer Theorem. To prove the second
one, we use Lemma 3.3 applied to

W(t) = Spanfw1(t); : : : ; wp(t)g;
wherewj(t) = �wj + t(I ��)wj , j = 1; : : : ; p; 0 � t � 1.

Suppose�W (t) = (w1(t); : : : ; wp(t)) 2 MN�p, H(t) = �W (t)TS �W (t), and�1(t) �
�2(t) � : : : � �p(t), be the eigenvalues ofH(t). Let

� = 4
p
p�(E0;W)kSk:

Lemma A.7 gives�(W(t); E0) � �(W ; E0), 0 � t � 1. From Lemmas 3.3 and 3.4, it follows
that there existsp distinct indicesj0 such that

j�j(t)� �j0 j � �; j = 1; : : : ; p; 0 � t � 1:(3.5)

By Assumption 3.5, we have�p + � < �p+1 � �. From (3.5) we thus obtain

�j(t) =2 (�p + �; �p+1 � �); j = 1; : : : ; p; 0 � t � 1:(3.6)

For t = 0, we are allowed to choosej0 = j (becauseW(0) = E0). By the continuity of�j(t)
as a function oft, (3.6) gives, using a proof by contradiction,

�j(t) � �p + �; j = 1; : : : ; p; 0 � t � 1:

For 0 � t � 1, thep indicesj0 have to be chosen inf1; : : : ; pg. Using again a proof by
contradiction, we clearly see that we can choosej0 = j and we thus have

�j � �j � �

in t = 1.

3.2. Distances between invariant subspaces.Let 0 < � < �p+1 � �p be a given real
constant. Forj = 1; : : : ; p, using (1.3), we define the subspace

Ej = ES([�j � �; �j + �]):(3.7)

Clearly, we haveEj � E0. Let �j denote the orthogonal projector ontoEj and let�(S) be
the spectrum ofS. Let4 > 0 be such that, forj = 1; : : : ; p,

(�j � � �4; �j � �) \ �(S) = ;;(3.8)

(�j + �; �j + � +4) \ �(S) = ;:(3.9)
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Let

~� = � +
4
2

(3.10)

and define

Wj = EPS
W

([�j � ~�; �j + ~�]):(3.11)

LetPj denote the orthogonal projector ontoWj .
To present the main results of this section, let us first make the following sufficient as-

sumption:
ASSUMPTION3.7.

�(E0;W) � 4
16
p
pkSk :

REMARK 3.2. Equation (3.9) forj = p implies in particular that4 < �p+1 � �p. It
follows that if the assumption above is true, Assumption 3.5 will also be true.

PROPOSITION3.8. If Assumption 3.7 is true, we have:

dim(Wj) = dim(Ej); j = 1; : : : ; p:

The proof of this proposition, relating the dimensions of the exact and approximate invariant
subspaces,Ej andWj , is given in Appendix B.1.

In [14], an upper bound is given for the angle�(~u; u) between an eigenvectoru of the
matrix S, associated with a simple eigenvalue�, and its approximation~u. We have the
following inequality:

sin�(~u; u) � k(S � ~�)~uk
�k~uk ;

where� denotes the distance between~� = (~u; S~u)=(~u; ~u) and the remaining part of the
spectrum ofS, that is,� = minifj�i � ~�j; �i 6= �g. This result has been generalized by
Knyazev[11] to invariant subspaces of dimension larger than 1. According to [11] (theorem
4.3) and using the notations introduced in this section, we have:

PROPOSITION3.9. Let j be a given integer,1 � j � p. If

~d = inf
~�2�(RSR

ImR
)
j~� � �j j > �; R = P � Pj ;(3.12)

then

k(I � Pj)�jk2 �
�
1 +

k(I � P )SPk2
( ~d� �)2

�
k(I � P )�jk2:(3.13)

Applying this proposition gives the following theorem:
THEOREM 3.10. If Assumption 3.7 holds, then

�(Ej ;Wj) � 2�(Ej ;W); j = 1; : : : ; p:(3.14)

This is the main result of the section. Theorem 3.10 means that if the trial subspaceW
is good enough, the subspacesWj � W ; j = 1; : : : ; p, spanned by the Ritz vectors, will be
good approximations of the invariant subspacesEj . Its proof is given in Appendix B.2.
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4. Properties of the algorithm. In this section we present the BRQI algorithm and
prove its local quadratic convergence rate. We first show a property of coercivity for the
operator which appears in the generalized inverse iteration equations (x4.1). Then we derive
some properties of the eigenvectors’ corrections obtained in solving these equations (x4.2).
Finally we detail the algorithm and give a convergence theorem (x4.3).

Assume that we have ap-dimensional subspaceW � RN , that is, a good approximation
of E0. LetP denote the orthogonal projector ontoW .

4.1. Coercivity of the inverse iteration operator. Let j be given,1 � j � p, ~� > 0 be
a given real constant and�j 2 R, �1 � �j < �p+1. Let:

� Wj = EPB�1A
W

([�j � ~�; �j + ~�]),

� Pj , the orthogonal projector ontoWj ,
� Qj , the orthogonal projector onto(BWj)

?.
ASSUMPTION4.1. We assume that there is a constant� > 0 and an invariant subspace

ofB�1A, Ej � E0, such that:

EB�1A([�j � �; �j + �]) � Ej ;(4.1)

dim(Ej) = dim(Wj):(4.2)

Let

 = inf
�2R

kI � �Bk;(4.3)

� = inf
�2R

kI � �B2k;(4.4)

and�j denote the orthogonal projector ontoEj .
REMARK 4.1. If the matrixB is symmetric positive definite, we easily see that0 �  < 1

and0 � � < 1.
We begin with a Lemma that will be useful.
LEMMA 4.2. Let � 2 R; c > 0; S 2 MN symmetric,I � R an interval,x 2 ES(I).

Then:
(i) If I � [�� c; �+ c], thenk(S � �I)xk � ckxk.
(ii) If I \ (�� c; �+ c) = ;, thenk(S � �I)xk � ckxk.

In Step 4 of the algorithm 2.1, we have to solve the linear system

Gj = Qj(A� �jB)
(BWj)?

(4.5)

whereGj : (BWj)
? ! (BWj)

?. This operator has the following property:
PROPOSITION4.3. If Assumption 4.1 holds, then there exists strictly positive constants

� andC, depending only onB, � and�p+1 � �1, such that if�(Ej ;Wj) < �, then

kGjxk � Ckxk; 8x 2 (BWj)
?:

This proposition is easy to prove whenB is the identity matrix. In Appendix B.3, we give
the (rather technical) proof in the general case.

4.2. The generalized inverse iteration.Let (�j ; uj) 2 R � RN , j = 1; : : : ; p, denote
the Ritz elements for the symmetric matrixB�1A in the subspaceW (seex3.1). As inx3.2,
we choose� and4 2 R, 0 < � < �p+1 � �p, 0 < 4 < �p+1 � �p such that

(�j � � �4; �j � �) \ �(B�1A) = ;;(4.6)

(�j + �; �j + � +4) \ �(B�1A) = ;;(4.7)
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for j = 1; : : : ; p, where�(B�1A) denotes the spectrum ofB�1A. Moreover, we impose
here

0 <4 � 2�:(4.8)

In the following, we define:

Ej = EB�1A([�j � �; �j + �]); j = 1; : : : ; p;(4.9)

~� = � +
4
2
;(4.10)

Wj = EPB�1A
W

([�j � ~�; �j + ~�]); j = 1; : : : ; p:(4.11)

LetPj denote the orthogonal projector ontoWj , andQj denote the orthogonal projector onto
(BWj)

?.
In order to apply the results of Section 3.2, we will assume that�(E0;W) satisfies:
ASSUMPTION4.4.

�(E0;W) � 4
16
p
pkB�1Ak :

Under Assumption 4.4, and using Remark 3.2, Proposition 3.6 gives

j�j � �j j � 4
p
p�(E0;W)kB�1Ak � 4

4
; j = 1; : : : ; p:

By (4.8), we thus have

j�j � �j j � �

2
; j = 1; : : : ; p;

that implies

EB�1A([�j � �=2; �j + �=2]) � EB�1A([�j � �; �j + �]) = Ej(4.12)

for j = 1; : : : ; p.
By (4.12) and Proposition 3.8, Assumption 4.1 holds if�j = �j and� = �=2. In

particular it gives

dim(Ej) = dim(Wj):(4.13)

In this context, using Theorem 3.10 gives

�(Ej ;Wj) � 2�(Ej ;W) � 2�(E0;W):

We then rewrite Proposition 4.3 as follows.
PROPOSITION4.5. Suppose that Assumption 4.4 holds. Then there exist strictly positive

constants�c andCc depending only onB, � and�p+1 � �1, such that, if�(E0;W) < �c,

kQj(A� �jB)xk � Cckxk; 8x 2 (BWj)
?:

This proposition ensures that we can definezj 2 (BWj)
?, j = 1; : : : ; p, as the only

solution of the linear problem

Qj(A� �jB)(uj + zj) = 0;(4.14)
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provided�(E0;W) is sufficiently small. Equation (4.14) is a generalization of a RQI iteration
(seex2.1) whose purpose is to improve the approximationuj of the jth eigenvector by the
correctionzj . The following proposition gives a few properties ofzj anduj + zj .

PROPOSITION 4.6. Let 1 � j � p. Suppose that Assumption 4.4 holds and that
�(E0;W) < �c for the constant�c of Proposition 4.5. Then, forzj solution of (4.14),

kzjk � 2�C�1c ��(E0;W);(4.15)

k(I ��j)(uj + zj)k � � (�(E0;W))2 ;(4.16)

where

� = 2kBkkB�1Ak;(4.17)

� = kB�1kkBk+ 1;(4.18)

� =
4�kB�1k

�

�
1 + C�1c ��

�
;(4.19)

andCc is the same constant as in Proposition 4.5.
This theorem is a key element in proving the local quadratic convergence of the algorithm

BRQI. It shows that the updated approximationsuj + zj ; j = 1; : : : ; p have only a second
order component orthogonal toE0, after having been corrected by a first order componentzj .

Proof. In this proof, we will regularly use Lemma A.1 and the fact thatkujk = 1.
We decomposeuj = �juj + (I ��j)uj . Then

kQj(A� �jB)ujk � kQj(A� �jB)�jujk(4.20)

+ kQj(A� �jB)(I ��j)ujk:
Note that(A� �jB)�juj 2 BEj , and so we obtain by Lemma A.5,

kQj(A� �jB)�jujk � (kAk+ j�j jkBk) �(BEj ; BWj)(4.21)

� (kAk+ j�j jkBk) kB�1kkBk�(Ej ;Wj):

On the other hand, because

k(I ��j)ujk = k(I ��j)Pjujk � �(Wj ; Ej);
it follows by Lemma A.2 and (4.13) that

kQj(A� �jB)(I ��j)ujk � (kAk+ j�j jkBk) �(Wj ; Ej)(4.22)

= (kAk+ j�j jkBk) �(Ej ;Wj):

By (4.20)–(4.22), we have

kQj(A� �jB)ujk � (kAk+ j�j jkBk)
�kB�1kkBk+ 1

�
�(Ej ;Wj)(4.23)

� 2kBkkB�1Ak �kB�1kkBk+ 1
�
�(Ej ;Wj):

Applying Theorem 3.10 gives

kQj(A� �jB)ujk � 4kBkkB�1Ak �kB�1kkBk+ 1
�
�(Ej ;W)

� 4kBkkB�1Ak �kB�1kkBk+ 1
�
�(E0;W):

Sincezj is solution of the equation

Qj(A� �jB)zj = �Qj(A� �jB)uj ;
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we obtain the inequality (4.15) by using Proposition 4.5.

To prove the second inequality, we first define
�
B�1A� �j

�
�

as the restriction of the
operator

�
B�1A� �j

�
to E?j , invariant subspace ofB�1A. There exists an inverse of�

B�1A� �j
�
�
, denoted

�
B�1A� �j

��1
�

, whose norm is bounded by2=� (see Eq. (4.12)
and Lemma 4.2). Using the fact thatzj is solution of (4.14), we obtain

(I��j )(uj + zj)

=
�
B�1A� �j

��1
�

�
B�1A� �j

�
�
(I ��j)(uj + zj)

=
�
B�1A� �j

��1
�

(I ��j)
�
B�1A� �j

�
(uj + zj)

=
�
B�1A� �j

��1
�

(I ��j)B
�1(Qj + (I �Qj)) (A� �jB) (uj + zj)

=
�
B�1A� �j

��1
�

(I ��j)B
�1(I �Qj) (A� �jB) (uj + zj):

Consequently

k(I � �j)(uj + zj)k
= k �B�1A� �j

��1
�

(I ��j)B
�1(I �Qj) (A� �jB) (uj + zj)k(4.24)

� 2

�
k(I ��j)B

�1(I �Qj)k (k (A� �jB) ujk+ k (A� �jB) zjk) :

From the definition of(I �Qj), B�1(I �Qj)x 2 Wj 8x 2 RN , it follows that

k(I ��j)B
�1(I �Qj)k � �(Wj ; Ej)kB�1k = �(Ej ;Wj)kB�1k:(4.25)

Moreover, given the Ritz pair(�j ; uj), Lemma 3.2 implies

k (A� �jB) ujk � kBkk �B�1A� �j
�
ujk

� kBk4�(E0;W)kB�1Ak(4.26)

= 2��(E0;W):

Using (4.15), we also have

k (A� �jB) zjk �
�
2kBkkB�1Ak� kzjk � 2C�1c ��2�(E0;W):(4.27)

Now it follows by (4.24)–(4.27), and Theorem 3.10, that inequality (4.16) holds.
PROPOSITION4.7. Supposing that Assumption 4.4 holds and that�(E0;W) < �c for the

constant�c given in Proposition 4.5, let

Wnew = Spanfu1 + z1; : : : ; up + zpg
for zj solution of Equation (4.14),j = 1; : : : ; p. Then there exist constants�q > 0 and� < 1,
independent ofW , such that if�(E0;W) < �q, then

dim(Wnew) = dim(W);(4.28)

�(E0;Wnew) � % (�(E0;W))
2
;(4.29)

�(E0;Wnew) � ��(E0;W);(4.30)

where% = 2
p
p�, for � defined by (4.19).

The proof of this proposition, based on Proposition 4.6, is given in Appendix B.4.
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4.3. A convergence theorem.Using the subspace notations and the mathematical tools
developed in the previous sections, the algorithm BRQI described inx2.1 can be written as:

ALGORITHM 4.8. BRQI
1. LetW0 � RN be a given subspace of dimensionp. Letk = 0.
2. Build the pairs(�j ; uj); j = 1; : : : ; p by the Rayleigh-Ritz procedure (Algorithm

3.1) for the matrixB�1A in W =Wk.
3. For j = 1; : : : ; p, define the subspacesWj according to (4.11) forW =Wk.
4. For j = 1; : : : ; p, computezj solution of Eq. (4.14).
5. LetWk+1 = Spanfu1 + z1; : : : ; up + zpg. Incrementk by 1 and go to step 2).

For this algorithm, we have the following local convergence result:
THEOREM4.9.There exist constants�0 > 0, %,� < 1,C� > 0 such that, if�(E0;W0) <

�0, Algorithm 4.8 is well defined and the following properties hold fork = 0; 1; 2; : : :,

dim(Wk) = p;(4.31)

�(E0;Wk+1) � %
�
�(E0;Wk)

�2
;(4.32)

�(E0;Wk+1) � ��(E0;Wk);(4.33)

j�j � �j j � C��(E0;Wk); j = 1; : : : ; p:(4.34)

Moreover, the algorithm converges, that is:

lim
k!1

�(E0;Wk) = 0:

Proof. Relations (4.31), (4.32), (4.33) follow by Proposition 4.7. The inequality (4.34)
follows by Proposition 3.6 forC� = 4

p
pkB�1Ak.

5. Concluding remarks. A straightforward implementation of Algorithm 4.8 is not al-
ways obvious or even adequate for large-scale eigenvalue problems. First, Step 2 implies the
use of the matrixB�1A, hence the need to solve numerous linear systems with the matrixB.
This can be done efficiently if the matrixB is very well conditioned (common in practical
applications) or can be efficiently factored. But replacing the Rayleigh-Ritz procedure at Step
2 by a Petrov-Galerkin approach usingBW as test (or left) subspace instead ofW , is often
easier and less expensive, leading to a generalized eigenvalue problem of dimensionp (see
x2.1)

Hgj = �jGgj :

This approach (that we call Block Galerkin Inverse Iteration - BGII [4]) can work quite well
in practice. But since hereG�1H is not symmetric in general and can generate complex
eigenvalues�j , the proof of convergence presented in this paper is no longer valid—and
probably much more difficult to establish in this case.

On the other hand, Algorithm 4.8 depends, by (4.11), on the quantity~�. Moreover, the
assumptions on�(E0;W) can be difficult to satisfy in practice, depending on the value of
4 that has to satisfy (4.8), (4.6) and (4.7). In practice4 can be quite small depending on
the spectrum ofB�1A and the choice of�. This remains an issue, even if we replace� by
coefficients��j and�+j depending onj and define

Ej = EB�1A([�j � ��j ; �j + �+j ]); j = 1; : : : ; p:

An appropriate choice of��j and�+j , j = 1; : : : ; p would then allow to replace Assumption
4.4 by a less restricting one.
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In practice, we choose a coefficient~� so that the linear systems are well-defined but
also so that projectorsQj are not expensive to apply. This approach, in combination with
the Petrov-Galerkin version of the algorithm, has given good results for quantum physics
problems [4, 6, 7, 8]. This approach should also work well on other eigenvalue problems.

Appendix A. Some relations between subspaces ofRN .
In this appendix, we give some technical lemmas concerning the properties of�(V ;W),

the distance from one subspaceV to another subspaceW (see (1.2)). Their proofs are not
difficult to establish or are given in references.

LEMMA A.1. Let V andW be two subspaces ofRN , P andQ being the associated
orthogonal projectors. Then, we have

�(V ;W) = k(I �Q)Pk:(A.1)

LEMMA A.2. Let V andW be two subspaces ofRN of the same dimension,P andQ
the associated orthogonal projectors. Then, we have

�(V ;W) = �(W ;V) = kP �Qk:(A.2)

Moreover, ifkP �Qk < 1, thenP
W

defines a bijection betweenW andV .

Proof. See [10].
LEMMA A.3. LetV andW be two subspaces ofRN , V? andW? be their orthogonal

complement inRN . Then

�(V?;W?) = �(W ;V):

Proof. See [10].
LEMMA A.4. LetA 2 MN be a regular matrix,V be a subspace ofRN . Then, we have

�(V ; AV) � min
�2R

kI � �Ak:(A.3)

LEMMA A.5. LetA 2 MN be a regular matrix,V andW be two subspaces ofRN of
the same dimension. Then, we have

�(AV ; AW) � �(V ;W)kAkkA�1k:(A.4)

LEMMA A.6. LetA 2 MN be a symmetric, positive definite matrix,V be a subspace of
RN . Then, we have

AV? = (A�1V)?:(A.5)

LEMMA A.7. LetV andW = Spanfw1; : : : ; wpg be two subspaces ofRN of dimension
p, P be the orthogonal projector ontoV . We assume�(W ;V) < 1. Let

W(t) = SpanfPw1 + t(I � P )w1; : : : ; Pwp + t(I � P )wpg:

Then the dimension ofW(t) is p and�(W(t);V) � �(W ;V), 0 � t � 1.
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Appendix B. Some proofs.

B.1. Proof of Proposition 3.8. Proof. Let j be a given integer,1 � j � p. By Proposi-
tion 3.6, we have

�i � �i � �i + 4
p
p�(E0;W)kSk; i = 1; : : : ; p:

Using Assumption 3.7 yields

�i � �i � �i +
4
4
; i = 1; : : : ; p:

Let k be such that�k 2 [�j � �; �j + �]. We then have

�j � ~� = �j � � � 4
2
< �j � � � 4

4
< �k � �k � �k +

4
4

� �j + � +
4
4
� �j + � +

4
4
< �j + � +

4
2

= �j + ~�:

We thus have

�k 2 (�j � ~�; �j + ~�):(B.1)

Let k be such that�k 2 (�1; �j � � �4]. It follows that

�k � �k +
4
4
� �j � � �4+

4
4

= �j � � � 34
4

< �j � � � 4
2
� �j � � � 4

2
= �j � ~�:

We thus have

�k =2 [�j � ~�; �j + ~�]:(B.2)

Let k � p be such that�k 2 [�j + � +4;1). It follows that

�j + ~� � �j +
4
4

+ � +
4
2
< �j + � +4 � �k � �k:

We thus have

�k =2 [�j � ~�; �j + ~�]:(B.3)

Relations (3.8), (3.9), (B.1), (B.2) and (B.3) imply then

�i 2 [�j � ~�; �j + ~�], �i 2 [�j � �; �j + �]; i = 1; : : : ; p:

We conclude by noting that dim(Wj) (respectively dim(Ej)) is equal to the number of eigen-
values (according to their multiplicities) ofPS

W
(respectivelyS) in [�j � ~�; �j+~�] (respec-

tively [�j � �; �j + �]).
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B.2. Proof of Theorem 3.10.Proof. Let us first compute the term( ~d� �)2 in equation
(3.13). By using (3.11), we obtain

( ~d� �)2 � min((j�j � � �4=2� �j j � �)2; (j�j + � +4=2� �j j � �)2):(B.4)

Proposition 3.6 and Assumption 3.7 yield

0 � �j � �j � 4=4:
We thus have

�j � � �4=2� �j < 0

and

�j + � +4=2� �j > 0:

The inequality (B.4) thus yields

( ~d� �)2 � min((��j +4=2 + �j)
2; (�j � �j +4=2)2)

� min((4=4)2; (4=2)2) = (4=4)2 > 0:

Since (3.12) holds, we can apply Proposition 3.9. Since by Lemma 3.4 and Assumption 3.7,

k(I � P )SPk � 4=4;

we obtain

k(I � Pj)�jk2 � 2k(I � P )�jk2:(B.5)

By Lemma A.1, we have

k(I � Pj)�jk = �(Ej ;Wj)(B.6)

and

k(I � P )�jk = �(Ej ;W):(B.7)

The relations (B.6) and (B.7), used with (B.5), and Proposition 3.8, complete the proof.

B.3. Proof of Proposition 4.3. Proof. Let x 2 (BWj)
?, z = Gjx. Sincex = Qjx,

we have, using Lemma A.1,

k�jxk = k�jQjxk � �((BWj)
?; E?j )kxk:

By Lemmas A.3, A.4, using (4.2),(4.3), and the triangle inequality for the distance�(:; :)
between subspaces of the same dimension, we get

k�jxk � �(Ej ; BWj)kxk � (�(Ej ;Wj) + �(Wj ; BWj))kxk(B.8)

� (�(Ej ;Wj) + inf
�2R

kI � �Bk)kxk = (�(Ej ;Wj) + )kxk;

while the reverse triangle inequality yields

k(I ��j)xk � kxk � k�jxk � (1� �(Ej ;Wj)� )kxk:(B.9)
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On the other hand, we have

z = Qj(A� �jB)x = Qj(A� �jB)(I ��j +�j)x = Qjy1 +Qjy2;

with y1 = (A � �jB)(I � �j)x andy2 = (A � �jB)�jx. Still using the reverse triangle
inequality, we thus obtain

kzk � kQjy1k � kQjy2k:(B.10)

We note thaty2 2 BEj , which leads, by Lemmas A.1 and A.5, to

kQjy2k � �(BEj ; BWj)ky2k � �(Ej ;Wj)kBkkB�1kky2k:(B.11)

Moreover, we have,

ky2k = k(A� �jB)�jxk = kB(B�1A� �j)�jxk
� kBkk(B�1A� �j)�jxk:

Since�jx 2 E0 and�1 � �j < �p+1, we obtain

ky2k � kBkmax(�p+1 � �j ; �j � �1)k�jxk(B.12)

� kBk(�p+1 � �1)k�jxk:
From (B.8), (B.11), (B.12), it follows

kQjy2k � �(Ej ;Wj)kB�1kkBk2(�p+1 � �1)(�(Ej ;Wj) + )kxk:(B.13)

Concerningy1, we have

kQjy1k � ky1k � k(I �Qj)y1k:(B.14)

We also have

y1 = B(B�1A� �j)(I ��j)x 2 BE?j ;
which implies

k(I �Qj)y1k � �(BE?j ; (BWj)
?)ky1k:(B.15)

By Lemmas A.3 and A.6,

�(BE?j ; (BWj)
?) = �((B�1Ej)?; (BWj)

?) = �(BWj ; B
�1Ej)

� ��(BWj ; BEj) + �(BEj ; B�1Ej)
�

�
�
�(Wj ; Ej)kBkkB�1k) + inf

�2R
kI � �B2k

�

=
�
�(Wj ; Ej)kBkkB�1k+ �

�
;

thus,

k(I �Qj)y1k � (�+ �(Wj ; Ej)kBkkB�1k)ky1k:(B.16)

Moreover, by (4.1) and Lemma 4.2, we have

ky1k = kB(B�1A� �j)(I ��j)xk
� kB�1k�1k(B�1A� �j)(I ��j)xk
� kB�1k�1�k(I ��j)xk:
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Hence, by (B.9), we get

ky1k � kB�1k�1�(1� �(Ej ;Wj)� )kxk:(B.17)

From (B.14), (B.16), and (B.17), we obtain, for�(Wj ; Ej) sufficiently small,

kQjy1k � (1� �� �(Wj ; Ej)kBkkB�1k)ky1k(B.18)

� (1� �� �(Wj ; Ej)kBkkB�1k)
�kB�1k�1�(1� �(Ej ;Wj)� )kxk:

Finally, from (B.10), (B.13) and (B.18), we get, for�(Wj ; Ej) sufficiently small,

kzk � � (1� �� �(Wj ; Ej)kBkkB�1k)kB�1k�1�(1� �(Ej ;Wj)� )(B.19)

� �(Ej ;Wj)kB�1kkBk2(�p+1 � �1)(�(Ej ;Wj) + )
�kxk:

Now (4.2) implies thatEj andWj have same dimension and�(Ej ;Wj) = �(Wj ; Ej). Propo-
sition 4.3 is thus a direct consequence of (B.19).

B.4. Proof of Proposition 4.7. Proof. Let � 2 Rp, be a vector of components�j ; j =
1; : : : ; p, such thatk�k = 1. Assuming that the vectorsuj ; j = 1; : : : ; p, are orthonormal, we
have

k
pX

j=1

�j(uj + zj)k � k
pX

j=1

�jujk � k
pX

j=1

�jzjk(B.20)

� 1� max
j=1;:::;p

kzjk
pX

j=1

j�j j:

Using the Cauchy-Schwarz inequality, we have

pX
j=1

j�j j � p
p

0
@ pX
j=1

�2j

1
A

1=2

=
p
p:(B.21)

By Proposition 4.6, for�(E0;W) sufficiently small, we can assumekzjk � (2
p
p)�1. By

(B.20), we thus have

k
pX

j=1

�j(uj + zj)k � 1� 1

2
p
p

p
p =

1

2
:(B.22)

Since (B.22) is true for all normalized� 2 Rp, we obtain that the vectorsuj+zj ; j = 1; : : : ; p
are linearly independent and (4.28) holds.

On the other hand, we have

�(Wnew ; E0) = max
v2Wnew

k(I ��)vk
kvk(B.23)

= max
�2Rp;k�k=1

k(I ��)
Pp

j=1 �j(uj + zj)k
kPp

j=1 �j(uj + zj)k :

By (B.21), we have

k(I ��)

pX
j=1

�j(uj + zj)k � max
j=1;:::;p

k(I ��)(uj + zj)k
pX

j=1

j�j j(B.24)

� max
j=1;:::;p

k(I ��)(uj + zj)kpp:
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From (B.22), (B.23), and (B.24), it follows

�(Wnew; E0) � 2
p
p max
j=1;:::;p

k(I ��)(uj + zj)k:(B.25)

By Proposition 4.6, we have

k(I ��)(uj + zj)k � k(I ��j)(uj + zj)k � � (�(E0;W))
2
:(B.26)

Relation (4.29) comes from (B.25), (B.26), and, using (4.28), comes from�(Wnew; E0) =
�(E0;Wnew):

Finally, (4.30) is a consequence of (4.29).

Acknowledgments. I am indebted to Professor Jean Descloux for numerous valuable
discussions about this work. I also thank Dr. R. Lehoucq for useful suggestions that have
helped to improve the manuscript.

REFERENCES

[1] J. BRAMBLE, A. KNYAZEV AND J. PASCIAK, A subspace preconditioning algorithm for eigenvec-
tor/eigenvalue computation, Adv. Comput. Math., 6 (1997), pp. 159–189.

[2] M. CROUZEIX, B. PHILIPPE AND M. SADKANE, The Davidson method, SIAM J. Sci. Comput., 15 (1994),
pp. 62–76.

[3] E. R. DAVIDSON,The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors
of large real symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

[4] J. DESCLOUX, J.-L. FATTEBERT, AND F. GYGI, RQI (Rayleigh Quotient Iteration), an old recipe for solving
modern large scale eigenvalue problems, Comput. Phys., 12 (1998), pp. 22–27.

[5] A. EDELMAN AND S. SMITH, On conjugate gradient-like methods for eigen-like problems, BIT, 36 (1996),
pp. 494–508.

[6] J.-L. FATTEBERT, Finite difference schemes and block Rayleigh Quotient Iteration for electronic structure
calculations on composite grids, J. Comput. Phys. (to appear).

[7] , An inverse iteration method using multigrid for quantum chemistry, BIT, 36 (1996), pp. 509–522.
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