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Abstract. A unifying framework for methods employed in the approximation of the resolvent norm of nonnor-
mal matrices is presented. This formulation uses specific transfer functions, and it provides new information about
the approximation properties of these methods and their application in computing the pseudospectrum of matrices.
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1. Introduction. We now know that the analysis of matrix-dependent algorithms is con-
siderably more complicated when nonnormal matrices are involved; see for example [5]. In
particular, several studies indicate that the eigenvalues of the matrix in question often provide
insufficient or even misleading information [20]. This has been the motivation behind recent
research on more reliable indicators as well as on methods for their practical computation.
Several studies concur that a better accordance between theory and practice can be achieved
by using the resolvent functionR(z) = (A � zI)�1, for A 2 C

n�n andz 2 C � C [7, 19].
The following, well-known, result shows that studying the variation of the resolvent norm
corresponds to analyzing how the eigenvalues change under perturbations ofA:

For any" > 0, the locus of pointsz 2 C for which1

kR(z)k � "�1(1.1)

is equivalent to the set of eigenvalues (the"-pseudoeigenvalues) that solve

(A+ E)x = �x; kEk � ":(1.2)

SincekR(z)k = (�min(A � zI))�1, where�min(�) denotes the smallest singular value,
the computation ofkR(z)k relies on algorithms for singular values or eigenvalues. Standard
techniques are adequate when the matrix dimension is small. For instance, the MATLAB
functionpscont [11], plots level curves by first computing the complete singular value de-
composition ofA using the Golub-Reinsch SVD algorithm. An alternative approach that
appears to lend itself to parallel computation is to first block diagonalizeA and then ap-
proximate its singular values [14]. Many applications of interest, however, lead to matrices
that are large, sparse and possibly structured, properties that are not exploited in the afore-
mentioned “dense matrix” approaches. For that reason, projection-type methods for approx-
imatingkR(z)k that reduceA and reference it only in matrix-vector products have been the
subject of recent investigations [3, 4, 10, 15, 16, 18].

In this paper we introduce a unifying framework, based ontransfer functions, for re-
duction based approximations of the resolvent norm of nonnormal matrices and apply it on
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several existing methods. An important benefit of our analysis is that it leads to useful in-
formation regarding the quality (or lack thereof) of the approximations constructed by these
methods. It also provides the means for obtaining more accurate estimates of the resolvent
norm.

In particular, letD� andE be two tall rectangular, full rank matrices2 of suitable dimen-
sion and letGz(A;E;D) := D(A � zI)�1E be the projected resolvent function onto the
subspaces spanned by the columns ofE andD�. In the terminology of automatic control,
Gz(A;E;D) is a transfer function. MatricesE andD describe the perturbation structure of
the system and can be set a-priori by using the knowledge of system parameters [12]. When
perturbations onA are restricted to be so structured as to be of the formD�E, where the
“disturbance matrix”� has small norm,kGz(A;E;D)kmeasures the size of the perturbation
for z 2 C. We show that most projection methods applied to the computation of the resolvent
norm reduce to transfer function evaluations corresponding to particular selections ofE and
D. In order to approximatek(A � zI)�1k, these methods in fact computekGz(A;E;D)k

for specificE;D.
MATLAB notation for matrices and vectors will be used. For ease of notation we use

Gz(A) to denote the transfer function wheneverD = E = I and will writeGz whenever
D;E andA are clear from the context. For a rectangular matrixX , �min(X) will denote its
smallest nonzero singular value. We useIp1:p2 to denote the rectangular matrix consisting
of columnsp1; :::; p2 of the identity. The notationek indicates thek�th column andeI a
rectangular portion of the identity matrix, whose size will become clear from the context.

For the numerical experiments we use the following nonnormal matrices:i) the penta-
diagonal ToeplitzGrcar matrixmatrixA = Toeplitz([�1; 1; 1; 1; 1]) [9], where unless indi-
cated otherwise, the Grcar matrix will be of ordern = 100; ii) the bidiagonal matrix of order
n = 64 with elementsakk = �0:3k in the diagonal andak;k+1 = 1 in the first upper diago-
nal [18]; iii) the upper triangularKahan matrixof ordern = 50, with elementsakk = sk�1

andakj = �sk�1c whenj > k, wheresn�1 = 0:1 ands2 + c2 = 1 [19]; andiv) theTolosa
matrixof ordern = 135 from the Harwell-Boeing collection [5, 6].

2. Krylov subspace methods and the transfer function framework.We next recall
some properties of Krylov subspace reduction and show how it naturally induces structured
perturbations. We also show that the resolvent norm approximants in the projected space can
be written in terms of the norm of specific transfer functions.

2.1. The Arnoldi method. Let A 2 C n�n , v 2 C n and letm � n. Throughout
this paper we assume thatm is smaller than the degree of the minimum polynomial ofv

with respect toA so that the Krylov subspaceKm(A; v) := spanfv;Av; : : : ; Am�1vg has
dimension equal tom. A basisVm = [v1; : : : ; vm] of Km(A; v) with orthonormal columns
in C can be generated one vector at a time using the Arnoldi process, yielding the relation

AVm = VmHm + hm+1;mvm+1e
�
m(2.1)

or, equivalently,AVm = Vm+1
eHm, whereeHm := [Hm;hm+1;me

�
m]. One simple but impor-

tant observation that will be key to our discussion is the following Lemma:
LEMMA 2.1. LetA;Hm; Vm be as above. Then

(A+ E)Vm = VmHm; where E = �hm+1;mvm+1v
�
m:(2.2)

Relation (2.2) implies that the eigenvalues ofHm are also eigenvalues ofA+E for the specific
choice of the rank-one matrixE .

2Here ‘*’ denotes conjugate transposition.
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2.2. Resolvent norm approximation via the Arnoldi method: A transfer function
approach. The first method that we consider was described by Toh and Trefethen in [18].
The idea is to approximate the norm of the resolventk(A � zI)�1k with k(Hm � zI)�1k,
whereHm is the Hessenberg matrix obtained from the Arnoldi method. The motivation
behind that approach is the potential for significant computational savings whenever the re-
solvent norm is successfully approximated for somem� n, since then only one matrixHm

need be computed for allz’s of interest.
From the characterization of the�-pseudospectrum using singular values, it follows that

the valuesz for whichk(Hm � zI)�1k � "�1, also solve the perturbed eigenvalue problem

(Hm +�)x = �x(2.3)

for suitable� that satisfiesk�k � ". From Lemma 2.1 we obtain the following:

(Hm � zI)�1 = Gz(A+ E ; Vm; V
�
m):(2.4)

Note that Equation (2.4) can be written entirely in terms of transfer functions, i.e.Gz(Hm) =

Gz(A+E ; Vm; V
�
m):We next note that from Lemma 2.1 it follows that the values� that satisfy

relation (2.3) withk�k � " also satisfy

(A+ E + Vm�V �
m)Vmx = �Vmx; k�k � ";

which differs from the desired relation (1.2) above; notice the bound for the term
kVm�V

�
mk � k�k � " as well. In particular, relation (2.3) does not correspond to a

perturbed eigenvalue problem forA but for A + E . Therefore, whenkEk is not small,
k(Hm � zI)�1k would be a poor approximation ofk(A � zI)�1k. In light of unsatisfac-
tory experimental and lack of theoretical evidence of this method, Toh and Trefethen also
consider a modification of the above approach, that is based on using the rectangular matrixeHm instead ofHm [18]. This modification, that for future reference we call “augmented
Arnoldi”, is supported by theoretical evidence which predicts that ([18, Theorem 1])

�min(
eH1 � zeI) � �min(

eH2 � zeI) � � � � � �min(A� zI);(2.5)

where the size ofeI in each term conforms with that ofeHj 2 C (j+1)�j . Numerical
experiments in [18] show that��1min(

eHm � zeI) often provides a better approximation to
k(A� zI)�1k thank(Hm � zI)�1k.

The next proposition indicates that by using an appropriate transfer function we can
improve over the above approximations.

PROPOSITION 2.2. With the notation above, leteHm � zeI = [U; eu][�; 0]W � be the
singular value decomposition ofeHm � zeI. Then forz 2 C

1

�min(
eHm � zeI) � kGz(A; Vm+1; V

�
m)k �

1

�min(
eHm � zeI) + kGz(A; Vm+1; V

�
m)euk:

Proof. Let Gz := Gz(A; Vm+1; V
�
m). The relation(A � zI)Vm = Vm+1(

eHm � zeI)
implies

Gz � ( eHm � zeI) = I:(2.6)

The lower bound is obtained by applying standard inequalities for singular values to�min(Gz �

( eHm � zeI)) = 1 [13]. From (2.6) it followsGz [U; eu]eI = W�
�1, therefore,kGzk =

kW �Gz[U; eu]k = k[��1;W �Gzeu]k � k��1k+ kGzeuk and the upper bound follows.
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TABLE 2.1
Estimates ofkR(z)k where the matrixA of sizen = 25 is generated using the MATLAB functionrand with

seed378800090 and the starting vectorv is the sum of the columns ofA.

m [�min(Hm � zI)]�1 [�min(
eHm � zeI)]�1 kGz(A; Vm+1; V

�
m)k

(z = 0, [�min(A� zI)]�1 = 32:5097)
18 3.4172 2.5423 3.1327
20 4.9471 4.9469 9.8644
22 9.0682 5.7861 16.5909
23 10.2458 9.8563 30.6873
24 285.5174 16.0862 31.4461

(z = 0:7023, [�min(A� zI)]�1 = 323295:12)
15 5.30 4.79 18605.65
18 33.63 5.01 31276.87
20 23.56 22.72 110153.21
22 31.98 30.74 292217.76
23 133.18 39.52 304784.08
24 165.36 65.30 323197.02

Proposition 2.2 shows that when using(�min(
eHm�zeI))�1 weunderestimatethe reduced

resolvent norm corresponding to structured perturbations of the formVm+1�V
�
m. In practice,

this underestimation can be severe. Relation (2.6) sheds light on what can go wrong when
using eHm� zeI. Specifically, it shows thateHm� zeI is an equation solving inverse ofGz, but
not a pseudo-inverse, therefore the singular values are not preserved. From the proof we have

kGzk = k[��1;W �Gzeu]k:
Using �min(

eHm � zeI) corresponds to imposingkGzk � k��1k, thus excluding the pos-
sibly non-negligible componentGzeu of Gz onto the null space ofeHm � zeI. Comparing
with the inequalities (2.5), the proposition tells us that for everym < n, the norm of the
transfer-functionGz(A; Vm+1; V

�
m) is a better approximation to the norm of the resolvent, in

particular

1

�min(
eHm � zeI) � kGz(A; Vm+1; V

�
m)k �

1

�min(A� zI)
= k(A� zI)�1k:

The situation is illustrated for a random matrix in Table 2.1. The entries of the second column
of Table 2.1 do not follow any specific pattern, but it happens in this case that they are often
better approximations to the sought value than those of the third. On the other hand, the
entries of the last column are consistently better approximations than the values of the third
column. We also see that the approximation of the third column becomes significantly better
whenz = 0:7023 which is close to an eigenvalue ofA.

We next illustrate the behavior of our approach when used to approximate the pseu-
dospectrum. The baseline computations of the pseudospectrum are made with the function
pscont . The first experiment is with the Grcar matrix, whose pseudospectrum is depicted
in Figure 2.1.

Figure 2.2 depicts the contour lines of��1min(
eHm � zeI) for m = 10 (left) andm = 50

(right). The values and corresponding contours approximated usingm = 10 are quite far
from the exact ones and a much larger subspace dimension appears necessary. Comparing
with Figure 2.1, however, shows that even whenm = 50, the approximation tok(A�zI)�1k
remains unsatisfactory.
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FIG. 2.1.Contour plot of resolvent function norm of the Grcar matrix.
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FIG. 2.2.Contour plot of��1
m

(eHm � zeI) for the Grcar matrix. Left:m = 10; right: m = 50.

Figure 2.3 depicts the contour plot ofkGz(A; Vm+1; V
�
m)k for m = 10 andm = 30. We

see that there is much better accordance with the contours of Figure 2.1. This improvement is
due to the incorporation of the termGzeu in the computation. Just like Table 2.1, we observe
that the approximation becomes less satisfactory as the level curves move away from the
spectrum. This will be further discussed in Section 3.

Our next experiments are with the bidiagonal (Fig. 2.4), Kahan (Fig. 2.5), and Tolosa
(Fig. 2.6) matrices. For each matrix, the top pair of figures depicts the pseudospectrum (left),
and its approximation using the Arnoldi method of [18] (right). The bottom pair depicts ap-
proximations to the pseudospectrum using the augmented Arnoldi method of [18] (left), and
the transfer function approach (right). All approximations were computed using the same
Krylov subspace dimensionm = 20. The figures demonstrate that the transfer function
approach leads to a much more accurate approximation and visualization of the pseudospec-
trum.

2.3. Resolvent norm approximation via rational Krylov subspaces: A transfer func-
tion analysis. Methods have been proposed for approximating the normk(A � zI)�1k by
means of rational Krylov reduction processes that involves the inverse ofA. The general
approach proposed by Ruhe [16] considers the generalized eigenvalue problemAx = �Bx.
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FIG. 2.3. Contour plot of transfer function norm for the Grcar matrix withE = Vm+1 andD = Vm. Left:
m = 10; right m = 30.
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FIG. 2.4.Bidiagonal matrix. Top: Pseudospectrum (left); Arnoldi (right). Bottom: Augmented Arnoldi (left);
projected transfer function (right).

For � 2 C the application of the Arnoldi recurrence to the matrix(A� �B)
�1B yields

(A� �B)
�1BPm = Pm+1

eTm(2.7)

or, equivalently,BPm = (A� �B)Pm+1
eTm so that

APm+1
eTm = BPm+1(

eI + � eTm):(2.8)
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FIG. 2.5. Kahan matrix. Top: Pseudospectrum (left); Arnoldi (right). Bottom: Augmented Arnoldi (left);
projected transfer function (right).

LettingKm = eI + � eTm, Ruhe showed that

keTmwk
�min(Km � z eTm) � k(A� zB)

�1Bk;(2.9)

wherew is the right singular vector associated with�min(Km � z eTm). In our context, the
inequality is of interest for the special caseB = I . By setting� = 0 we obtain an Arnoldi
recurrence forA�1 that was also discussed in [18]. We next present the rational Krylov
approach in the transfer function framework. Using (2.8) we can write

(B�1A� zI)Pm+1
eTm = Pm+1(Km � z eTm);
Tm = P �

m(A� zB)
�1BPm+1(Km � z eTm);

I = P �
m(A� zB)

�1BPm+1(Km � z eTm)T�1m ;

whereTm is the upperm�m section ofeTm. It follows that

I = Gz(B
�1A;Pm+1; P

�
m)(Km � z eTm)T�1m :

Setting� = z;B = I , yields the following equalities:

Gz(A;Pm; P
�
m) = Tm and Gz(A;Pm; P

�
m+1) =

eTm:
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FIG. 2.6. Tolosa matrix. Top: Pseudospectrum (left); Arnoldi (right). Bottom: Augmented Arnoldi (left);
projected transfer function (right).

In the general case we obtain that the transfer function norm satisfies

1

�min((Km � z eTm)T�1m )
� kGz(B

�1A;Pm+1; P
�
m)k � k(A� zB)

�1Bk:(2.10)

A sharper estimate for the resolvent norm than the one of (2.9) was presented by Toh in
[17, Eq. (6.23)]. In our notation it reads

1

�min((Km � z eTm)R�1m )
� k(A� zI)�1k;

whereRm is them � m upper triangular matrix in the QR factorization ofeTm. The next
proposition relates estimates (2.10) and (2.9).

PROPOSITION2.3. Let (A � zB)
�1BPm = Pm+1

eTm with Km = eI + � eTm. Let also
�(T ) = kTk=�min(T ) and� = k eTmwk=�min(Km � z eTm). Then

1

�( eTm)� �
1

�min((Km � z eTm)T�1m )

� �( eTm)�:(2.11)

Proof. Using�min((Km � z eTm)T�1m ) � kT�1m k�min(Km � z eTm) and alsokT�1m k =
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��1min(Tm) � ��1min(
eTm) we have

� �
kT�1m kkeTmwk

�min((Km � z eTm)T�1m )
� �( eTm) 1

�min((Km � z eTm)T�1m )
:

From�min(Km � z eTm) � �min((Km � z eTm)T�1m )kTmk we also have

1

�min((Km � z eTm)T�1m )

�
kTmk

�min(Km � z eTm)
k eTmwk
k eTmwk � �( eTm)�:

2.4. Explicit approximation of the resolvent norm. Other approaches have been pro-
posed that do not rely directly on reduction, but on some iterative scheme to approximately
evaluate�(z) � �min(A� zI) for eachz, so thatkR(z)k � �(z)�1.

In [3] the sought singular value is approximated using a Lanczos-Chebyshev algorithm.
We shall focus here on the Lanczos step. The Hermitian version of the Lanczos scheme is
used: given a Hermitian matrixM the recurrence is defined, similarly to the Arnoldi case, as

MQm = QmTm + re�m; r ? Qm;(2.12)

whereTm is Hermitian tridiagonal andQm has orthogonal columns. Braconnier and Higham
in [3] choseMz = ((A� zI)(A� zI)�)

�1 so that for each givenz 2 C their approximation
was given bymax�2�(Mz) j�j

1

2 � max�2�(Tm) j�j
1

2 � ��1.

PROPOSITION2.4. LetMzQm = QmTm + re�m with Mz = ((A� zI)(A� zI)�)
�1.

Then

kGz(A;Qm; I)k
2
= max

�2�(Tm)
j�j:

Proof. The result follows from the equivalence

max
�2�(Tm)

j�j = max
x2spanfQmg

jx�Mzxj

x�x
= max

y2Cm

jy�Q�
m((A� zI)�)�1(A� zI)�1Qmyj

y�y

= max
y2Cm

k(A� zI)�1Qmyk
2

kyk2
= kGz(A;Qm; I)k

2:

In [15], Marques and Toumazou usedMz 2 C 2n�2n ,

Mz =

�
0 (A� zI)�1

((A� zI)�)�1 0

�
;

so thatmax�2�(Mz) j�j � max�2�(Tm) j�j � ��1. By starting the Lanczos recurrence
with q1 = [q̂1; 0], only half of the elements of the basisQm are nonzero. These correspond
to the first or secondn locations [8]. Hence, by splittingQm andr asQm = [U1;U2] and
r = [r1; r2], respectively, we obtain(A�zI)�1U2 = U1Tm+r1e

�
m with U�

i Ui = I , i = 1; 2,
so thatGz(A;U2; U

�
1 ) := U�

1 (A� zI)�1U2 = Tm and

kGz(A;U2; U
�
1 )k = max

�2�(Tm)
j�j:
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Rearranging the equations so as to eliminate the zero columns ofU1 andU2, we can write
(A � zI)�1Xm = YmJm, whereJm is upper bidiagonal andXm; Ym have orthonormal
columns [8]. Whenm = n this equality corresponds to a unitary transformation so that the
singular values ofJn coincide with those of(A�zI)�1. Whenm is large enough,U1 andU2

will have large components along the directions of the leading singular vectors of(A�zI)�1,
in which case a good estimate of its largest singular value could be obtained. We note that
the approaches of [15] and [3] are equivalent in exact arithmetic ([8]), while the augmented
version appears to deliver more accurate results in finite–precision arithmetic [15].

3. Accuracy and cost control in the transfer function framework. We saw that trans-
fer functions provide a useful framework for several recent methods designed for approxi-
mating the resolvent norm. Our methodology was the following: given a known method,
construct the corresponding transfer function and analyze its properties. Instead, we can start
from the general transfer functionGz(A;E;D) and constructE;D in order to obtain useful
approximations to the resolvent norm.

We pose the problem as follows: for givenz 2 C, find E;D that solve the following
optimization problem:

max
E2Cn�sD2Ct�n

E�E=I;DD�=I

kD(A� zI)�1Ek:

One natural choice is to chooseE andD that have large components along the directions
of the right/left singular vector of the leading singular value of(A � zI)�1. This was the
case with the methods described in Section 2.4, whereE = E(z) andD = D(z). Let
�1 � �2 � : : : � �n be the singular values of(A � zI)�1, with �i = �i(z) andwi be the
corresponding right singular vectors. Assume for simplicity thatD = I . Then

k(A� zI)�1Ek = k[�1w
�
1E;�2w

�
2E; : : : ;�nw

�
nE]k:

If �1 � �i, for �i 6= �1, it follows thatk(A� zI)�1Ek � �1, unlesskw�1Ek is very small.
Therefore, whenz is close to the spectrum ofA, a sufficient condition for achieving a good
approximation tok(A� zI)�1k is thatE has a non–negligible component alongw1. In this
context, continuation may enhance the performance of the method by using the computed
singular subspace information for generatingE(z) andD(z) for a subsequentz [3].
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FIG. 3.1. Contour plot of transfer function norm for the Grcar matrix. Left: For real random perturbations
with orthonormal basesE andD; Right: ForE;D sections of the identity matrix.

These facts are illustrated in Figure 3.1(left), wherekGzk is plotted forE equal to an
orthogonal basis of ann � (m + 1) matrix with real random entries uniformly distributed
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in the interval[0; 1] andm = 10; hereD = [I; 0]E 2 Rn�m . Note that a less accurate
approximation is obtained away from the spectrum, where the largest singular value of(A�

zI)�1 is less dominant. This property is also common in projection type approximations,
which are most successful forz near the spectrum [2].

If A has special structure,E andD could be constructed to focus on parts ofA that
best capture the nonnormality. One such example is whenA is upper triangular with large
off–diagonal elements, in which case the resolvent frequently has large elements on the top
right corner. Then we can select indicesp; t � n andE = In�p:n andD = I1:t so that
kD�

(A � zI)�1Ek � kR(z)k. The Grcar matrix demonstrates a similar behavior even
though it is not triangular; see Figure 3.1(right), in whichp = t = 10.

In choosingD andE we also have to consider computational cost. For instance, the
Arnoldi methods described in [18] result in savings since the sameHm is used indepen-
dently ofz. In the transfer function framework of Section 2.2, however, we need to compute
Gz(A; Vm+1; V

�
m) = V �

m(A�zI)
�1Vm+1. This appears prohibitive. If we observe, however,

that

(Hm � zI)�1 = V �
m(A� zI)�1Vm + hm+1;mV

�
m(A� zI)�1vm+1e

T
m(Hm � zI)�1

and define�(z) := V �
m(A� zI)�1vm+1 then

G(A; Vm+1; V
�
m) = [(I � hm+1;m�(z)e

T
m)(H � zI)�1; �(z)]:

Therefore, only one system of sizen with right–hand sidevm+1 need be solved for each
z 2 C. When computing the pseudospectrum, this observation can be used in order to reduce
substantially the cost of the transfer function approach of Section 2.2. This is work in progress
and will be reported elsewhere [1].

Acknowledgments. We thank E. Gallestey for helpful discussions and one referee for
bringing to our attention related results in reference [17].
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