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ANALYSIS OF THE CCFD METHOD FOR MC-BASED
IMAGE DENOISING PROBLEMS∗

FAISAL FAIRAG†, KE CHEN‡, AND SHAHBAZ AHMAD†

Abstract. Image denoising using mean curvature leads to the problem of solving a nonlinear fourth-order integro-
differential equation. The nonlinear fourth-order term comes from the mean curvature regularization functional. In
this paper, we treat this high-order nonlinearity by reducing the nonlinear fourth-order integro-differential equation
to a system of first-order equations. Then a cell-centered finite difference scheme is applied to this system. With
a lexicographical ordering of the unknowns, the discretization of the mean curvature functional leads to a block
pentadiagonal matrix. Our contributions are fourfold: (i) we give a new method for treating the high-order nonlinearity
term; (ii) we express the discretization of this term in terms of simple matrices; (iii) we give an analysis for this
new method and establish that the error is of first order; and (iv) we verify this theoretical result by illustrating the
convergence rates in numerical experiments.
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1. Introduction. As the focus of the paper is on image denoising problems, we start
by presenting its concise description. Although there exist different types of noise, here we
only study algorithms for removing additive, zero-mean Gaussian noise. Mathematically, the
relationship between the original image u and a recorded image z is as follows:

z = u+ ε,(1.1)

where ε is the noise function. Let Ω denote a square in R2, and let u ∈ Ω be an image
intensity function. Additive noise in images is apparent in the form of random high-frequency
oscillations. Therefore, energy minimization-based denoising techniques, represented in the
form of the optimization problem

min
u

{
T (u) =

1

2
‖u− z‖2 + αJ(u)

}
,

attempt to damp such oscillations by the regularization term J(u), and the key for noise
removal is to select a suitable J(u) capable of efficiently measuring oscillations. Differ-
ent choices for J(u) have been proposed, for example, the well-known total variation (TV)
model [1, 6, 10]. The major drawback of this model is that it converts smooth functions
into piecewise constant functions resulting in a phenomenon known as the staircase effect,
which causes images to look blocky. To reduce the staircase effects, one remedy is to use
mean curvature-based (MC-based) regularization functionals [4, 8, 11, 12, 13], which are
very effective. These MC-based models not only remove staircase effects but also preserve
edges in the recovery of digital images. However, fourth-order derivatives appear in the
Euler-Lagrange equations of these models, which create problems in developing an efficient
numerical algorithm. The nonlinear fourth-order term comes from the mean curvature func-
tional. Furthermore, MC-based models produce complicated nonlinear systems of equations.

In the literature, one can find many numerical techniques that have been applied to the
nonlinear minimization of mean curvature-based image denoising problems. Among them are
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augmented Lagrangian methods [13], time marching schemes [12], and multigrid methods [2],
etc. Almost all of these numerical techniques deal with the complexity of the MC functional by
adding an artificial time step. In this paper we present a cell-centered finite difference (CCFD)
method for mean curvature-based image denoising problems. One key issue in the scheme
is to provide a proper approximation of the nonlinear mean curvature functional. We have
treated this difficulty by reducing the nonlinear fourth-order integro-differential equation to a
system of first-order equations. Then the CCFD scheme is applied to this first-order system.
With lexicographical ordering of the unknowns, the discretization of the mean curvature
functional leads to a block pentadiagonal matrix. We demonstrate that the proposed scheme is
of first order in the discrete L2-norm on a uniform rectangular grid. We also carried out some
numerical experiments using the proposed CCFD scheme, and the numerical results show that
our method is robust.

The paper is organized in different sections. Section 1 is an introduction, while Section 2
includes a problem description of image denoising models. In Section 3, we present a
nonlinear system of first-order equations for an MC-based image denoising model. The cell
discretization and the CCFD method are also presented in this section. In Section 4, we
provide an error analysis for our scheme. The algorithm and numerical results are given in
Section 5. Conclusions about the proposed scheme are discussed in Section 6. The last section
includes appendices, where we collect supplementary material for the proof of Theorem 4.1,
which demonstrates that the proposed scheme is of first order in the discrete L2-norm.

2. Mean curvature-based denoising models. Problem (1.1) is an inverse problem. The
recovery of u from z makes (1.1) an ill-posed problem [1, 9, 10]. To turn it into a well-posed
one, a remedy is to use the mean curvature (MC) regularization functional [3, 5, 12, 13],

J(u) =

∫
Ω

κ(u)2dx =

∫
Ω

(∇. ∇u
|∇u|

)2dx.

Then the regularized problem for (1.1) takes the form: find u that minimizes the functional

T (u) =
1

2
‖u− z‖2 +

α

2
J(u),(2.1)

where α > 0 is a regularization parameter. The well-posedness of problem (2.1) for a particular
case (synthetic image) is explained in [12]. The Euler-Lagrange equations for (2.1) are

(u− z) + α∇.

 ∇κ√
|∇u|2 + β2

− ∇κ.∇u

(

√
|∇u|2 + β2)3

∇u

 = 0 in Ω,(2.2)

with

∂u

∂n
= 0 and κ(u) = 0 on ∂Ω,

where β > 0 is used to avoid non-differentiability at zero. Equation (2.2) is a nonlinear
fourth-order differential equation.

Similarly, we can define a corresponding mean curvature-based one-dimensional signal
denoising problem. For convenience, we still denote the original signal and the noisy signal by
u and z, respectively. Both are defined on a closed interval I = [a, b]. In this case, the mean
curvature functional becomes

κ(u) =

(
ux√
u2
x + β2

)
x

,
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and the Euler-Lagrange equation is

(u− z) + α

(
κx

1

(
√
u2
x + β2)3

)
x

= 0,(2.3)

with

ux(0) = ux(1) = 0 and κ(0) = κ(1) = 0.

The MC-based model has nice properties. However, fourth-order derivatives appear in
the Euler-Lagrange equations, which create problems when developing an efficient numerical
algorithm. In the literature [2, 12, 13], one can find many numerical techniques that have been
applied to the problem of image denoising by mean curvature-based nonlinear minimization.
Almost all of the previous numerical techniques deal with the complexity of the MC functional
by adding an artificial time step. In this paper we present a cell-centered finite difference
(CCFD) method for mean curvature-based image denoising that does not require artificial
time steps. One key problem in developing the scheme is to give a proper approximation of
the nonlinear mean curvature functional. We treat this difficulty by reducing the nonlinear
fourth-order differential equation to a system of first-order equations.

3. The first-order nonlinear system. We introduce the following four new variables

−→v =
∇u√

|∇u|2 + β2

, w = ∇.−→v , −→p =
∇w√

|∇u|2 + β2

, and
−→
t =

(∇w.−→v )−→v√
|∇u|2 + β2

.

Hence, equation (2.2) can be expressed as the first-order nonlinear system,

u+ α∇.−→p − α∇.−→t = z,(3.1)
−w +∇.−→v = 0,(3.2) √

|∇u|2 + β2−→v −∇u = 0,(3.3) √
|∇u|2 + β2−→p −∇w = 0,(3.4) √

|∇u|2 + β2−→t − (∇w.−→v )−→v = 0.(3.5)

In the one-dimensional case, we have to introduce fewer unknowns to transform the problem
into a first-order nonlinear system because (2.3) is simpler than (2.2). Hence, from (2.3), we
obtain the following system of four equations:

u+ αpx = z,(3.6)
−w + vx = 0,(3.7) √

u2
x + β2v − ux = 0,(3.8)

(
√
u2
x + β2)3p− wx = 0.(3.9)

3.1. Cell discretization. For the two-dimensional problem, the domain Ω = (0, 1) ×
(0, 1) is discretized into a rectangular grid by the partition δx × δy, [7], where

δx : 0 = x1/2 < x3/2 < x5/2 < . . . < xnx−1/2 < xnx+1/2 = 1,

δy : 0 = y1/2 < y3/2 < y5/2 < . . . < ynx−1/2 < ynx+1/2 = 1.
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Here nx denotes the number of equispaced partitions in the x- or y-directions. Defining

xi = (i− 1

2
)h, i = 1, 2, 3, . . . , nx, and yj = (j − 1

2
)h, j = 1, 2, 3, . . . , nx,

and

xi± 1
2

= xi ±
h

2
, i = 1, 2, 3, . . . , nx, and yj± 1

2
= yj ±

h

2
, j = 1, 2, 3, . . . , nx,

where h = 1
nx

, we obtain the points (xi, yj), which are the centers of the cells, and the points
(xi± 1

2
, yj) and (xi, yj± 1

2
), which represent the midpoints of the cell edges.

For each i = 1, 2, ..., nx and j = 1, 2, ..., nx, define

Ωi,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2),

Ωi+1/2,j = (xi, xi+1)× (yj−1/2, yj+1/2),

Ωi,j+1/2 = (xi−1/2, xi+1/2)× (yj , yj+1).

For a function θ(x, y), let θl,m denote the function value θ(xl, ym), where l and m may take
the values i, i+ 1/2 and j, j + 1/2, respectively, for integers i, j ≥ 0. For discrete functions
with values defined at proper discrete points, we set

[dxθ]i+1/2,j =
θi+1,j − θi,j

h
, [Dxθ]i,j =

θi+1/2,j − θi−1/2,j

h
,

[dyθ]i,j+1/2 =
θi,j+1 − θi,j

h
, [Dyθ]i,j =

θi,ji+1/2 − θi,j−1/2

h
.

For the one-dimensional problem we have to restrict the above definitions to the x-direction
only.

3.2. The CCFD method. In this section we consider the cell-centered finite difference
(CCFD) method for a mean curvature-based image denoising problem. We use a lexicographi-
cal ordering of the unknowns,

U = [U11 U12 ... Unxnx
]t, W = [W 11 W 12 ... Wnxnx

]t,

V = [V
x

11 V
x

12 ... V
x

nx−1nx−1 V
y

11 V
y

12 ... V
y

nx−1nx−1]t,

P = [P
x

11 P
x

12 ... P
x

nx−1nx−1 P
y

11 P
y

12 ... P
y

nx−1nx−1]t, and

T = [T
x

11 T
x

12 ... T
x

nx−1nx−1 T
y

11 T
y

12 ... T
y

nx−1nx−1]t.

Now by applying the CCFD method to (3.1)–(3.5), one obtains the following equations:

IhU − αAhW + αB∗
hP − αB∗

hT = Zh,(3.10)
−IhW +B∗

hV = 0,(3.11)
DhV +BhU = 0,(3.12)
DhP +BhW = 0,(3.13)
DhT − ChV = 0.(3.14)

Here Ah and Ih are matrices of size n2
x × n2

x, and Bh is a matrix of size 2nx(nx − 1)× n2
x.

Ch and Dh are matrices of size 2nx(nx − 1)× 2nx(nx − 1). Thus, we arrive at the following
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system 
Ih −αAh 0 αB∗

h −αB∗
h

0 −Ih B∗
h 0 0

Bh 0 Dh 0 0
0 Bh 0 Dh 0
0 0 −Ch 0 Dh



U
W
V
P
T

 =


Zh
0
0
0
0

 .
The matrix Ah is diagonal having the structure

Ah =
2

βh
(A1 +A2),

where both A1 and A2 are of size n2
x × n2

x defined as

A1 = Ĩ ⊗ E and A2 = E ⊗ Ĩ ,

where ⊗ is the tensor product and Ĩ is the identity matrix of size nx × nx. The matrix

E =


1

0
. . .

0
1


is of size nx × nx. The matrix Bh has the structure

Bh =
1

h

[
B1

B2

]
,

where both B1 and B2 are of size nx(nx − 1)× n2
x with

B1 = F ⊗ Ĩ and B2 = Ĩ ⊗ F.

Here,

F =


1 −1

1 −1
. . . . . .

. . . −1
1 −1


is a matrix of size (nx − 1)× nx. The matrix

Ch =

[
Cx 0
0 Cy

]
is a diagonal matrix, and the diagonal entries are obtained by a discretization of the expression
(∇w.−→v ). The matrix Cx is of size (nx− 1)×nx, and the matrix Cy is of size nx× (nx− 1).
The matrix Dh is also diagonal with positive entries, and the diagonal entries are obtained by

discretization of the expression
√
|∇u|2 + β2. The matrix Dh has the structure

Dh =

[
Dx 0
0 Dy

]
,
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where Dx is of size (nx−1)×nx and Dy is of size nx× (nx−1). Note that on the horizontal
and vertical edges of each cell eij , the values of all unknowns are not available, so average
operators can be used to calculate their values.

Now if we eliminate W,V, P, and T from (3.10)–(3.14), then we have the primal system

(Ih + αLh(U))U = Zh,(3.15)

where

Lh = (B∗
hD

−1
h Bh)2 +Ah(B∗

hD
−1
h Bh) +B∗

hD
−1
h ChD

−1
h Bh.

The first and the last term in Lh is symmetric positive semidefinite [10], but the middle term is
not symmetric. With lexicographical ordering of the unknowns, Lh is block pentadiagonal.
The diagonal blocks are pentadiagonal matrices, while the off-diagonal blocks just below and
above the main diagonal blocks are tridiagonal matrices. The remaining blocks are diagonal
matrices. A similar block matrix structure exists for the one-dimensional MC-based signal
denoising problem.

4. Error analysis. We follow the error analysis procedure of Rui and Pan [7], who
considered a Darcy-Forchheimer model using a block-centered finite difference method. For
simplicity, we consider the one-dimensional MC-based signal denoising problem (3.6)–(3.9).
The cell-centered finite difference approximations Ui, Wi, Vi+ 1

2
, and Pi+ 1

2
of u(xi), w(xi),

v(xi+ 1
2
), and p(xi+ 1

2
), respectively, are chosen such that

Ui + α[DxP ]i = Zi,(4.1)
−Wi + [DxV ]i = 0,(4.2) √

[dxU ]2
i+ 1

2

+ β2Vi+ 1
2
− [dxU ]i+ 1

2
= 0,(4.3)

(
√

[dxU ]2
i+ 1

2

+ β2)3Pi+ 1
2
− [dxW ]i+ 1

2
= 0,(4.4)

with V 1
2

= Vn+ 1
2

= 0 and W 1
2

= Wn+ 1
2

= 0. Now we discretize the interval [0, 1] using
n = nx distinct points. With h = 1

n , the discretization is illustrated in Figure 4.1.

FIG. 4.1. Discretization of the one-dimensional MC-based signal denoising problem.

Error estimates (i). We consider the points x = xi, i = 1, 2, . . . , (n− 1). From (3.6) we
obtain by integration that

pi+ 1
2

= pi− 1
2

+
1

α

∫ x
i+1

2

x
i− 1

2

(z − u)dx.

By recursion, we get

(4.5) pi+ 1
2

= p 1
2

+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

(z − u)dx.
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From (4.1), we have

Pi+ 1
2

= Pi− 1
2

+
1

α

∫ x
i+1

2

x
i− 1

2

(Zi − Ui)dx,

which yields again by recursion that

(4.6) Pi+ 1
2

= P 1
2

+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

(Zl − Ul)dx.

Subtracting (4.6) from (4.5), gives

pi+ 1
2
− Pi+ 1

2
= p 1

2
− P 1

2
−

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

(u− Ul)dx+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

(z − Zl)dx.

Applying a mid-point quadrature rule leads to

pi+ 1
2
− Pi+ 1

2
= p 1

2
− P 1

2
−

i∑
l=1

( 1

α
h(ul − Ul) +

1

α
Cul

h3 +O(h4)
)

+

i∑
l=1

( 1

α
h(zl − Zl) +

1

α
Czlh

3 +O(h4)
)
.

Since z is a known function, we have zl = Zl. Thus,

pi+ 1
2
− Pi+ 1

2
= p 1

2
− P 1

2
−

i∑
l=1

( 1

α
h(ul − Ul) +

1

α
Cul

h3 +O(h4)
)

+

i∑
l=1

( 1

α
Czlh

3 +O(h4)
)

= Cw′′′1
2

h2 +O(h4)−
i∑
l=1

( 1

α
h(ul − Ul) +

1

α
Cul

h3 +O(h4)
)

+

i∑
l=1

( 1

α
Czlh

3 +O(h4)
)
,

where we used Appendix A in the last step. So, for i = 1, 2, . . . , n− 1, we obtain

ep
i+ 1

2

= Cw′′′1
2

h2 +O(h4)−
i∑
l=1

(h
α
eul +

1

α
Cul

h3 +O(h4)
)

+

i∑
l=1

( 1

α
Czlh

3 +O(h4)
)
,

(4.7)

where ep
i+ 1

2

= pi+ 1
2
− Pi+ 1

2
and eul = ul − Ul. Similarly, from (3.7) and (4.2), we have for

i = 1, 2, . . . , n− 1,

(4.8) evi+ 1
2

=

i∑
l=1

(
hewl + Cwl

h3 +O(h4)
)
,

where ev
i+ 1

2

= vi+ 1
2
− Vi+ 1

2
and ewl = wl −Wl.
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Error estimates (ii). We now consider x = xn. From (3.6) it follows by integration that

(4.9) pn− 1
2

= pn+ 1
2
− 1

α

∫ x
n+1

2

x
n− 1

2

(z − u)dx.

From (4.1), we have

(4.10) Pn− 1
2

= Pn+ 1
2
− 1

α

∫ x
n+1

2

x
n− 1

2

(Zn − Un).

Subtracting (4.10) from (4.9), we find

pn− 1
2
− Pn− 1

2
= pn+ 1

2
− Pn+ 1

2
+

1

α

∫ x
n+1

2

x
n− 1

2

(u− Un)dx− 1

α

∫ x
n+1

2

x
n− 1

2

(z − Zn).

As before, using a mid-point quadrature rule, the fact that z is a known function with zn = Zn,
and Appendix A, we have

pn− 1
2
− Pn− 1

2
= pn+ 1

2
− Pn+ 1

2
+

1

α
h(un − Un) +

1

α
Cunh

3 +O(h4)

+
1

α
h(zn − Zn)− 1

α
Cznh

3 +O(h4)

= pn+ 1
2
− Pn+ 1

2
+

1

α
h(un − Un) +

1

α
Cun

h3 − 1

α
Cznh

3 +O(h4)

= Cw′′′
n+1

2

h2 +O(h4) +
1

α
h(un − Un) +

1

α
Cun

h3 − 1

α
Cznh

3 +O(h4).

Hence, we arrive at

ep
n− 1

2

= Cw′′′
n+1

2

h2 +
h

α
eun +

1

α
Cunh

3 − 1

α
Cznh

3 +O(h4),

where ep
n− 1

2

= pn− 1
2
−Pn− 1

2
and eun = un−Un. By using (4.7), the above equation becomes

Cw′′′1
2

h2 +O(h4)−
n−1∑
l=1

(h
α
eul +

1

α
Cul

h3 +O(h4)
)

+

n−1∑
l=1

( 1

α
Czlh

3 +O(h4)
)

= Cw′′′
n+1

2

h2 +
h

α
eun +

1

α
Cunh

3 − 1

α
Cznh

3 +O(h4).

Taking a common h
α -factor from both sides, we obtain

αCw′′′1
2

h+O(h3)−
n−1∑
l=1

(
eul + Cul

h2 +O(h3)
)

+

n−1∑
l=1

(
Czlh

2 +O(h3)
)

= αCw′′′
n+1

2

h+ eun + Cun
h2 − Cznh2 +O(h3).

After rearranging, we arrive at

eu1 = αCw′′′1
2

h− αCw′′′
n+1

2

h+O(h3)−
n∑
l=2

eul

−
n∑
l=1

(
Cul

h2 +O(h3)
)

+

n∑
l=1

(
Czlh

2 +O(h3)
)
.

(4.11)
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Similarly, from (3.7) and (4.2), we have

(4.12) ew1 = −
n∑
l=2

ewl −
n∑
l=1

(
Cwl

h2 +O(h3)
)
,

where ewn = wn −Wn.
Error estimates (iii). We consider x = xi− 1

2
, i = 2, 3, . . . , n. From (3.8), by integration,

we have

ui = ui−1 −
∫ xi

xi−1

√
u2
x + β2vdx,

which by recursion leads to

(4.13) ui = u1 +

i∑
l=2

∫ xl

xl−1

√
u2
x + β2vdx.

From (4.3), we have

Ui = Ui−1 +

∫ xi

xi−1

√
[dxU ]2

i− 1
2

+ β2Vi− 1
2
dx.

By recursion, we obtain

(4.14) Ui = U1 +

i∑
l=2

∫ xl

xl−1

√
[dxU ]2

l− 1
2

+ β2Vl− 1
2
dx.

Subtracting (4.14) from (4.13) yields

ui − Ui = [u1 − U1] +

i∑
l=2

∫ xl

xl−1

√
u2
x + β2vdx−

i∑
l=2

∫ xl

xl−1

√
[dxU ]2

l− 1
2

+ β2Vl− 1
2
dx.

Adding and subtracting the term
∑i
l=2

∫ xl

xl−1

√
(ux(xl− 1

2
))2 + β2vl− 1

2
dx on the right-hand

side of the above equation gives

ui − Ui = [u1 − U1]

+

i∑
l=2

∫ xl

xl−1

[
√
u2
x + β2v −

√
(ux(xl− 1

2
))2 + β2vl− 1

2
]dx

+

i∑
l=2

∫ xl

xl−1

[
√

(ux(xl− 1
2
))2 + β2vl− 1

2
−
√

[dxU ]2
l− 1

2

+ β2Vl− 1
2
]dx,

(4.15)

from which it follows that

eui = eu1 + I1 + I2,

with I1 and I2 defined as the last two terms in (4.15). So, by Appendix B, for i = 2, 3, . . . , n,
we have

eui = eu1 +

i∑
l=2

(
Cu′′′

l− 1
2

h3 +O(h5)
)

+

i∑
l=2

h
√

(ux(xl− 1
2
))2 + β2vl− 1

2

−
i∑
l=2

h

√
(ux(xl)−

h

2
uxx(xl) +O(h2))2 + β2

(
v(xl)−

h

2
vx(xl) +O(h2)

)
,

(4.16)
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where eui = ui − Ui. Similarly, from (3.9) and (4.4), we have for i = 2, 3, . . . , n,

ewi = ew1 +

i∑
l=2

(
Cw′′′

l− 1
2

h3 +O(h5)
)

+

i∑
l=2

h
(√

(ux(xl− 1
2
))2 + β2

)3

pl− 1
2

−
i∑
l=2

h
(√

(ux(xl)−
h

2
uxx(xl) +O(h2))2 + β2

)3(
p(xl)−

h

2
px(xl) +O(h2)

)
,

(4.17)

where ewi = wi −Wi. Now with the help of the above analysis, we can present the following
theorem:

THEOREM 4.1. Let u,w, v, and p be the solutions of the system (3.6)–(3.9) on the mesh
Ωh, and let U,W, V , and P be the computed solutions of the system (4.1)–(4.4) on the mesh
Ωh. Then there exists a positive constant C independent of h such that, for i = 1, 2, . . . , n,

|ui − Ui| ≤ Ch, |wi −Wi| ≤ Ch,

and, for i = 2, 3, . . . , n− 1,

|vi+ 1
2
− Vi+ 1

2
| ≤ Ch2, |pi+ 1

2
− Pi+ 1

2
| ≤ Ch2.

Proof. For i = 1, 2, 3, . . . , n, define

eu = ui − Ui and ew = wi −Wi,

and, for i = 1, 2, 3, . . . , n− 1, define

ev = vi+ 1
2
− Vi+ 1

2
and ep = pi+ 1

2
− Pi+ 1

2
.

Now let

Eu = [eu1 eu2 . . . eun]t, Ew = [ew1 ew2 . . . ewn ]t,

Ev = [ev3
2

ev5
2

. . . evn− 1
2
]t, Ep = [ep3

2

ep5
2

. . . ep
n− 1

2

]t.

Then, from (4.7), (4.8), (4.11), (4.12), (4.16), and (4.17), we obtain the following system:

Eu = An×nE
u + T̃un×1, Ew = hB(n−1)×nE

w + T̃wn×1,

Ev = An×nE
w + T̃ v(n−1)×1, Ep = −h

α
B(n−1)×nE

u + T̃ p(n−1)×1,

where

An×n =


0 −1 −1 . . . −1
1 0 0 . . . 0
1 0 0 . . . 0

. . . . . . . . .
1 0 0 . . . . . . 0

 ,

B(n−1)×n =


1 0 0 . . . . . . 0
1 1 0 . . . . . . 0

. . . . . . . . .

. . . . . . . . .
1 1 1 . . . 1 0

 ,
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and the structure of the truncation vectors is as follows:

T̃u
n×1 =




αC

w
′′′
1
2

h− αC
w
′′′
n+1

2

h+O(h3)

−
∑n

l=1

(
Culh

2 +O(h3)
)
+
∑n

l=1

(
Czlh

2 +O(h3)
)

C
u
′′′
3
2

h3 +O(h5) + h
√

(ux(x 3
2
))2 + β2v(x 3

2
)

−h
√

(ux(x2) +O(h))2 + β2
(
v(x2) +O(h)

)
∑3

l=2

(
C

u
′′′
l− 1

2

h3 +O(h5)
)
+
∑3

l=2 h
√

(ux(xl− 1
2
))2 + β2v(xl− 1

2
)

−
∑3

l=2 h
√

(ux(xl) +O(h))2 + β2
(
v(xl) +O(h)

)
.
.
.

∑n
l=2

(
C

u
′′′
l− 1

2

h3 +O(h5)
)
+
∑n

l=2 h
√

(ux(xl− 1
2
))2 + β2v(xl− 1

2
)

−
∑n

l=2 h
√

(ux(xl) +O(h))2 + β2
(
v(xl) +O(h)

)



,

T̃w
n×1 =



−
∑n

l=1

(
Cwlh

2 +O(h3)
)

C
w
′′′
3
2

h3 +O(h5) + h
(√

(ux(x 3
2
))2 + β2

)3
p(x 3

2
)

−h
(√

(ux(x2) +O(h))2 + β2
)3(

p(x2) +O(h)
)

∑3
l=2

(
C

w
′′′
l− 1

2

h3 +O(h5)
)
+
∑3

l=2 h
(√

(ux(xl− 1
2
))2 + β2

)3
p(xl− 1

2
)

−
∑3

l=2 h
(√

(ux(xl) +O(h))2 + β2
)3(

p(xl) +O(h)
)

.

.

.
∑n

l=2

(
C

w
′′′
l− 1

2

h3 +O(h5)
)
+
∑n

l=2 h
(√

(ux(xl− 1
2
))2 + β2

)3
p(xl− 1

2
)

−
∑n

l=2 h
(√

(ux(xl) +O(h))2 + β2
)3(

p(xl) +O(h)
)



,

T̃ v(n−1)×1 =



Cw1h
3 +O(h4)

Cw1h
3 + Cw2h

3 +O(h4)
Cw1

h3 + Cw2
h3 + Cw3

h3 +O(h4)
.
.
.∑n−1

l=1

(
Cwl

h3 +O(h4)
)


,
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and

T̃ p(n−1)×1 =



Cw′′′1
2

h2 − 1
αCu1

h3 + 1
αCz1h

3 +O(h4){
Cw′′′1

2

h2 − 1
αCu1h

3 − 1
αCu2h

3

+ 1
αCz1h

3 + 1
αCz2h

3 +O(h4){
Cw′′′1

2

h2 − 1
αCu1

h3 − 1
αCu2

h3 − 1
αCu3

h3

+ 1
αCz1h

3 + 1
αCz2h

3 + 1
αCz3h

3 +O(h4)
.
.
. Cw′′′1

2

h2 +O(h4)−
∑n−1
l=1

(
1
αCul

h3 +O(h4)
)

+
∑n−1
l=1

(
1
αCzlh

3 +O(h4)
)



.

So, for simplicity dropping the subscript, by solving the above system, we obtain

Eu = (I −A)−1T̃u, Ew = (I −A)−1T̃w,

Ev = hB(I −A)−1T̃w + T̃ v, Ep = −h
α
B(I −A)−1T̃u + T̃ p.

By simple column operations, one can see that det((I −A)n×n) = n, hence (I −A)n×n is a
nonsingular matrix. Now by expansion into a Taylor series, the errors Eu, Ew, Ev, and Ep

have the form

Eu = (I −A)−1dT̃uh+ . . . ,

Ew = (I −A)−1dT̃wh+ . . . ,

Ev = 2B(I −A)−1dT̃wh2 + . . . ,

Ep = − 2

α

(
B(I −A)−1dT̃u + ddT̃ p

)
h2 + . . .

This completes the proof.
(For the derivatives of the truncation vectors and error vectors, see Appendix C and

Appendix D, respectively).
REMARK 4.2. Along the same lines, we can carry out a similar error analysis for the

two-dimensional MC-based image denoising problem.

5. Numerical implementation. Here, we introduce an algorithm to solve the primal
form (3.15) of the MC-based nonlinear image denoising problem. Then we present numerical
examples based on that algorithm.

At first, we apply a discrete version of the fixed point iteration to (3.15), which leads to
the linear system

(Ih + αLh(Um))Um+1 = Zh.(5.1)

Indeed, (5.1) is a fixed point method but its convergence is not yet proved. However, it is
known that for the MC model, many well-known and simple fixed point methods are not
converging numerically [11, 13]. The properties of our system (3.15), mentioned in Section 3,
suggest that an iterative method like a Generalized Minimal Residual (GMRES) method may
be suitable for (5.1). Unfortunately, the GMRES method can exhibit quite slow convergence

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

120 F. FAIRAG, K. CHEN, AND S. AHMAD

due to the system being ill-conditioned. One remedy for this problem is preconditioning, which
is the reason why we employ a Preconditioned Generalized Minimal Residual (PGMRES)
method. In order to make the PGMRES method effective, the preconditioning matrix P must
be symmetric positive definite. Therefore we use the following simple preconditioning matrix
P̄ ,

P̄ = Ih + αdiag(Lh),

where Ih is the identity matrix and diag(Lh) is the diagonal matrix, whose entries are the
diagonal entries of the matrix Lh. When applying the P̄ -PGMRES method to (5.1), the
inversion of P̄ is required. Since our preconditioning matrix P̄ is a diagonal matrix, the
inversion can be done easily. Rapid convergence is observed in the numerical results below
for the P̄ -PGMRES method due to our preconditioning matrix P̄ . The same algorithm is
applied to a one-dimensional MC-based signal denoising problem. The above discussion is
summarized in Algorithm 1.

Algorithm 1: The P̄ -PGMRES method.
Given: mesh: Ωh; initial iteration: U0.

for m = 1; max

Am = Ih + αLh(Um), bm = Zh,

Use PGMRES method to solve

AmUm+1 = bm, with P̄h = Ih + αdiag(Lh(Um)),

end

We present two numerical examples for the MC-based denoising problem. Example 5.1
concerns a one-dimensional model and Example 5.3 a two-dimensional model. In both
examples, the value of α is used according to [2, 12, 13], and for the stopping criteria of
a numerical method we set a tolerance tol = 1e-3. For numerical computations, we used
MATLAB, and the results are obtained with an Intel Core i7-4510U CPU @2.00 GHz 2.60
GHz computer. To measure the quality of the restored signals or images, we calculate the
signal to noise ratio (SNR) [2].

EXAMPLE 5.1. In this example we use the P̄ -PGMRES method for a one-dimensional
MC-based signal denoising problem. Here we have used as exact solution a sine-curve. The
data and results, namely (a) the original (exact) curve, (b) the noisy data, and (c) the curve
denoised by the P̄ -PGMRES method, are displayed in Figure 5.1. Here, we solved the problem
with Algorithm 1 with β = 1 and α varying from 1e-7 to 1e-3 [2]. We tested with four values
of nx, which are nx = 64, 128, 256, and 512. All the noisy data have an SNR close to 13. In
Table 5.1, we summarize all the information about this experiment.

REMARK 5.2.
1. Table 5.1 shows that the P̄ -PGMRES method has first-order accuracy in the discrete
L2-norm. These results are consistent with the error estimates in Theorem 4.1.

2. From Figure 5.1, one can notice the quality of the denoised signal produced by the
P̄ -PGMRES method. The graph in Figure 5.1(c) is almost similar to the original one
in Figure 5.1(a) with all the noise removed. This means that the P̄ -PGMRES method
generates a high-quality denoised function by efficiently removing the noise.
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(a) (b) (c)

FIG. 5.1. sine-curve: (a) original signal, (b) noisy signal, and (c) denoised signal by the P̄ -PGMRES method.

TABLE 5.1
Errors and convergence rates for Example 5.1

nx Mesh Size (h) Error Rate
64 1/64 6.8506e-03 –

128 1/128 3.6680e-03 -0.9011
256 1/256 1.7550e-03 -1.0635
512 1/512 7.5058e-04 -1.2254

EXAMPLE 5.3. In this example we use the P̄ -PGMRES method for a two-dimensional
MC-based image denoising problem. The example includes the “brain” image and the
“peppers” image, which are shown in Figure 5.2. The size of each figure is 512× 512, and (a)
and (c) represent noisy images, while (b) and (d) are denoised images using the P̄ -PGMRES
method. For both noisy images we have an SNR of 3.5. In this experiment, we use α = 1e-3
and β is varied from 1e-1 to 1 [12, 13]. For the analysis of the convergence rate we take four
values of nx, 64, 128, 256, and 512. In Table 5.2 we summarize the information about the
errors and convergence rates of this experiment.

REMARK 5.4.

1. From Figure 5.2, one can notice the quality of the denoised images produce by the P̄ -
PGMRES method. Most of the noise is removed, which means that the P̄ -PGMRES
method generates high-quality results.

2. Table 5.2 shows that the P̄ -PGMRES method has first-order accuracy in the discrete
L2-norm for all values of nx.

TABLE 5.2
Errors and convergence rates for Example 5.3.

Brain image Peppers image
nx Mesh Size (h) Error Rate Error Rate
64 1/64 5.8465e-04 – 4.4559e-04 –

128 1/128 1.6012e-04 -1.8303 1.9648e-04 -1.1813
256 1/252 4.6449e-05 -1.6192 8.7649e-05 -1.1646
512 1/512 1.6120e-05 -1.3157 3.6438e-05 -1.2663

EXAMPLE 5.5. In this example we present a comparison of our method (P̄ -PGMRES
method) with the multigrid method of C. Brito-Loeza and K. Chen [2]. For this we use two
images (brain and peppers), displayed in Figure 5.3. The size of each figure is 512 × 512
and (a) and (d) represent noisy images, while (b) and (e) are the denoised images using the
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(a) (b)

(c) (d)

FIG. 5.2. Brain image: (a) noisy image and (b) denoised image by the P̄ -PGMRES method. Peppers image:
(c) noisy image and (d) denoised image by the P̄ -PGMRES method.

multigrid method, and (c) and (f) are the denoised images using the P̄ -PGMRES method.
In the multigrid method we use the parameters [2] α = 1

200 and β = 1e-2. For the
P̄ -PGMRES method, we use α = 1e-3, and β is varied from 1e-1 to 1 [12, 13]. In this
experiment, all the noisy images have an SNR of 3.5. Here, we take two values of nx for
each image, namely, 256 and 512. In Table 5.3, we summarize the information about this
experiment.

REMARK 5.6.
1. Table 5.3 shows that the CPU-time taken for the P̄ -PGMRES method is less than

that for the multigrid method for all values of nx. For nx = 256, our method saves
more than 25% CPU-time for each image, and for nx = 512, our method saves more
than 40%. We expect even more saving in time as the mesh size is further refined.

2. From Figure 5.3, one can notice that the denoised images are almost similar, and
most of the noise has been removed. This means that both methods generate the same
quality, but the P̄ -PGMRES method does this in less CPU-time. This means that our
method is a more robust method.

6. Conclusion. A cell-centered finite difference method for a mean curvature-based
image denoising problem is discussed. First-order error estimates are established on a uniform
rectangular mesh. A numerical algorithm is also presented to solve the primal form of the
mean curvature-based nonlinear image denoising problem. Three examples are tested using
our algorithm (P̄ -PGMRES method). In Example 5.1, we applied the P̄ -PGMRES method
to a one-dimensional signal denoising problem and in Example 5.3 to a two-dimensional
image denoising problem. Numerical experiments using this scheme show consistency of the
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(a) (b) (c)

(d) (e) (f)

FIG. 5.3. Brain image: (a) noisy image, (b) denoised image by the multigrid method, and (c) denoised image
by the P̄ -PGMRES method. Peppers image: (d) noisy image, (e) denoised image by the multigrid method, and (f)
denoised image by the P̄ -PGMRES method.

TABLE 5.3
CPU-time comparison of the multigrid method and the P̄ -PGMRES method for Example 5.5.

Multigrid P̄ -PGMRES
Image nx Mesh Size (h) CPU-time CPU-time
Brain 256 1/252 33.0477 14.6527

512 1/512 139.9676 81.1921

Peppers 256 1/252 35.3301 13.3242
512 1/512 140.0890 74.9122

convergence rates of our method with the theoretical analysis. In Example 5.5, we compared
the P̄ -PGMRES method with a multigrid method, and the numerical results indicate that our
method is a more robust method.

Acknowledgments. The first and the last author would like to acknowledge the support
provided by the Deanship of Scientific Research at KFUPM for funding this work through
project no. SB181013.

Appendix A. In this section we preset a collection of supplementary materials. Consider,

p(x 1
2
)− P 1

2
=

1

(
√
ux(x 1

2
)2 + β2)3

wx(x 1
2
)− 1

(
√

1
h [U1 − U0]2 + β2)3

1

h
[W1 −W0].

Since ux(x 1
2
) = 0 and U0 = U1, we have

p(x 1
2
)− P 1

2
=

1

β3

{
wx(x 1

2
)− 1

h
[W1 −W0]

}
=

1

β3

{
wx(x 1

2
)− 1

h
[w(x 1

2
+
h

2
)− w(x 1

2
− h

2
)]

}
.
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Applying a Taylor expansion on the right-hand side, we get

p(x 1
2
)− P 1

2
= − h2

24β3
wxxx(x 1

2
) +O(h4).

Hence, p(x 1
2
)− P 1

2
= Cw′′′1

2

h2 +O(h4). Similarly, p(xn+ 1
2
)− Pn+ 1

2
= Cw′′′

n+1
2

h2 +O(h4).

Appendix B. Consider

I1 =

i∑
l=2

∫ xl

xl−1

[
√
u2
x + β2v −

√
(ux(xl− 1

2
))2 + β2vl− 1

2
]dx, where i = 2, 3, . . . , n.

Using (3.8), we have I1 =
∑i
l=2

∫ xl

xl−1
[ux(x) − ux(xl− 1

2
)]dx. By a Taylor expansion of

ux(x) and then integrating, we have

I1 =

i∑
l=2

[
(x− xl− 1

2
)2

2
uxx(xl− 1

2
) +

(x− xl− 1
2
)3

6
uxxx(xl− 1

2
) +O((x− xl− 1

2
)4)]xl

xl−1

=

i∑
l=2

[
h3

24
uxxx(xl− 1

2
) +O(h5)] =

i∑
l=2

Cu′′′
l− 1

2

h3 +O(h5).

Now consider

I2 =

i∑
l=2

∫ xl

xl−1

[
√

(ux(xl− 1
2
))2 + β2vl− 1

2
−
√

[dxU ]2
l− 1

2

+ β2Vl− 1
2
]dx

=

i∑
l=2

h
√

(ux(xl− 1
2
))2 + β2vl− 1

2
−

i∑
l=2

h
√

[dxU ]2
l− 1

2

+ β2Vl− 1
2
.

Expanding into a Taylor series, we have

Vl− 1
2

= v(xl)−
h

2
vx(xl) +O(h2) and [dxU ]l− 1

2
= ux(xl)−

h

2
uxx(xl) +O(h2),

hence,

I2 =

i∑
l=2

h
√

(ux(xl− 1
2
))2 + β2vl− 1

2

−
i∑
l=2

h

√
(ux(xl)−

h

2
uxx(xl) +O(h2))2 + β2

(
v(xl)−

h

2
vx(xl) +O(h2)

)
.

Appendix C. Here, we find the first and the second derivatives of the truncation vectors
T̃un×1, T̃

w
n×1, T̃

v
n×1, and T̃ pn×1 at h = 0. Since each element of the truncation vectors involve

h, it follows that

T̃un×1|h=0 = 0n×1, T̃wn×1|h=0 = 0n×1, T̃ vn×1|h=0 = 0n×1, and T̃ pn×1|h=0 = 0n×1.
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Since T̃un×1, T̃
w
n×1, T̃

v
n×1, and T̃ pn×1 all are column vectors, differentiating with respect to h

(row-wise) and setting h = 0 results in the following first derivatives:

∂T̃un×1

∂h
|h=0 =



− α
24β3wxxx(x 1

2
) + α

24β3wxxx(xn+ 1
2
)√

(ux(x 3
2
))2 + β2v(x 3

2
)−

√
ux(x2) + β2v(x2)∑3

l=2

√
(ux(xl− 1

2
))2 + β2v(xl− 1

2
)−

∑3
l=2

√
ux(xl) + β2v(xl)

.

.

.∑n
l=2

√
(ux(xl− 1

2
))2 + β2v(xl− 1

2
)−

∑n
l=2

√
ux(xl) + β2v(xl)


= dT̃un×1,

∂T̃wn×1

∂h
|h=0 =



0(√
(ux(x 3

2
))2 + β2

)3

p(x 3
2
)−

(√
ux(x2) + β2

)3

p(x2)∑3
l=2

(√
(ux(xl− 1

2
))2 + β2

)3

p(xl− 1
2
)−

∑3
l=2

(√
ux(xl) + β2

)3

p(xl)

.

.

.∑n
l=2

(√
(ux(xl− 1

2
))2 + β2

)3

p(xl− 1
2
)−

∑n
l=2

(√
ux(xl) + β2

)3

p(xl)


= dT̃wn×1,

∂T̃ v(n−1)×1

∂h
|h=0 = 0n×1, and

∂T̃ p(n−1)×1

∂h
|h=0 = 0n×1.

Repeating the procedure yields the following second derivatives:

∂2T̃un×1

∂h2
|h=0 =



−
∑n
l=1

1
12uxx(xl) +

∑n
l=1

1
12z

′′
(xl)

−2
(
ux(x2)uxx(x2)v(x2)√

u2
x(x2)+β2

+
√
u2
x(x2) + β2vx(x2)

)
−2
∑3
l=2

(
ux(xl)uxx(xl)v(xl)√

u2
x(xl)+β2

+
√
u2
x(xl) + β2vx(xl)

)
.
.
.

−2
∑n
l=2

(
ux(xl)uxx(xl)v(xl)√

u2
x(xl)+β2

+
√
u2
x(xl) + β2vx(xl)

)


= ddT̃un×1,
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∂2T̃w
n×1

∂h2
|h=0 =



−
∑n

l=1
1
12
wxx(xl)

−2
(
3ux(x2)uxx(x2)p(x2)

√
u2
x(x2) + β2 +

(√
u2
x(x2) + β2

)3
px(x2)

)
−2
∑3

l=2

(
3ux(xl)uxx(xl)p(xl)

√
u2
x(xl) + β2 +

(√
u2
x(xl) + β2

)3
px(xl)

)
.
.
.

−2
∑n

l=2

(
3ux(xl)uxx(xl)p(xl)

√
u2
x(xl) + β2 +

(√
u2
x(xl) + β2

)3
px(xl)

)


= ddT̃w

n×1,

∂2T̃ v(n−1)×1

∂h2
|h=0 = 0n×1,

∂2T̃ p(n−1)×1

∂h2
|h=0 =



− 1
12β3wxxx(x 1

2
)

− 1
12β3wxxx(x 1

2
)

− 1
12β3wxxx(x 1

2
)

.

.

.
− 1

12β3wxxx(x 1
2
)


= ddT̃ p.

Appendix D. Here, we find the first and second derivatives of the error vectors Eu, Ew,
Ev , and Ep at h = 0. For simplicity, we ignore the subscripts. Consider

Eu = (I −A)−1T̃u

so that

∂Eu

∂h
= (I −A)−1 ∂T̃

u

∂h
.

From Appendix C, we have

∂Eu

∂h
|h=0 = (I −A)−1dT̃u,

and similarly,

∂Ew

∂h
|h=0 = (I −A)−1dT̃w.

Now consider

Ev = hB(I −A)−1T̃w + T̃ v.

Hence,

∂Ev

∂h
= B(I −A)−1T̃w + hB(I −A)−1 ∂T̃

w

∂h
+
∂T̃ v

∂h
.
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From Appendix C, we have

∂Ev

∂h
|h=0 = B(I −A)−10n×1 + (0)B(I −A)−1dT̃w + 0n×1.

Thus,

∂Ev

∂h
|h=0 = 0n×1,

and similarly,

∂Ep

∂h
|h=0 = 0n×1.

Now, consider

∂2Ev

∂h2
= B(I −A)−1 ∂T̃

w

∂h
+B(I −A)−1 ∂T̃

w

∂h
+ hB(I −A)−1 ∂

2T̃w

∂h2
+
∂2T̃ v

∂h2
.

From Appendix C, we obtain

∂2Ev

∂h2
|h=0 = B(I −A)−1dT̃w +B(I −A)−1dT̃w + (0)B(I −A)−1ddT̃w + 0n×1,

from which it follows that

∂2Ev

∂h2
|h=0 = 2B(I −A)−1dT̃w.

Similarly,

∂2Ep

∂h2
|h=0 = − 2

α
B(I −A)−1dT̃u + ddT̃ p.
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