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SUBSTITUTION ALGORITHMS FOR RATIONAL MATRIX EQUATIONS∗

MASSIMILIANO FASI† AND BRUNO IANNAZZO‡

Abstract. We study equations of the form r(X) = A, where r is a rational function and A and X are square
matrices of the same size. We develop two techniques for solving these equations by inverting (through a substitution
strategy) two schemes for the evaluation of rational functions of matrices. For triangular matrices, the new methods
yield the same computational cost as the evaluation schemes from which they are obtained. A general equation
can be reduced to upper triangular form by exploiting the Schur decomposition of the given matrix. For real data,
the algorithms rely on the real Schur decomposition in order to compute real solutions using only real arithmetic.
Numerical experiments show that our implementations are faster than existing alternatives without sacrificing accuracy.
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1. Introduction. We consider rational matrix equations of the form

(1.1) r(X) = A,

where r = p/q with p and q coprime polynomials of degree m and n, respectively, and A and
X are square matrices of the same size.

The most prominent instance of (1.1) is arguably the equation Xα = A, defining the
matrix αth root [6, 23, 24, 30], which finds applications in, for example, sociology [29],
economy [7, 26], healthcare [9], and ecology [31].

This equation belongs to the more general class of functional matrix equations of the
form f(X) = A, where f is a complex analytic function applied to a matrix (in the sense of
primary matrix functions as defined in [22, Chap. 1]). The latter class has been extensively
studied in the literature, and a number of theoretical results, such as existence, uniqueness, and
a classification of real and complex solutions, are discussed by Evard and Uhlig [13]. To the
best of our knowledge, no general algorithm for dealing with the equation f(X) = A exists,
even though algorithms tailored to most special cases of interest are available.

A reliable algorithm for the numerical solution of rational matrix equations of the
type (1.1) has been recently proposed [16]. This method based on a substitution (or re-
cursion) procedure is the culmination of a line of algorithms for the computation of matrix
roots [17, 24, 30]. The common idea of these techniques is to reduce the problem to an
equation of the type

(1.2) r(Y ) = T,

where Y and T are block upper triangular matrices with the same block structure, and then
operate at the block level. Once the problem is turned to block triangular form, one discovers
that the diagonal blocks can be computed by solving smaller equations of the same type, while
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those in the upper triangular part, if computed in a certain order, are determined by an explicit
formula involving only blocks that have already been calculated.

Because of the way the explicit formulae for the strictly upper triangular blocks are
derived, these algorithms can also be interpreted as being based on a recursion. For the αth
root, for instance, Smith [30] obtains a substitution algorithm by symbolically constructing,
with α− 1 matrix multiplications, the first α powers of the solution Y , namely

Y 2, Y 3, . . . , Y α−1, Y α = T,

and deducing an explicit expression for the blocks of Y . We call these α− 1 powers the stages
of the algorithm. The number of stages is related to the asymptotic computational cost of the
method, which is of the order of 1

3 (α− 1)N3 + o(N3) operations for a triangular matrix of
order N when the complex Schur form is used to reduce (1.1) to (1.2). A variant, proposed by
Iannazzo and Manasse [24] (as an update of prior work by Greco and Iannazzo [17]), relies on
a binary powering technique to form Y α with no more than 2blog2 αc matrix multiplications,
thereby reducing the cost of computing the αth root to 2

3blog2 αcN3 + o(N3) operations.
Similarly, Fasi and Iannazzo [16] obtain an explicit expression for the off-diagonal blocks

of Y in (1.2). Their algorithm is obtained by reverting a two-step scheme that first evaluates
p(x) and q(x) by using Horner’s rule and then r(x) as p(x)/q(x). In the matrix case, this
amounts to evaluating the two polynomials p and q at a matrix argument X and then solving
the multiple right-hand side linear system q(X)−1p(X). The resulting algorithm solves
equation (1.1), for a triangular matrix of order N , with 1

3 (m+ n− 1)N3 + o(N3) operations
and is thus as expensive as Horner’s algorithm for evaluating r(X).

Rational functions can, however, be evaluated in several ways, and at a matrix argument
some alternatives may require fewer matrix multiplications than applying Horner’s method
twice. This is appealing as asymptotically these are the most expensive operations that an
evaluation scheme is expected to perform. A trivial alternative, for instance, is to evaluate all
the powers of x that are needed and then combine them to get p(x) and q(x). In the scalar case,
this would offer no benefit over using Horner’s rule twice, but in the matrix case it typically
leads to performing fewer matrix multiplications at the price of more matrix additions. An
ever better example is the Paterson–Stockmeyer method [28], which for polynomials of high
degree can require considerably fewer matrix multiplications than both Horner’s method and
the explicit powering strategy.

We have observed that both evaluation schemes, for upper (quasi-)triangular matrices,
can be reverted yielding algorithms for the solution of r(X) = A with the same cost as the
evaluation itself and thus requiring fewer operations than the algorithms in [16].

The main contribution of the paper are two substitution algorithms for computing primary
solutions to (1.1), one based on the explicit powering technique and the other on the Paterson–
Stockmeyer scheme. As it is the case for the approach based on Horner’s method [16], for
upper (quasi-)triangular matrices, the asymptotic computational cost of these substitution
algorithms is the same as that of the corresponding evaluation scheme. Therefore, the new
algorithms require considerably fewer operations than those in [16] to solve (1.1).

The paper also provides a theoretical contribution. It has been shown [16, Cor. 14] that
if a solution to (1.1) with a chosen set of eigenvalues exists, then the algorithm based on
Horner’s method can compute it if and only if it is isolated, that is, there exists a neighborhood
containing only X . Here we extend this result and show that requiring the existence of that
solution is not necessary: if λ1, . . . , λn are the eigenvalues of A and we select, for each
i, a solution ξi to the scalar equation r(ξi) = λi such that the divided differences r[ξi, ξj ]
are nonzero for each i 6= j, then there exists a unique solution to (1.1) with eigenvalues
ξ1, . . . , ξn, which is isolated and can be computed by any of our substitution algorithms,
including [16, Alg. 1]. The precise statement of this result is given in Theorem 3.3.
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A possible application of these techniques is the computation of more general matrix
functions defined implicitly by equations of the form f(X) = A, where f is an analytic
function. As an example, we develop an algorithm for computing the Lambert W function
which, in a number of cases, is faster and more accurate than the reference algorithm [15,
Alg. 1].

We begin the paper by recalling, in Section 2, schemes for the evaluation of matrix rational
functions and some of the results from the literature of matrix equations [13, 16]. We present
our new algorithms in Section 3 and evaluate them experimentally in Section 4. Finally, in
Section 5 we summarize our contribution and discuss possible directions for future work.

2. Background and notation. We denote by Ck[z] the vector space of complex polyno-
mials of the complex variable z of degree at most k. In the remainder, we always refer to the
[m/n] rational function

r(z) = q(z)−1p(z),

whose numerator and denominator are the polynomials

p(z) :=

m∑
k=0

ckz
k ∈ Cm[z], and q(z) :=

n∑
k=0

dkz
k ∈ Cn[z],

respectively. Without restriction, we assume that p and q are coprime, that is, they have no
roots in common, and that cm and dn are not zero.

Let f : Ω → C, where Ω ⊂ C, and let x, y ∈ Ω. We denote by f [x, y] the divided
difference operator defined by

f [x, y] =


f ′(x), x = y,

f(x)− f(y)

x− y
, x 6= y,

which requires f to be differentiable at x, when x = y.
Evaluation of rational functions of matrices. The obvious strategy to evaluate the rational

function r(A) = q(A)−1p(A) is to first compute P := p(A) and Q := q(A) reusing as much
computation as possible and then solve the multiple right-hand side linear system Qr(A) = P .
If this technique is used, then the scheme to evaluate r(A) is entirely determined by the
strategy chosen to evaluate the two polynomials.

The most straightforward way of evaluating p(A) is to explicitly compute I, A, . . . , Am

and then take their linear combination. This algorithm requires m− 1 matrix multiplication
and the storage of one additional matrix, thus if p(A) and q(A) are evaluated together, then
computing r(A) requires the solution of one multiple right-hand side linear system and
max{m,n} − 1 matrix multiplications.

A more expensive algorithm is obtained if p(A) and q(A) are evaluated by using Horner’s
method, which we now briefly recall. Let us define, for j = 0, . . . ,m, the polynomials

p[j](A) =
∑m−j

i=0
ci+jA

i =
∑m

i=j
ciA

i−j . By observing that p[0](A) = p(A), we can

evaluate p(A) by using the recursion

(2.1)

{
p[m](A) = cmI,

p[j](A) = Ap[j+1](A) + cjI, for j = m− 1,m− 2, . . . , 0,

and in a similar manner we can evaluate q(A) by defining q[j](A), for j = 0, . . . , n. In this
case, the evaluation of r(A) requires the solution of one multiple right-hand side linear system
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and m + n − 2 matrix multiplications, which for m = n is exactly twice as much as the
algorithm based on explicit powers.

Finally, we summarize the Paterson–Stockmeyer scheme for polynomial evaluation [28].
For any positive integer s, the polynomial p(A) can be rewritten as

(2.2) p(A) =

r̃∑
k=0

(As)kCk(A), r̃ =
⌈m
s
− 1
⌉
,

where

Ck(A) =

ηk∑
u=0

csk+uA
u, ηk =

{
s− 1, 0 ≤ k < r̃,

m− sr̃, k = r̃.

An analogous rewriting for q(A) yields

q(A) =

r̂∑
h=0

(As)hDh(A), r̂ =
⌈n
s
− 1
⌉
,

where Dh is defined as Ck but using the coefficients dk of q and replacing m and r̃ with n
and r̂, respectively. For the sake of simplicity, we adopt a primed sum notation for Ck and Dh

and write

Ck(A) =:

s−1∑′

u=0

csk+uA
u, k = 0, . . . , r̃,

Dh(A) =:

s−1∑′

u=0

dsh+uA
u, h = 0, . . . , r̂.

In other words, the primed sum coincides with the usual sum when k < r̃ and h < r̂, whereas
for k = r̃ and h = r̂ it denotes the sum up to m− sr̃ and n− sr̂, respectively.

The popularity of this nonobvious scheme stems from the fact that it allows an efficient
evaluation of matrix polynomials and, in our case, matrix rational functions. In particular,
if A2, . . . , As are evaluated by successive multiplications by A and stored in memory, then
evaluating r(A) requires one matrix inversion and Ls(m,n) matrix multiplications, where

Ls(m,n) = s− 1 + r̃ + r̂.

The function Ls(m,n) is approximately minimized by taking either s =
⌊√

m+ n
⌋

or
s =

⌈√
m+ n

⌉
.

In order to achieve this computational cost, the expression in (2.2) should be evaluated à
la Horner by constructing the sequence

(2.3)

{
P [r̃](A) = Cr̃(A),

P [j](A) = AsP [j+1](A) + Cj(A), j = r̃ − 1, r̃ − 2, . . . , 0,

which allows one to compute p(A) = P [0](A) with r̃ matrix multiplications once the powers
of A have been formed. A similar argument shows that q(A) can be evaluated with r̂ matrix
multiplications yielding a total of Ls(m,n) matrix multiplications for the entire procedure. In
the following, for theoretical purposes, we will use the identities

P [t](z) =

r̃∑
k=t

zs(k−t)Ck(z), Q[t](z) =

r̂∑
h=t

zs(h−t)Dh(z),

which can be proved by a direct computation.
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Regarding the numerical stability of these evaluation schemes, we recall that the Paterson–
Stockmeyer algorithm, Horner’s method, and the method based on the explicit evaluation of
matrix powers have similar stability as shown in [22, Thm. 4.5].

Classifying the solutions to matrix equations. Let f be analytic on a subset of C, let
A ∈ CN×N , and let X ∈ CN×N be a solution to f(X) = A, where f is a primary matrix
function in the sense of [22, Def. 1.2, Def. 1.4, Def. 1.11] and is defined on the spectrum of
X [22, Def. 1.1]. The matrix X is a primary solution if there exists a polynomial χ such that
X = χ(A), and it is isolated if there exists a neighborhood U of X where X is the unique
solution to the equation f(X) = A.

An eigenvalue ξ of X is said to be critical if f ′(ξ) = 0. Evard and Uhlig [13, Thm. 6.1]
show that a solution is primary if and only if for any two distinct eigenvalues ξ1 and ξ2 of X ,
we have that f(ξ1) 6= f(ξ2), and all critical eigenvalues of X are semisimple, that is, belong
to Jordan blocks of size exactly 1. Moreover, Fasi and Iannazzo [16, Thm. 6] show that a
solution is isolated if and only if for any two distinct eigenvalues ξ1 and ξ2 of X , we have that
f(ξ1) 6= f(ξ2), and all critical eigenvalues of X are simple, that is, have algebraic multiplicity
one.

We will also consider equations of the type p(X) = Aq(X) with p, q polynomials. In
this case, a primary solution is one that can be written as a polynomial of A.

3. Substitution algorithms for matrix equations. We now present algorithms for com-
puting primary solutions to the matrix equation (1.1). In fact, in the discussion below we
consider the seemingly simpler equation1

(3.1) p(Y ) = Tq(Y ),

where

(3.2) T =

T11 . . . T1ν

. . .
...
Tνν

 ∈ CN×N , T11 ∈ Cτ1×τ1 , . . . , Tνν ∈ Cτν×τν ,

and Y ∈ CN×N has the same nonzero block structure as T (the empty blocks below the
block diagonal should be understood as zero blocks). This is not a restriction if only primary
solutions are sought, since when p and q are coprime, any matrix equation of the form (1.1)
can be reduced to an equation of the form (3.1) as we now explain.

On the one hand, it has been shown [16, Prop. 9] that if p and q are coprime, then X
satisfies (1.1) if and only if it satisfies

(3.3) p(X) = Aq(X).

On the other hand, if T = UAU−1, then X satisfies (3.3) if and only if Y := UXU−1

satisfies p(Y ) = Tq(Y ), and X is a primary solution if and only if Y is. Furthermore, if T is
block upper triangular, then primary solutions have the same block upper triangular structure
(being polynomials of T ), and we can conclude that (3.1) is equivalent to (1.1).

A similarity transformation that exists for all A ∈ CN×N is the Schur decomposition
A =: UTU∗, where T,U ∈ CN×N are upper triangular and unitary, respectively. If A has
real entries, it is customary to consider the real Schur decomposition A =: QSQT , where
S,Q ∈ RN×N are upper quasi-triangular and orthogonal, respectively.

In the following, we will use the fact that if χ is a polynomial and Y is block upper
triangular, then χ(Y )ii = χ(Yii), for i = 1, . . . , ν.

1The choice of post-multiplying T by q(Y ) was made only to fix the notation. Since T = r(Y ) commutes with
q(Y ), one can consider the equation p(Y ) = q(Y )T instead and perform the analysis with essentially the same
results.
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3.1. Idea of the algorithms. In order to derive our substitution algorithms, we rewrite
equation (3.1) at the block level and then try to find an explicit expression for the block
relations

(3.4)

{
p(Yii) = Tiiq(Yii), i = 1, . . . , ν,

Lij(Yij) = bij , 1 ≤ i < j ≤ ν,

where Lij is a linear function depending uniquely on Yii and Yjj , and bij is a nonlinear
function of Tij and the blocks of Y lying to the left and below the block Yij . The key point
of these algorithms is a careful construction of Lij and bij , as (3.4) readily translates into the
two-step algorithm:

1. Choose a solution Yii to the equation p(Y ) = Tiiq(Y ), for i = 1, . . . , ν;
2. Compute Lij and bij and solve for Yij the linear matrix equation Lij(Y ) = bij , for

1 ≤ i < j ≤ ν.
The first step is easy to perform when T is a triangular Schur factor: for 1 × 1 blocks it
suffices to solve the corresponding scalar equation, whereas for 2×2 real blocks with complex
conjugate eigenvalues, [16, Prop. 15] provides a direct formula for computing real solutions.
This step is delicate since, in general, there are several solutions for each diagonal block: this
captures the fact that (3.1) may have several solutions. When the Schur form is used, choosing
a solution corresponds to selecting a branch of the inverse of r(z) for each eigenvalue of T
(and A). The choice of the diagonal block solutions (or the branch of the inverse of r) is
assumed as an input value of our algorithms and should be dictated by the application under
consideration.

The second equation in (3.4) justifies our use of the term “substitution”: if one computes
the block entries of Y one superdiagonal at a time from the main diagonal to the top right
corner, then the equation for Yij is obtained by substituting into the expression for bij the
blocks of Y that have already been computed. If Lij is singular for some i and j, then the
algorithm has a breakdown. If, on the contrary, all the operators are nonsingular, then all the
off-diagonal blocks of Y are uniquely determined, and we say that the algorithm is applicable.
As we shall see, the applicability of a substitution algorithm depends on what solution to the
equation p(Y ) = Tiiq(Y ) is chosen for i = 1, . . . , ν.

As an example, the matrix equation Y 2 = T , which defines the matrix square root,
produces the simplest substitution algorithm, namely

(3.5)

Y
2
ii = Tii, i = 1, . . . , ν,

YiiYij + YijYjj = Tij −
∑j−1

t=i+1
YitYtj , 1 ≤ i < j ≤ ν.

When all blocks are of size 1 × 1, these equations yield the algorithm of Björck and
Hammarling [6], while in the real case, with blocks of size at most 2 × 2, we recover the
algorithm of Higham [21]. In the former case, the equation in the first line of (3.5) has
two solutions for Tii 6= 0, and the algorithm has a breakdown if Yii + Yjj = 0 for any
1 ≤ i < j ≤ N . This happens when T has two zero diagonal entries or when T has two equal
diagonal entries, say T11 = T22, and the square roots are chosen so that Y11 = −Y22. In all
the other cases, the algorithm produces a unique solution.

Another instance of a substitution algorithm is the method developed by Smith [30] to
compute the αth root, which producesY

α
ii = Tii, i = 1, . . . , ν,∑α−1

u=0
Y α−1−u
ii YijY

u
jj = Tij −

∑α−1

u=1
Y α−1−u
ii

∑j−1

t=i+1
YitY

[u]
tj , 1 ≤ i < j ≤ ν,
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where Y [u]
tj is the entry in position (t, j) of Y u, for u = 1, . . . , α− 1. In this case, calculating

the bij requires computing and storing α− 1 additional matrices, which we call the stages of
the method.

Since the asymptotic cost of the algorithm is given by the number of stages it requires,
techniques that involve fewer stages have been proposed [17, 24]. These methods do not form
all the powers of Y but only those needed to compute Y α by means of the binary powering
technique, which leads to more efficient algorithms.

Our previous algorithm [16] for the solution of (3.1) uses the stages of Horner’s scheme
for p and q and Tq(Y ). Here we propose two different techniques for solving the same
problem more efficiently: one, described in Section 3.2, uses as stages the powers of Y , p(Y ),
q(Y ), and Tq(Y ), whereas the other, described in Section 3.3, uses the stages of the Paterson–
Stockmeyer scheme for the evaluation of p and q and Tq(Y ). The latter is the counterpart to
the state-of-the-art algorithm for the evaluation of rational matrix functions [22, Chap. 4].

3.2. Algorithm based on explicit powers. Let µ = max{m,n}, and let Y be a solution
to (3.1) that is block upper triangular and has the same block structure as T . We construct the
sequence

(3.6)

Y [0] = I,

Y [1] = Y,

Y [2] = Y Y [1],

...

Y [µ] = Y Y [µ−1],

where Y [k] = Y k, for k = 0, . . . , µ. For 1 ≤ i < j ≤ ν, we can write the block in
position (i, j) of (3.1) as Lij(Yij) = bij , where the formulae for the linear operator Lij and
for the matrix bij involve only blocks p(Y )ı̄̄, q(Y )ı̄̄, and Y [k]

ı̄̄ , with k = 1, . . . , µ, such that
̄− ı̄ < j − i. We consider these blocks and the blocks of T to be known quantities, having in
mind an algorithm that computes the elements of Y from the main diagonal to the top right
corner.

The approach of this technique is similar to that of [16, Alg. 1]. The key difference is
the sequence of stages that is used to derive Lij and bij in the equations in (3.4). In fact,
while [16, Alg. 1] exploits the stages of Horner’s rule applied to p and q, the new algorithm
relies on the recursion (3.6). As we will see, this change allows us to halve the number of
stages and thus the resulting computational cost of the algorithm.

The block (i, j) of Y [k], for 1 ≤ i < j ≤ ν, can be written, for k = 2, . . . , µ, as

(3.7) Y
[k]
ij = YiiY

[k−1]
ij + YijY

[k−1]
jj + F

[k]
ij , F

[k]
ij :=

j−1∑
t=i+1

YitY
[k−1]
tj ,

where Yij appears (implicitly for k > 2) in the first summand on the right-hand side and
(explicitly) in the second. When k > 2, by substituting the formula for Y [k−1]

ij into that

for Y [k]
ij , one obtains a formula for Y [k]

ij involving only Y [k−2]
ij , Yij , and known quantities.

Repeating this procedure we deduce, for k = 2, . . . , µ, the formula

(3.8) Y
[k]
ij =

k−1∑
u=0

Y
[u]
ii YijY

[k−1−u]
jj +

k−2∑
u=0

Y
[u]
ii F

[k−u]
ij ,
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where Y [k]
ij is given in terms of Yij and known quantities. By introducing the operator

(3.9) B
[k]
ij (V ) :=

k−1∑
u=0

Y
[u]
ii V Y

[k−1−u]
jj , k = 1, . . . , µ,

where V has the size of Yij , we can rewrite (3.8) in the more compact form

(3.10) Y
[k]
ij = B

[k]
ij (Yij) +

k−2∑
u=0

Y
[u]
ii F

[k−u]
ij , k = 1, . . . , µ.

The block in position (i, j) of the equation p(Y )− Tq(Y ) = 0 reads

m∑
k=0

ckY
[k]
ij −

j∑
t=i

Tit

n∑
k=0

dkY
[k]
tj = 0,

and substituting for Y [k]
ij the expression in (3.10) gives, for 1 ≤ i < j ≤ ν, the equation

Lij(Yij) = bij , where

Lij(Yij) :=

m∑
k=1

ckB
[k]
ij (Yij)− Tii

n∑
k=1

dkB
[k]
ij (Yij),

bij :=

j∑
t=i+1

Titq(Y )tj −
m∑
k=2

p[k](Yii)F
[k]
ij + Tii

n∑
k=2

q[k](Yii)F
[k]
ij ,

(3.11)

where p[k](z) and q[k](z) are the stages of Horner’s scheme (see (2.1)) applied to p and q,
respectively, and we have used the identity

m∑
k=1

ck

k−2∑
u=0

Y
[u]
ii F

[k−u]
ij =

m∑
k=1

ck

k∑
u=2

Y
[k−u]
ii F

[u]
ij =

m∑
u=2

m∑
k=u

ckY
k−u
ii F

[u]
ij

=

m∑
u=2

p[u](Yii)F
[u]
ij

and the analogous relation for
∑n

k=1
dk
∑k−2

u=0
Y

[u]
ii F

[k−u]
ij . Finally, by applying the vec

operator that stacks the columns of a matrix into one vector on both sides, equation (3.11) can
be rewritten as

(3.12) Mij vec(Yij) = ϕij ,

where Mij is the matrix form of the operator Lij , and ϕij = vec(bij).
These equations readily translate into a substitution algorithm for solving the rational

matrix equation (3.1): once the diagonal blocks of Y have been chosen, the remaining blocks
can be computed one super-diagonal at a time by solving the linear system MijY = ϕij , with
Mij and ϕij as in (3.12), in order to obtain the block Yij = vec−1(M−1

ij ϕij). The detailed
pseudocode of this approach is given in Algorithm 3.1.

The algorithm has a breakdown if any of the matrices Mij is singular, in which case the
linear system MijY = ϕij does not have a unique solution. In the next lemma, we show that
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Algorithm 3.1: Algorithm for r(Y ) = T , based on explicit powers.
Input :T as in (3.2), c0, . . . , cm coefficients of p, d0, . . . , dn coefficients of q.
Output :Y [1] ∈ CN×N such that p(Y [1])q−1(Y [1]) ≈ T .

1 µ← max {m,n}.
2 for i = 1 to ν do
3 Y

[1]
ii ← a solution to p(Y )− Tiiq(Y ) = 0

4 for k = 2 to µ do
5 Y

[k]
ii ← Y

[1]
ii Y

[k−1]
ii

6 P
[m]
ii ← cmIτi

7 for k = m− 1 downto 1 do
8 P

[k]
ii ← ckIτi + YiiP

[k+1]
ii

9 Q
[n]
ii ← dnIτi

10 for k = n− 1 downto 0 do
11 Q

[k]
ii ← dkIτi + YiiQ

[k+1]
ii

12 for v = 1 to ν − 1 do
13 for i = 1 to ν − v do
14 j ← i+ v
15 for k = 2 to µ do
16 F

[k]
ij ←

∑j−1

t=i+1
Y

[1]
it Y

[k−1]
tj

17 Mij ←
∑m

k=1
(P

[k]
jj )T ⊗ Y [k−1]

ii − (Iτj ⊗ Tii)
∑n

k=1
(Q

[k]
jj )T ⊗ Y [k−1]

ii

18 bij ← vec
(∑j

t=i+1
TitQ

[0]
tj −

∑m

k=2
P

[k]
ii F

[k]
ij + Tii

∑n

k=2
Q

[k]
ii F

[k]
ij

)
19 Y

[1]
ij ← vec−1(M−1

ij bij)

20 for k = 2 to µ do
21 Y

[k]
ij ← Y

[1]
ii Y

[k−1]
ij + Y

[1]
ij Y

[k−1]
jj + F

[k]
ij

22 Q
[0]
ij ←

∑n

k=1
dkY

[k]
ij

these matrices are the same as those appearing in [16, Eq. (21)], which allows us to relate the
applicability of Algorithm 3.1 to that of the algorithms in [16].

LEMMA 3.1. With the notation of Section 3.2, let Mij , for 1 ≤ i < j ≤ ν, be the matrix
associated with Lij appearing in (3.11). We have

(3.13) Mij =

m∑
u=1

(
p[u](Yjj)

)T ⊗ Y [u−1]
ii − (I ⊗ Tii)

n∑
u=1

(
q[u](Yjj)

)T ⊗ Y [u−1]
ii ,

where p[u](z), for u = 1, . . . ,m, and q[u](z), for u = 1, . . . , n, are the stages of Horner’s
scheme for the evaluation of p(z) and q(z), respectively.

Proof. If we denote the matrix form of the operator B[k]
ij in (3.9) by

(3.14) B̂
[k]
ij =

k−1∑
u=0

(Y
[k−1−u]
jj )T ⊗ Y [u]

ii ,
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then we can rewrite Lij(Yij) in matrix form as Mijvec(Yij), where

(3.15) Mij :=

m∑
k=1

ckB̂
[k]
ij − Tii

n∑
k=1

dkB̂
[k]
ij .

On the other hand, we have that

(3.16)

m∑
k=1

ckB̂
[k]
ij =

m∑
k=1

ck

k−1∑
u=0

(Y
[k−1−u]
jj )T ⊗ Y [u]

ii

=

m−1∑
u=0

(
m∑

k=u+1

ckY
[k−1−u]
jj

)T
⊗ Y [u]

ii

=

m∑
u=1

(
p[u](Yjj)

)T ⊗ Y [u−1]
ii ,

and similarly that

(3.17)
n∑
k=1

dkB̂
[k]
ij =

n∑
u=1

(
q[u](Yjj)

)T ⊗ Y [u−1]
ii .

Plugging (3.16) and (3.17) into (3.15) concludes the proof.
Applicability. If T is the triangular factor of a complex Schur decomposition, then all

diagonal blocks have size 1, and the diagonal elements of Y can be computed by solving a
scalar equation. If T is in real Schur form, then the diagonal blocks have size at most 2, and
the 2× 2 diagonal blocks of Y can be determined by using, for example, a direct formula as
in [16, Prop. 15].

For the complex Schur form, Mij is the same as ψij in [16, Eq. (12)], and the applicability
of the algorithm depends on what solutions to the scalar equation p(Y ) = Tiiq(Y ) are chosen
for i = 1, . . . , ν.

THEOREM 3.2. Let r = p/q be a rational function with p ∈ Cm[z] and q ∈ Cn[z]
coprime. Let T ∈ CN×N be upper triangular, and let ξ1, . . . , ξN ∈ C be such that r(ξi) = tii
for i = 1, . . . , N . Then the two conditions are equivalent:

(a) Algorithm 3.1 with the choice Yii = ξi is applicable to the equation r(Y ) = T , that
is, equation (3.12) has a unique solution Yij for 1 ≤ i < j ≤ N ;

(b) r[ξi, ξj ] 6= 0, for 1 ≤ i < j ≤ N .
If either condition is satisfied, then the solution Y is primary and isolated.

Proof. By [16, Lemma 11] we can express the divided differences of p for a, b ∈ C in
terms of the stages of Horner’s method as p[a, b] =

∑m

j=1
aj−1p[j](b). This can be used in

the scalar version of (3.13) to show that

Mij = p[Yii, Yjj ]− Tiiq[Yii, Yjj ] = r[ξi, ξj ]q(ξj).

Since q(ξj) 6= 0 by hypothesis, we have that Mij 6= 0 if and only if r[ξi, ξj ] 6= 0.
When either of these conditions is fulfilled, we are in the hypotheses of [16, Thm. 6], and

the solution is primary and isolated.
A consequence of Lemma 3.1 is the following result on the existence of isolated solutions

to (1.1).
THEOREM 3.3. Let r = p/q be a rational function with p ∈ Cm[z] and q ∈ Cn[z]

coprime, and let A ∈ CN×N . There exists a unique solution X ∈ CN×N to r(X) = A with
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eigenvalues ξ1, . . . , ξN if and only if r(ξ1), . . . , r(ξN ) are the eigenvalues of A (counted with
multiplicities) and r[ξi, ξj ] 6= 0 for 1 ≤ i < j ≤ N . Moreover, X is primary and isolated.

Proof. Let X be a solution with eigenvalues ξ1, . . . , ξN , then the eigenvalues of r(X) are
r(ξ1), . . . , r(ξN ) [22]. From [16, Thm. 6], we know that if there exists a unique solution with
a given set of eigenvalues, then r[ξi, ξj ] 6= 0 for i 6= j and X is primary and isolated.

Let U∗AU = T be the triangular factor of the complex Schur form of A ordered so
that tii = r(ξi), for i = 1, . . . , N . Since r[ξi, ξj ] 6= 0, we have that Algorithm 3.1 is
applicable to r(Y ) = T and gives a solution Y , which in turn provides X = UY U∗ as
solution to r(X) = A. By [16, Thm. 6], X is primary, isolated, and is the unique solution
with eigenvalues ξ1, . . . , ξN .

We stress that the result in Theorem 3.3 is stronger than that in [16, Cor. 14] as the latter
requires, as a hypothesis, the existence of a solution with the given eigenvalues.

The case of blocks of arbitrary size can be addressed analogously with the difference
that if a non-isolated solution is chosen for any of the block equations p(Y )− Tiiq(Y ) = 0,
then the solution produced by the algorithm, when applicable, may be non-isolated or even
non-primary.

THEOREM 3.4. Let r = p/q be a rational function with p ∈ Cm[z] and q ∈ Cn[z]
coprime, and let T = (Tij) ∈ CN×N be block upper triangular with ν diagonal blocks of size
τ1, . . . , τν . Let Ξi ∈ Cτi×τi , for i = 1, . . . , ν, be a solution to r(Ξ) = Tii with eigenvalues
ξi1, . . . , ξiτi . Then the two conditions are equivalent:

(a) Algorithm 3.1 with the choice Yii = Ξi is applicable to the equation r(Y ) = T , that
is, equation (3.12) has a unique solution Yij for 1 ≤ i < j ≤ ν;

(b) r[ξiki , ξjkj ] 6= 0, for ξiki an eigenvalue of Ξi and ξjkj an eigenvalue of Ξj , for
1 ≤ i < j ≤ ν, 1 ≤ ki ≤ τi, 1 ≤ kj ≤ τj .

If Ξi is an isolated solution to the equation r(X) = Tii for i = 1, . . . , ν, and either of the
conditions above is satisfied, then Algorithm 3.1 computes an isolated solution.

Proof. Let ξi1, . . . , ξiτi and ξj1, . . . , ξjτj be the eigenvalues of Yii and Yjj , respectively.
If Ui and Uj are unitary matrices such that U∗i YiiUi and U∗j Y

T
jjUj are upper triangular, then

T̃ii := U∗i TiiUi = r(U∗i YiiUi) is upper triangular as well, and so is (U∗j ⊗U∗i )Mij(Uj ⊗Ui)
whose diagonal entries (eigenvalues) are

m∑
k=1

p[k](ξjkj )ξ
k−1
iki
− r(ξiki)

n∑
k=1

q[k](ξjkj )ξ
k−1
iki

= r[ξiki , ξjkj ]q(ξjkj ).

By hypothesis we have that q(ξjkj ) 6= 0, thusMij is nonsingular if and only if r[ξiki , ξjkj ] 6= 0
for any ki and kj . If Ξi is isolated, then r[ξia, ξib] 6= 0 for 1 ≤ a ≤ τi and 1 ≤ b ≤ τi
with a 6= b. This condition together with Theorem 3.4(b) implies that r[ζi, ζj ] 6= 0 for
1 ≤ i < j ≤ N , where ζ1, . . . , ζN are the eigenvalues of the computed solution Y , which is
isolated by [16, Thm. 6].

The case in whichA is real and the real Schur form ofA is used can be seen as a particular
case of Theorem 3.4, where the diagonal blocks are of size 1× 1 or 2× 2.

Computational cost. We now discuss the cost of Algorithm 3.1 for the triangular case
ν = N and τi = 1, for i = 1, . . . , N . When T presents nontrivial diagonal blocks, the results
are similar with operations counted at the block instead of the scalar level.

Asymptotically, the most expensive quantities to compute are the µ− 1 sums on line 16,
which are related to the stages of the recursion (3.6), and the first sum on line 18, which corre-
sponds to the final inversion q(Y )−1p(Y ). Each of these stages entails, for 1 ≤ i < j ≤ N , a
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sum of the type

(3.18) σij :=

j−ε∑
t=i+1

aitbtj ,

where ε is either zero or one and ait and btj are scalars for t = i+ 1, . . . , j− ε. Evaluating σij
requires (j − i− ε) multiplications and (j − i− ε− 1) sums, thus 1

3N
3 + o(N3) operations

are needed to compute all the σij , for 1 ≤ i < j ≤ N . As these are the only expressions
whose cost is cubic in N , Algorithm 3.1 requires µ

3N
3 + o(N3) operations.

Note that evaluating a rational function of order [m/n] at a triangular matrix argument of
size N via explicit powering has cost µ3N

3 + o(N3), which is exactly the same as that of our
substitution algorithm.

Since computing the Schur decomposition and recovering the result require 25N3 and
3N3 flops, respectively, the asymptotic cost of solving the general equation (1.1) using
Algorithm 3.1 is

(
28 + µ

3

)
N3 + o(N3) flops.

3.3. Algorithm based on the Paterson–Stockmeyer method. Let Y be a block upper
triangular solution to (3.1) that has the same block structure as T . Using the Paterson–
Stockmeyer evaluation scheme, we can construct, for 1 ≤ i < j ≤ ν, the matrix equation
Lij(Yij) = bij , where Lij is linear with respect to the block Yij and both Lij and bij can
be computed by using blocks of Y and T such that the difference between the column and
row index is greater than j − i, which again we treat as known quantities. We will use these
equations to deduce an algorithm to solve (3.1) that is cheaper than Algorithm 3.1.

The first step is to construct a recursion with one stage for each matrix multiplica-
tion in the Paterson–Stockmeyer scheme. We start from the block (i, j) of the equation
p(Y )− Tq(Y ) = 0, which reads

p(Y )ij − Tiiq(Y )ij −
j∑

t=i+1

Titq(Y )tj = 0.

Since only the first two summands on the left-hand side depend on Yij while the third can
be treated as a known quantity, we need to deduce expressions for p(Y )ij and q(Y )ij that
involve only Yij and known quantities. We will give a detailed derivation of the expression
for p(Y )ij , which is based on the sequence P [k](Y ) defined in (2.3) and the sequence Y [k]

defined in (3.6). The corresponding expression for q(Y )ij can be deduced in a similar manner.
It can be shown that2

(3.19) p(Y )ij =

r̃∑
k=0

Y ksii Ck(Y )ij +

r̃−1∑
k=0

Y ksii Y
[s]
ij P

[k+1](Yjj) +

r̃−1∑
k=0

Y ksii Ψ̃
[k]
ij ,

with

Ψ̃
[k]
ij :=

j−1∑
t=i+1

Y
[s]
it P

[k+1](Y )tj , k = 0, . . . , r̃ − 1.

2In fact, by an induction argument one can prove that the formula

p(Y )ij = Y dsii P
[d](Y )ij +

d−1∑
k=0

Y ksii (Ck(Y )ij + Y
[s]
ij P

[k+1](Yjj) + Ψ̃
[k]
ij ),

which coincides with (3.19) for d = r̃, holds for d = 0, . . . , r̃ − 1 as well.
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In order to get an equation in terms of Yij and known quantities only, we note the third
summand on the right-hand side of (3.19) contains only known quantities, while Y [s]

ij and
Ck(Y )ij can be further reduced as we now explain. From (3.10) we obtain
(3.20)

r̃∑
k=0

Y ksii Ck(Y )ij =

r̃∑
k=0

Y ksii

s−1∑′

`=1

c`+skB
[`]
ij (Yij) +

r̃∑
k=0

Y ksii

s−1∑′

`=2

c`+skΦ
[`]
ij ,

r̃−1∑
k=0

Y ksii Y
[s]
ij P

[k+1](Yjj) =

r̃−1∑
k=0

Y ksii B
[s]
ij (Yij)P

[k+1](Yjj) +

r̃−1∑
k=0

Y ksii Φ
[s]
ij P

[k+1](Yjj),

with

(3.21) Φ
[k]
ij :=

k−2∑
u=0

Y uiiF
[k−u]
ij , k = 1, . . . , s,

where F [k]
ij is defined in (3.7). Therefore, the last sum on the right-hand side of both equations

in (3.20) contains only known quantities.
A similar reduction holds for q(Y )ij , and we get the equation L′ij(Yij) = b′ij , where

b′ij : =

j∑
t=i+1

Titq(Y )tj −
r̃∑

k=0

Y ksii

s−1∑′

`=2

c`+skΦ
[`]
ij −

r̃−1∑
k=0

Y ksii

(
Φ

[s]
ij P

[k+1](Yjj) + Ψ̃
[k]
ij

)

+ Tii

r̂∑
k=0

Y ksii

s−1∑′

`=2

d`+skΦ
[`]
ij + Tii

r̂−1∑
k=0

Y ksii

(
Φ

[s]
ij Q

[k+1](Yjj) + Ψ̂
[k]
ij

)
,

with

Ψ̂
[k]
ij =

j−1∑
t=i+1

Y
[s]
it Q

[k+1](Y )tj , k = 0, . . . , r̂ − 1,

and the matrix representing L′ij in the vec-basis is

M ′ij = P̃ij − (Iτj ⊗ Tii)P̂ij ,(3.22)

where

P̃ij :=

r̃∑
k=0

(Iτj ⊗ Y ksii )

s−1∑′

`=1

c`+skB̂
[`]
ij +

r̃−1∑
k=0

(
(P [k+1](Y )jj)

T ⊗ Y ksii
)
B̂

[s]
ij ,

P̂ij :=

r̂∑
k=0

(Iτj ⊗ Y ksii )

s−1∑′

`=1

d`+skB̂
[`]
ij +

r̂−1∑
k=0

(
(Q[k+1](Y )jj)

T ⊗ Y ksii
)
B̂

[s]
ij .

(3.23)

As before, these relations lead to an algorithm for computing Y : we can first compute the
diagonal blocks of Y (either recursively or by a direct method) and then obtain the others, one
super-diagonal at a time, by exploiting the relation Yij = vec−1(M−1

ij vec(bij)).
The pseudocode of the algorithm based on the Paterson–Stockmeyer approach is given in

Algorithm 3.2. In order to reduce the overall computational cost of that method, note that B̂[k]
ij

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SUBSTITUTION ALGORITHMS FOR RATIONAL MATRIX EQUATIONS 513

Algorithm 3.2: Solve r(Y ) = T inverting the Paterson–Stockmeyer scheme.
Input :T as in (3.2), c0, . . . , cm coefficients of p, d0, . . . , dn coefficients of q, s ∈ N.
Output :Y [1] ∈ CN×N such that p(Y [1])q−1(Y [1]) = T .

1 r̃ ← bm/sc
2 r̂ ← bn/sc
3 for i = 1 to ν do
4 Y

[0]
ii ← Iτi

5 Y
[1]
ii ← a solution to p(Y )− Tiiq(Y ) = 0

6 for k = 2 to s do Y
[k]
ii ← Y

[1]
ii Y

[k−1]
ii

7 P
[r̃]
ii ←

∑m−r̃s

u=0
csr̃+uY

[u]
ii

8 for k = r̃ − 1 downto 1 do P
[k]
ii ← Y

[s]
ii P

[k+1]
ii +

∑s−1

u=0
csk+uY

[u]
ii

9 Q
[r̂]
ii ←

∑n−r̂s

u=0
dsr̂+uY

[u]
ii

10 for k = r̂ − 1 downto 0 do Q
[k]
ii ← Y

[s]
ii Q

[k+1]
ii +

∑s−1

u=0
dsk+uY

[u]
ii

11 for v = 1 to ν − 1 do
12 for i = 1 to ν − v do
13 j ← i+ v

14 B̂
[1]
ij ← Iτiτj

15 for k = 2 to s do
16 F

[k]
ij ←

∑j−1

t=i+1
Y

[1]
it Y

[k−1]
tj

17 B̂
[k]
ij ←

((
Y

[1]
jj

)T ⊗ Iτi) B̂[k−1]
ij + Iτj ⊗ Y

[k−1]
ii

18 Φ
[1]
ij ← 0

19 for k = 2 to s do
20 Φ

[k]
ij ← F

[k]
ij + YiiΦ

[k−1]
ij

21 for k = 0 to r̃ − 1 do
22 Ψ̃

[k]
ij =

∑j−1

t=i+1
Y

[s]
it P

[k+1]
tj

23 for k = 0 to r̂ − 1 do
24 Ψ̂

[k]
ij =

∑j−1

t=i+1
Y

[s]
it Q

[k+1]
tj

25 K̃ ←
∑r̃−1

k=0

((
P

[k+1]
jj

)T ⊗ (Y [s]
ii

)k)
26 K̂ ←

∑r̂−1

k=0

((
Q

[k+1]
jj

)T ⊗ (Y [s]
ii

)k)
27 ϕp ←

∑r̃

k=0

(
Y

[s]
ii

)k∑′s−1

u=2
csk+uΦ

[u]
ij + vec−1(K̃vec(Φ

[s]
ij )) +

∑r̃−1

k=0

(
Y

[s]
ii

)k
Ψ̃

[k]
ij

28 ϕq ←
∑r̂

k=0

(
Y

[s]
ii

)k∑′s−1

u=2
dsk+uΦ

[u]
ij + vec−1(K̂vec(Φ

[s]
ij )) +

∑r̂−1

k=0

(
Y

[s]
ii

)k
Ψ̂

[k]
ij

29 ϕij ← vec
(∑j

t=i+1
TitQ

[0]
tj − ϕp + Tiiϕq

)
30 Mp ←

∑r̃

k=0

(
Iτj ⊗

(
Y

[s]
ii

)k)∑′s−1

u=1
csk+uB̂

[u]
ij + K̃B̂

[s]
ij

31 Mq ←
∑r̂

k=0

(
Iτj ⊗

(
Y

[s]
ii

)k)∑′s−1

u=1
dsk+uB̂

[u]
ij + K̂B̂

[s]
ij

32 Y
[1]
ij ← vec−1

((
Mp − (Iτj ⊗ Tii)Mq

)−1
ϕij

)
33 for k = 2 to s do
34 Y

[k]
ij ← Y

[1]
ii Y

[k−1]
ij + Y

[1]
ij Y

[k−1]
jj + F

[k]
ij

35 P
[r̃]
ij ←

∑m−r̃s

u=1
csr̃+uY

[u]
ij

36 for k = r̃ − 1 downto 1 do
37 P

[k]
ij ← Ψ̃

[k]
ij + Y

[s]
ij P

[k+1]
jj + Y

[s]
ii P

[k+1]
ij +

∑s−1

u=1
csk+uY

[u]
ij

38 Q
[r̂]
ij ←

∑n−r̂s

u=1
dsr̂+uY

[u]
ij

39 for k = r̂ − 1 downto 0 do
40 Q

[k]
ij ← Ψ̂

[k]
ij + Y

[s]
ij Q

[k+1]
jj + Y

[s]
ii Q

[k+1]
ij +

∑s−1

u=1
dsk+uY

[u]
ij

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

514 M. FASI AND B. IANNAZZO

in (3.14) and Φ
[k]
ij in (3.21) can be computed recursively by exploiting the identities

Φ
[k]
ij =

{
F

[2]
ij , k = 2,

F
[k]
ij + YiiΦ

[k−1]
ij , k = 3, . . . , s,

B̂
[k]
ij =

{
Iτiτj , k = 1,((
Y

[1]
jj

)T ⊗ Iτi) B̂[k−1]
ij + Iτj ⊗ Y

[k−1]
ii , k = 2, . . . , s.

The computational cost can be further reduced by using the identities

vec
( r̃−1∑
k=0

Y ksii Φ
[s]
ij P

[k+1](Yjj)
)

=

r̃−1∑
k=0

(
(P [k+1](Y )jj)

T ⊗ Y ksii
)

vec
(
Φ

[s]
ij

)
,

vec
( r̂−1∑
k=0

Y ksii Φ
[s]
ij Q

[k+1](Yjj)
)

=

r̂−1∑
k=0

(
(Q[k+1](Y )jj)

T ⊗ Y ksii
)

vec
(
Φ

[s]
ij

)
.

Indeed, the sums on the left-hand side appear in the expression for b′ij while those on the
right-hand side appear in (3.22). Thus, it is more convenient to compute them only once at the
beginning of the iteration and reuse them when needed later on.

Applicability. We show that M ′ij in (3.22) is the same as Mij in (3.13), which implies
that Algorithm 3.2 is applicable if and only if Algorithm 3.1 is.

LEMMA 3.5. For the matrix M ′ij in (3.22), with 1 ≤ i < j ≤ ν, we have that

M ′ij =

m∑
k=1

ckB̂
[k]
ij − (Iτj ⊗ Tii)

n∑
k=1

dkB̂
[k]
ij ,

that is, M ′ij is the same as Mij in (3.13).
Proof. We prove that M ′ij = Mij by showing for the matrices in (3.23) that

P̃ij =

m∑
k=0

ckB̂
[k]
ij and P̂ij =

m∑
k=0

dkB̂
[k]
ij .

With B̂[0]
ij = 0, the first summand of P̃ij can be written as

r̃∑
k=0

s−1∑′

`=0

c`+sk(Iτj ⊗ Y ksii )B̂
[`]
ij ,

while for the second we have
r̃−1∑
t=0

(P [t+1](Yjj))
T ⊗ Y tsii )B̂

[s]
ij

=

r̃−1∑
t=0

(( r̃∑
k=t+1

s−1∑′

`=0

c`+skY
`+s(k−t−1)
jj

)T
⊗ Y tsii

) s−1∑
v=0

(Y s−1−v
jj )T ⊗ Y vjj

=

r̃∑
k=1

s−1∑′

`=0

c`+sk

k−1∑
t=0

s−1∑
v=0

(
(Y `+sk−1−st−v
jj )T ⊗ Y st+vii

)
=

r̃∑
k=1

s−1∑′

`=0

c`+sk

sk−1∑
u=0

(
(Y `+sk−1−u
jj )T ⊗ Y uii

)
=

r̃∑
k=1

s−1∑′

`=0

c`+sk
(
(Y `jj)

T ⊗ Iτi
)
B̂

[sk]
ij .
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The fact that P̃ij =
∑m

k=0
ckB̂

[k]
ij follows from the identity

(3.24) (Iτj ⊗ Y ksii )B̂
[`]
ij + ((Y `jj)

T ⊗ Iτi)B̂
[sk]
ij = B̂

[`+sk]
ij ,

which holds for ` = 0, . . . , s − 1 when k < r̃ and for ` = 0, . . . ,m − r̃s when k = r̃.
Equation (3.24) is a special case of the more general identity

(Iτj ⊗ Y aii )B̂
[b]
ij + ((Y bjj)

T ⊗ Iτi)B̂
[a]
ij = B̂

[a+b]
ij , a, b > 0,

whose proof is immediate.
A similar argument shows that P̂ij =

∑n

k=0
dkB̂

[k]
ij , and this concludes the proof of the

lemma.
In view of Lemma 3.5, Algorithm 3.2 is applicable if and only if Algorithm 3.1 is, thus

Theorem 3.3 and Theorem 3.4 hold for Algorithm 3.2 with the same hypotheses.
Computational cost. As done in the previous section, we discuss the cost of Algorithm 3.2

for the case ν = N and τi = 1 for i = 1, . . . , N .
Note that the coefficient of N3 in the computational cost is obtained by counting, for all

1 ≤ i < j ≤ N , the number of sums of the type (3.18) appearing in the pseudocode. Evalu-
ating each of these sums requires 1

3N
3 + o(N3) operations, and their number is exactly the

same as that of the matrix multiplications and inversions needed in the Paterson–Stockmeyer
evaluation scheme, that is, r̃ + r̂ + s. Indeed the most expensive operations in the algorithm
are: the sum on line 16, which is repeated s− 1 times and is related to the recursion (3.4); the
two sums on lines 22 and 24, which correspond to the evaluation of Ck(A) and Dk(A) and are
performed r̃ and r̂ times, respectively; and the sum on line 29, which is the counterpart of the
final inversion in q(Y )−1p(Y ). Therefore, the total cost of Algorithm 3.2 is r̃+r̂+s3 N3+o(N3)
flops, and the asymptotic cost of of solving the general equation (1.1) using Algorithm 3.2 is(
28 + r̃+r̂+s

3

)
N3 + o(N3) flops.

4. Numerical experiments. We compare experimentally the performance of Algo-
rithm 3.1, Algorithm 3.2, and [16, Alg. 1] and give an example showing how these can
be used to approximate matrix functions defined implicitly via matrix equations.

The experiments were run in MATLAB 2019a (version 9.6) on a machine equipped with
an Intel I5-5287 processor running at 2.90GHz. We compare the following codes for the
solution of rational matrix equations.

• invrat_horn, an implementation of [16, Alg. 1];
• invrat_pow, an implementation of Algorithm 3.1 based on the complex Schur

decomposition;
• invrat_ps, an implementation of Algorithm 3.2 based on the complex Schur de-

composition.
The implementations we used to perform the experiments in this section are available on the
MATLAB Central File Exchange.3

We evaluate the stability of our algorithms by comparing the 1-norm forward error of the
computed solutions with the quantity κf−1(A)u, where u = 2−53 is the unit roundoff of IEEE
double precision arithmetic, and κf−1(A) is the 1-norm condition number of the solution to
f(X) = A for a specific choice of f−1. Numerically, we estimate κf−1(A) by means of the
function funm_condest1 from the Matrix Function Toolbox [20], and the forward error by
computing in double precision the quantity

eA =
‖XA −X‖1
‖X‖1

,

3https://mathworks.com/matlabcentral/fileexchange/74317.
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FIG. 4.1. Left: relative forward error of invrat_horn, invrat_pow, and invrat_ps for the matrices in the
test set sorted by descending condition number κr−1 (A). Right: corresponding performance profile.

where XA is the solution computed by algorithm A and X is a reference solution.

4.1. Numerical stability. In this first experiment, we assess the stability of the proce-
dures invrat_horn, invrat_pow, and invrat_ps by performing an experiment similar
to [16, Test 1]. As the order of the rational function used there is too low to show any remark-
able difference among the three algorithms, we turn to a rational function of higher order and
consider the [5/5] Padé approximant to the exponential. The reference solution is obtained
by running invrat_pow with 113 significant binary digits of accuracy, which corresponds
to IEEE binary128 floating point arithmetic [25, Table 3.2]. In order to work with preci-
sion higher than double, we rely on the overloaded methods of the Advanpix Multiprecision
Computing Toolbox [1] (version 4.4.7.12739).

In Figure 4.1a, we compare the 1-norm forward error of the three algorithms for the same
test as in [16, Test 1], which contains 63 nonnormal matrices of size 10 with no nonpositive
real eigenvalues. We do not consider normal matrices, for which the triangular Schur factor is
in fact diagonal, as invrat_horn, invrat_pow, and invrat_ps all reduce to diagonalization
in that case. The fact that the forward error is always approximately bounded by κr−1(A)u
suggests that the three implementations behave in a forward stable fashion. Note that the
algorithms attain a remarkably similar accuracy for most matrices, and when that is not the
case, the difference among the performance of the three methods is marginal.

Figure 4.1b presents the same data by means of a performance profile [12]. In the plot, the
height of the line corresponding to algorithm A at η = η0 represents the fraction of matrices
in the test set on which the 1-norm relative forward error of A is at most η0 times that of the
algorithm that gives the most accurate result. The figure confirms that the accuracy of the
three algorithms on our test set is very similar, but invrat_ps appears to be, overall, slightly
more accurate than the two alternative approaches.

In order to draw more general results, we conducted a second experiment. For each pair of
distinct implementations A and B, we tried to find the 5× 5 matrix A and, for different values
of m, the [m/m] rational function r that maximize the ratio eA/eB when the two algorithms
A and B are used to solve (1.1). As optimization method, we used the multidirectional search
method of Dennis and Torczon [11], implemented in the mdsmax function of the Matrix
Computation Toolbox [19].
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TABLE 4.1
Maximum ratio of forward errors for all possible pairs of algorithms. The optimization procedure tries to

determine a 5× 5 matrix and the coefficients of the numerator and denominator of a [m/m] rational function r that
maximize eA/eB . Each cell contains four values corresponding to the cases m = 3 (top left), m = 5 (top right),
m = 7 (bottom left), and m = 9 (bottom right).

A B
invrat_horn invrat_pow invrat_ps

invrat_horn – – 3.20 1.37 1.95 2.32
– – 1.53 1.73 1.42 1.61

invrat_pow 1.20 1.77 – – 71.53 2.37
1.37 2.92 – – 2.74 1.29

invrat_ps 2.24 1.33 35.37 2.29 – –
1.59 2.16 1.51 2.25 – –

In Table 4.1, we report these ratios for the four cases m = 3, 5, 7, and 9, which appear in
the top left, top right, bottom left, and bottom right corners, respectively, of every cell. The
results show that the three algorithms tend to behave similarly, as the forward error of one
algorithm does not exceed that of any other by more than one order of magnitude in most
cases.

We conclude that the three algorithms do not differ much in terms of accuracy, and that
their good stability properties make them reliable enough to be of practical use.

4.2. Computational time. Figure 4.2 shows how the execution time required by the algo-
rithms invrat_horn, invrat_pow, and invrat_ps to solve the matrix equation r(X) = A
depends on the size of the matrix A and on the order of the rational function r.

As the analysis of the computational cost shows, the time required to compute the Schur
decomposition of the input matrix tends to be preponderant for rational functions of low order,
thus we prefer not to take it into account and to feed the algorithm matrices that are already in
upper triangular form. As the number of operations which the algorithms carry out depends
on the number of nonzeros in the matrix but not on their numerical value, we use the 0-1
matrix A ∈ CN×N with aij = 1 for 1 ≤ i ≤ j ≤ N . A similar observation can be made for
the coefficients of the rational functions, which we draw from a Gaussian distribution. The
execution time is estimated by means of the MATLAB function timeit.

In Figure 4.2a, we fix the order of the rational function to 25 and let the size of the matrix
increase from 10 to 400. The time required by the three algorithms rises more than linearly.
For matrices of order 20 or more, invrat_horn is the slowest algorithm, invrat_pow is
the fastest for matrices of size smaller than 50, whereas invrat_ps is the fastest for larger
matrices. This is in line with the analysis of the computational cost.

In Figure 4.2b the algorithms are run for matrices of size 250 using rational functions of
orders between 3 and 100. As expected, the execution time of invrat_horn and invrat_pow
grows linearly with the order of the approximant, and the latter is always the fastest of the two.
The execution time of invrat_ps, on the other hand, grows sublinearly, again following the
analysis of the computational cost. The results for complex matrices with complex coefficients
are qualitatively analogous.

4.3. Computing the Lambert W function. In order to illustrate how these algorithms
can be employed to solve more general matrix equations of the form f(X) = A where
f is a primary matrix function, we consider the computation of the matrix Lambert W
function [10] defined implicitly as any solution to the equation XeX = A, which is of interest
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FIG. 4.2. Execution time (in seconds) of invrat_horn, invrat_pow, and invrat_ps on matrices of increas-
ing size N (left) and rational functions of increasing order m (right).

in the analysis of the stability of delay differential equations [4, 8, 18, 27]. The inverse of
the real function [−1/e,∞] → R : x → xex can be extended analytically to a function
W0(z) : C \ (−∞, 1/e)→ C, which is said to be the 0th branch of the Lambert W function.

For computing W0(A), we compare:

• lambertwm, an implementation of [15, Alg. 1];
• lambertwm_rat, an algorithm that uses invrat_ps to solve r(X) = A, where r

is a diagonal Padé approximant to xex. In our experiments, we found that 28 is
the lowest optimal degree for the Paterson–Stockmeyer method [14] that provides
sufficient accuracy for all the matrices in the test set we consider.

Following the well-established paradigm of recomputing the diagonal of functions of
upper triangular matrices in a direct way [2, 3], in lambertwm_rat we recompute the diagonal
elements of Y using a direct formula. More precisely, if we were to follow the approach
in Algorithms 3.1 and 3.2 exactly, after reducing the problem to the triangular form (1.2),
we would obtain the diagonal blocks of Y by choosing the solution to r(X) = Tii that best
approximates W0(Tii). Instead, we set Yii = W0(Tii) and continue the recursion using this
value in lieu of r−1(Tii). The off-diagonal blocks are still computed by substitution. The
main advantage of this technique is that we do not need to solve smaller matrix equation
for non-trivial diagonal blocks. Moreover, our results show that this strategy leads to more
accurate solutions in some cases.

This modification can be seen as applying Algorithms 3.1 and 3.2 to the matrix equation
r(Y ) = T̃ , where T̃ coincides with T except for the diagonal blocks, since Tii is replaced by
the block T̃ii such that r−1(T̃ii) = W0(Tii). When W0(Tii) is a 2× 2 block arising from the
real Schur decomposition, we use [16, Prop. 15].

We compare the performance of lambertwm and lambertwm_rat for the test set used
in [15, Exp. 2], which contains 47 matrices of size 10 taken from the MATLAB gallery.
As lambertwm is an iterative method, it cannot be easily extended to multiprecision, and to
compute our reference solution we adopt the same algorithm used in [15, Exp. 2], which
diagonalizes the matrix in higher precision by using the eig function provided by the Symbolic
Math Toolbox [32].
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FIG. 4.3. Top: forward error of lambertwm and lambertwm_rat for the matrices in the test set sorted by
descending condition number κW0 (A). Bottom left: corresponding performance profile. Bottom right: ratio of the
estimated computational costs of lambertwm and lambertwm_rat.

Figure 4.3a compares the 1-norm forward error of lambertwm and lambertwm_rat with
the quantity κW0(A)u, and Figure 4.3b presents the same data by means of performance
profiles. The results suggest that both algorithms behave in a forward stable way and achieve
remarkably similar accuracy for most matrices in the test set. The algorithm lambertwm_rat
achieves slightly higher accuracy for about a quarter of the matrices in the data set, which
justifies the more favorable curves of this algorithm in the performance profile.

In Figure 4.3c, we compare the leading terms of the computational cost of the two
implementations for the matrices in the test set. In both cases, 28N3 flops are required to
compute the Schur decomposition and recovering the result at the end of the computation. The
additional cost of lambertwm_rat depends only on the size of the matrix and on the order of
the rational approximant and can be easily seen to be 13N3/3. On the other hand, lambertwm
splits the matrix into two blocks and performs a few steps of the Newton method for each
block. In assessing the flop count, we took into account the number of matrix multiplications,
inversions, and square roots needed to compute the starting value and perform the required
steps of the Newton method and the cost for the solution of the ensuing Sylvester equation
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by means of the Bartels–Stewart algorithm [5]. We ignored the cost of ordering the Schur
decomposition so that the eigenvalues appear along the diagonal of the triangular Schur factor
in two clusters. The results show that, in the test set that we considered, the new algorithm is
up to eleven times faster than lambertwm, and the speedup reaches a factor seven for more
than half of the matrices in the test set.

These differences are not as apparent in our MATLAB implementations, where the gain of
lambertwm_rat over lambertwm is limited. This is not surprising: the former method mostly
comprises element-wise operations that are interpreted by MATLAB at runtime, whereas the
latter is rich in matrix multiplications and inversions, kernels for which MATLAB relies on
highly optimized C and Fortran libraries.

As we use the Padé approximant centered at 0, the accuracy of this algorithm deteriorates
for matrices with large eigenvalues. In order to make the new algorithm a reliable alternative
to lambertwm, this case has to be addressed. This will be the subject of future work.

5. Conclusions. We developed two new algorithms for solving rational matrix equations
that are more efficient than existing algorithms for the same problem. These new techniques
invert two customary methods for the evaluation of rational matrix functions, one based on
the explicit powering technique and the other on the Paterson–Stockmeyer algorithm. Our
experiments suggest that the new techniques are as accurate as existing alternatives: this is
consistent with the error analysis of similar algorithms for the square root and pth root, as
well as with the stability of the corresponding methods for the evaluation of rational matrix
functions, which are all equivalently stable [22, Thm. 4.5]. We characterized the applicability
of substitution algorithms for rational matrix equations in a way that feels more natural than
previous attempts in the literature [16].

General functional matrix equations such as those that define the matrix logarithm or the
matrix Lambert W function can be reduced to rational form by means of rational approxima-
tion. We briefly discussed how this strategy can be exploited to develop a naïve method for
computing the Lambert W function that, in a number of cases, is more accurate and efficient
than the reference algorithm [15]. An analogous strategy for the matrix logarithm or the inverse
sine and cosine functions would not provide an advantage over the current state-of-the-art
algorithms.

Nevertheless, the diagonal Padé approximants to the exponential, sine, and cosine all
show symmetries in their coefficients. If these patterns were exploited, one could in principle
deliver faster substitution algorithms tailored to the solution of specific problems. We intend
to investigate this in future work.
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