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TRANSFORMED RANK-1 LATTICES FOR
HIGH-DIMENSIONAL APPROXIMATION∗

ROBERT NASDALA† AND DANIEL POTTS†

Abstract. This paper describes an extension of Fourier approximation methods for multivariate functions
defined on the torus Td to functions in a weighted Hilbert space L2(Rd, ω) via a multivariate change of variables
ψ :
(
− 1

2
, 1
2

)d → Rd. We establish sufficient conditions for ψ and ω such that the composition of a function in such
a weighted Hilbert space with ψ yields a function in the Sobolev spaceHm

mix(Td) of functions on the torus with mixed
smoothness of natural order m ∈ N0. In this approach we adapt algorithms for the evaluation and reconstruction of
multivariate trigonometric polynomials on the torus Td based on single and multiple reconstructing rank-1 lattices.
Since in applications it may be difficult to choose a related function space, we make use of dimension incremental
construction methods for sparse frequency sets. Various numerical tests confirm the obtained theoretical results for
the transformed methods.

Key words. approximation on unbounded domains, change of variables, sparse multivariate trigonometric
polynomials, lattice rule, multiple rank-1 lattice, fast Fourier transform
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1. Introduction. The change of variables is a powerful tool in numerical analysis. Such
transformations play an important role in spectral methods, numerical integration, and the
approximation of functions. An excellent overview can be found in [1, Chapters 16 and
17], which contains many practical aspects of the mapping methods. In this paper we focus
on change of variable mappings from multivariate bounded domains to unbounded ones in
order to approximate functions defined on such unbounded domains. The main goal is to
transfer the approximation error bounds of Fourier methods on the high-dimensional torus
Td ' [− 1

2 ,
1
2 )d to approximation methods on Rd with the help of an invertible transformation

ψ : (− 1
2 ,

1
2 )d → Rd.

Regarding functions defined on the torus Td, there is a well-developed theory (see
[7, 20, 27]) concerned with the Wiener algebra A(Td) that contains all L1(Td)-functions with
absolutely summable Fourier coefficients

f̂k :=

∫
Td
f(x) e−2πik·x dx

with k = (k1, . . . , kd)
> ∈ Zd,x = (x1, . . . , xd)

> ∈ Rd, and k ·x :=
∑d
j=1 kjxj . For β ≥ 0

and the weight function

ωhc(k) :=

d∏
j=1

max(1, |kj |),

there are subspaces of the Wiener algebra A(Td) in form of

Aβ(Td) :=

f ∈ L1(Td) : ‖f‖Aβ(Td) :=
∑
k∈Zd

ωhc(k)β |f̂k| <∞

(1.1)
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and the Hilbert spaces

Hβ(Td) :=

f ∈ L2(Td) : ‖f‖Hβ(Td) :=

∑
k∈Zd

ωhc(k)2β |f̂k|2
 1

2

<∞

 ,(1.2)

whose norms contain information about the decay rate of the Fourier coefficients f̂k with
respect to the weight function ωhc. For approximation purposes we consider non-empty
frequency sets I ⊂ Zd of finite cardinality |I| <∞ and approximated Fourier partial sums

SΛ
I f(x) :=

∑
k∈I

f̂Λ
k e2πik·x(1.3)

with approximated Fourier coefficients

f̂Λ
k :=

1

M

M−1∑
j=0

f(xj) e−2πik·xj ≈ f̂k(1.4)

which are sampled at the nodes xj of a reconstructing rank-1 lattice Λ(z,M, I), whose
definition is given in (2.6).

For N ∈ N and hyperbolic crosses

IdN :=
{
k ∈ Zd : ωhc(k) ≤ N

}
,(1.5)

it was shown in [13, Theorem 3.3] that when using single rank-1 lattices, the error of approx-
imating a continuous function f ∈ Aβ(Td) by the approximated Fourier partial sum SΛ

IdN
f

measured in the L∞(Td)-norm is bounded above by N−β‖f‖Aβ(Td). The approximation of
functions in the Hilbert spacesHβ(Td) was investigated by V. N. Temlyakov in, e.g., [13, 26].
For certain β ≥ 0, the error of approximating a continuous function f ∈ Hβ(Td) by the
approximated Fourier partial sum SΛ

IdN
f measured in the L2(Td)-norm is bounded above by

Cd,βN
−β(logN)(d−1)/2‖f‖Hβ(Td) with some constant Cd,β = C(d, β) > 0 as shown in

[30, Theorem 2.30].
A major problem is that in general it is difficult to calculate the Fourier coefficients f̂k

in order to determine if they are absolutely or square summable. Instead we utilize certain
norm equivalences to get information about the decay rate of the Fourier coefficients f̂k.
Given a multi-index α = (α1, . . . , αd)

> ∈ Nd0 with ‖α‖`∞ := max(|α1|, . . . , |αd|) and the
differential operator

Dα[f ](x) = D(α1,...,αd)[f ](x1, . . . , xd) :=
∂α1

∂xα1
1

. . .
∂αd

∂xαdd
[f ](x1, . . . , xd),(1.6)

we define for Ω ∈ {Td,Rd} the norm

‖f‖Hmmix(Ω) :=

 ∑
‖α‖`∞≤m

‖Dα[f ]‖2L2(Ω)

1/2

(1.7)

of the Sobolev spaceHm
mix(Ω) of functions f ∈ L2(Ω) with mixed natural smoothnessm ∈ N0,

which is discussed in [22, 28, 31]. As shown in [17, Lemma 2.3], the norms ‖ · ‖Hmmix(Td) and
‖ · ‖Hβ(Td) are equivalent for β = m ∈ N. Furthermore, for all β ≥ 0 and all λ > 1

2 , we have

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

TRANSFORMED RANK-1 LATTICES FOR HIGH-DIMENSIONAL APPROXIMATION 241

the continuous embeddingHβ+λ(Td) ↪→ Aβ(Td) as shown in [13, Lemma 2.2]. Hence, for
m ∈ N, we can simply verify that f is an element of a Sobolev space Hm

mix(Td) in order to
determine whether a function f is in Am(Td) orHm(Td) instead of calculating all its Fourier
coefficients f̂k.

In order to utilize all these properties for functions defined on Rd, we apply a continuously
differentiable and strictly increasing change of variables ψ : (− 1

2 ,
1
2 )d → Rd component-wise

to multivariate functions h in a weighted Hilbert space L2(Rd, ω) as defined in (2.1) with the
weight function ω : Rd → [0,∞). As a result we consider transformed functions f ∈ L2(Td)
of the form

f(x) = h(ψ(x))
√
ω(ψ(x))ψ′(x),

so that we have the identity ‖h‖L2(Rd,ω) = ‖f‖L2(Td). Based on this connection we will
later on observe that the inverse transformation ψ−1 transforms the classical Fourier system

{e2πik◦} into another orthonormal system of the form
{√

(ψ−1)′(◦)
ω(◦) e2πik·ψ−1(◦)

}
. It is

generally rather difficult to verify whether such a transformed function f is in the Sobolev
space Hm

mix(Td) by calculating its norm and testing the various L2-integrability conditions.
Therefore we provide a set of sufficient L∞-conditions for f being in Hm

mix(Td).
At first we prove these conditions for all possible transformations ψ and weight functions

ω. Later on, we consider families of parameterized transformations ψ(◦) = ψ(◦,η) and
families of weight functions ω(◦) = ω(◦,µ) with η,µ ∈ Rd. Then we obtain parameterized
transformed functions f(◦) = f(◦,η,µ) ∈ L2(Td), and both parameters may influence the
smoothness of these functions. With the sufficient L∞-smoothness conditions, we are then
able to calculate lower bounds for η and µ such that the smoothness degree m of a func-
tion h ∈ L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd) does not change under composition with a family of
transformations ψ(◦,η) so that we end up with f ∈ Hm

mix(Td).
For two particular transformation families ψ(◦,η) we explicitly calculate the resulting

lower parameter bounds and observe a case in which the smoothness preservation under the
transformation depends only on the parameter µ ∈ Rd appearing in the weight functions
ω(◦,µ), as far as the conditions are able to detect it. Furthermore, we present an example
in which we compare the parameter bounds obtained from the L∞-conditions with the exact
lower bounds resulting from calculating the Sobolev-norm ‖·‖Hmmix(Td). This will highlight that
the easier to verify L∞-conditions yield slightly coarser parameter bounds. These conditions,
as a tool to determine when a transformed function f is at least an L2(Td)-function, enable us
to prove upper bounds for the approximation error ‖h− SΛ

I h‖ measured in the weighted L2-
and L∞-norms on Rd. These are based on the already established error bounds for ‖f − SΛ

I f‖
on the torus with respect to the L2(Td)- and L∞(Td)-norms.

One advantage of the proposed method is the availability of fast algorithms for high-
dimensional approximation (see, e.g., [1]) in contrast to function approximations based on,
for instance, multivariate Hermite functions or Sinc methods. To this end, there are lattice
rules that in recent years became an important tool in numerical analysis for high-dimensional
integration and the approximation of multivariate functions. An introduction to lattice rules can
be found in [6, 19, 24]. These rules are used for the approximation of functions on the torus;
see [27]. Recently, efficient algorithms based on component-by-component methods [4, 5]
were presented in order to compute high-dimensional integrals. For the approximation of
high-dimensional functions, there are efficient algorithms using sampling schemes based on
rank-1 lattices [8, 13], and furthermore, these schemes provide good approximation properties;
see also [2]. We adapt these algorithms and incorporate the outlined use of transformations.
Furthermore, we present numerical examples.
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We note that it was recently suggested in [11, 12] to use multiple rank-1 lattices which
are obtained by taking a union of several single rank-1 lattices. This method overcomes the
limitations of the single rank-1 lattice approach. That is, for the reconstruction of multivari-
ate trigonometric polynomials supported on an arbitrary frequency set I of finite cardinal-
ity |I| <∞, with a single reconstructing rank-1 lattice, the lattice size M is bounded by
|I| ≤M ≤ |I|2 under certain mild assumptions; see [13, Lemma 2.1] and [10, Corollary 1].
Multiple rank-1 lattices improve the upper bound to M ≤ C|I| log |I| with high probabil-
ity [12, 14]. Remarkably, in both cases the upper bound is independent of the dimension d.
Furthermore, there are methods where the support of the Fourier coefficients f̂k is unknown.
We adapt the methods presented in [21] that describe a dimension incremental construction
of a frequency set I ⊂ Zd containing only non-zero or the approximately largest Fourier
coefficients ĥk, based on a component-by-component construction of rank-1 lattices. This is
done with respect to a specific search space in form of a full integer grid [−N,N ]d ∩ Zd with
refinement N ∈ N and a sparsity constraint that bounds the cardinality of the support. We
incorporate the change of variables method into both the multiple rank-1 lattice methods as
well as the component-by-component construction method. Let us note that instead of rank-1
lattice points, one can use a dimensional incremental support identification technique based on
randomly chosen sampling points, which was recently developed in [3].

The outline of the paper is as follows: In Section 2 we establish the basic notions from
classical Fourier approximation theory on the torus Td, the corresponding function spaces,
and important convergence properties. We introduce the Sobolev spaces Hm

mix(Td) of mixed
natural smoothness order m ∈ N0 and the Wiener AlgebraA(Td) of functions with absolutely
summable Fourier coefficients. Furthermore, we discuss certain properties of the subspaces
Aβ(Td) andHβ(Td) of the Wiener Algebra, in particular, we highlight the norm equivalence
of ‖ · ‖Hm(Td) and ‖ · ‖Hmmix(Td) for all m ∈ N; see [17]. Then we define rank-1 lattices as
introduced in [15], discuss their importance in the context of Fourier approximation, and recall
two important approximation error bounds on the torus in Theorems 2.2 and 2.3.

In Section 3 we define the notion of a transformation ψ : (− 1
2 ,

1
2 )d → Rd and pro-

vide a couple of examples that we will use later on. Then we introduce weight functions
ω : Rd → [0,∞) and describe the structure of the weighted Hilbert spaces L2(Rd, ω), the
corresponding weighted scalar product (·, ·)L2(Rd,ω), and the resulting Fourier coefficients ĥk.
Afterwards, we prove sufficient L∞-conditions for the transformation ψ and the weight func-
tion ω such that a function h ∈ L2(Rd, ω) ∩ Hm

mix(Rd) is transformed under composition
with ψ into a smooth function f ∈ Hm

mix(Td). Then we are able to prove approximation error
bounds on Rd in Theorems 3.6 and 3.7 based on the theorems on the torus from Section 2.

In Section 4, we incorporate the usage of transformations ψ into the algorithms [8,
Algorithm 3.1 and 3.2] for the evaluation and the reconstruction of multivariate functions
leading to Algorithms 4.1 and 4.2 based on transformed rank-1 lattices.

In Section 5 we discuss examples for the algebraic transformation (3.6) and the error
function transformation (3.8) that were introduced in Section 3. In these examples we use a pa-
rameterized transformation ψ(◦) = ψ(◦,η) with η ∈ Rd and a parameterized weight function
ω(◦) = ω(◦,µ) with µ ∈ Rd that fit with their original definitions in Sections 2 and 3. With
the sufficient L∞-conditions from Section 3, we then calculate explicit lower bounds for η and
µ determining the degree of smoothness m ∈ N of h ∈ L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd), which
is preserved under composition with the family of transformations ψ(◦) = ψ(◦,η). Then we
use the algorithms of the previous section to illustrate the theoretical upper approximation
error bounds. For some special cases in which the Fourier coefficients ĥk are explicitly given,
we compare those to the theoretically predicted rate of decay of their absolutely values.
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In Section 6 we add some remarks on how the tool of change of variables is incorporated
into the ideas of multiple rank-1 lattices and sparse fast Fourier algorithms. Furthermore, we
present examples with various test functions and different transformation maps in up to d = 12
dimensions.

2. Fourier approximation on the torus. At first we introduce weighted Lp-function
spaces and Sobolev spaces of mixed smoothness, recall some definitions of classical Fourier
approximation theory, and define a space of functions with absolute square-summable Fourier
coefficients. Finally, we review the ideas of rank-1 lattices from [4, 8, 25], the corresponding
Fourier approximation methods, and approximation error bounds that were discussed in,
e.g., [2, 13, 26].

2.1. Preliminaries. Let Ω ∈ {Td,Rd}, with Td ' [− 1
2 ,

1
2 )d being the d-dimensional

torus. The space (C(Ω), ‖ · ‖L∞(Ω)) denotes the collection of all continuous functions
f : Ω→C, and (C0(Rd), ‖·‖L∞(Rd)) denotes the space of all continuous functions f : Rd→C
vanishing at infinity in every direction. We define weighted function spaces Lp(Rd, ω) for
1 ≤ p <∞ with the weight function ω : Rd → [0,∞) as

Lp(Rd, ω) :=

{
h ∈ Lp(Rd) : ‖h‖Lp(Rd,ω) :=

(∫
Rd
|h(x)|p ω(x) dx

) 1
p

<∞

}
(2.1)

with the usual adjustments for p = ∞. We have Lp(Rd) ⊂ Lp(Rd, ω) if ω is bounded and
Lp(Rd, ω) ⊂ Lp(Rd) if ω is unbounded. For the constant weight function ω(x) ≡ 1, we have
Lp(Rd, ω) = Lp(Rd), and the Lp(Td)-spaces are defined analogously.

For functions f and g in the Hilbert space L2(Td), we have the scalar product

(f, g)L2(Td) :=

∫
Td
f(x) g(x) dx.

The functions e2πik·x :=
∏d
j=1 e2πikjxj with k ∈ Zd and x ∈ Td are orthogonal with respect

to the L2(Td)-scalar product. For any frequency set I ⊂ Zd of finite cardinality |I| <∞, we
denote by

ΠI := span{e2πik·◦ : k ∈ I}

the space of all multivariate trigonometric polynomials supported on I . For all k ∈ Zd we
denote the Fourier coefficients f̂k by

f̂k = (f, e2πik·◦)L2(Td) =

∫
Td
f(x) e−2πik·x dx

and the corresponding Fourier partial sum by SIf(x) :=
∑

k∈I f̂k e2πik·x.
For multi-indices α ∈ Nd0 and the differential operator Dα[f ](x) as defined in (1.6), we

define the Sobolev spaces of mixed natural smoothness of L2(Ω)-functions with smoothness
order m ∈ N0 (see [22, 28, 31]) as

Hm
mix(Ω) =

{
f ∈ L2(Ω) : ‖f‖Hmmix(Ω) <∞

}
with ‖ · ‖Hmmix(Ω) as given in (1.7). The univariate spaces are denoted by Hm(T) and Hm(R),
respectively. For Ω = Td we recall some notation introduced in [17]. The Hm

mix(Td)-norm is
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expressible in terms of the Fourier coefficients f̂k, which leads to the equivalent norm

‖f‖Hm,+(Td) :=

∑
k∈Zd

|f̂k|2
d∏
j=1

(1 + |kj |2)m

 1
2

.

In [17, Lemma 2.3] it is specified that for m ∈ N and all f ∈ Hm
mix(Td), we have

‖f‖Hmmix(Td) ≤ ‖f‖Hm,+(Td) ≤
(

2m

m+ 1

) d
2

‖f‖Hmmix(Td).

The ‖ · ‖Hm,+(Td)-norm and the ‖ · ‖Hβ(Td)-norm given in (1.2) are also equivalent for m = β
because of the observation that

max(1, |kj |)2 ≤ 1 + |kj |2 ≤ 2 max(1, |kj |)2

for all kj ∈ Z. In total, for m ∈ N we have the norm equivalences

‖ · ‖Hm(Td) ∼ ‖ · ‖Hm,+(Td) ∼ ‖ · ‖Hmmix(Td),(2.2)

but we distinguish the related function spaces anyway, because Hβ(Td) appears in results
concerned with approximation error bounds, whereas Hm

mix(Td) is considered later on when
we discuss smoothness-preserving transformation mappings.

Considering furthermore the function spaces Aβ(Td) as defined in (1.1), it was shown
in [13, Lemma 2.2] that for β ≥ 0, λ > 1

2 , and fixed d ∈ N, there are continuous embeddings

Hβ+λ(Td) ↪→ Aβ(Td) ↪→ A(Td),(2.3)

and for f ∈ Aβ(Td), we have

‖f‖Aβ(Td) ≤ Cd,λ‖f‖Hβ+λ(Td)(2.4)

with a constant Cd,λ := C(d, λ) > 1. Additionally, for each function in A(Td), there exists a
continuous representative, as proven in [8, Lemma 2.1]. Later on, when we sample functions
f ∈ Hβ+λ(Td), we identify them with their continuous representatives given by their Fourier
series

∑
k∈Zd f̂k e2πik·◦, and this identification will be denoted by f ∈ Hβ+λ(Td) ∩ C(Td).

2.2. Rank-1 lattices and reconstructing rank-1 lattices. Before discussing the approx-
imation of functions f ∈ Hβ(Td) ∩ C(Td), we recollect some related objects and observations
from [4, 8, 20, 25]. For each frequency set I ⊂ Zd, there is the difference set

D(I) := {k ∈ Zd : k = k1 − k2 with k1,k2 ∈ I}.

Furthermore, the set

Λ(z,M) :=

{
xj :=

(
j

M
z mod 1

)
∈ Td : j = 0, 1, . . .M − 1

}
(2.5)

is called a rank-1 lattice with the generating vector z ∈ Zd and the lattice size M ∈ N, where
1 := (1, . . . , 1)

> ∈ Zd. To ensure that Λ(z,M) has exactly M distinct elements, it is pointed
out in [20, p. 428] that we need to assume that M is coprime with at least one component of
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FIG. 2.1. The hyperbolic cross IdN for N = 16 and d = 2.

the generating vector z. A reconstructing rank-1 lattice Λ(z,M, I) is a rank-1 lattice Λ(z,M)
for which the condition

t · z 6≡ 0 (modM) for all t ∈ D(I) \ {0}(2.6)

holds. Given a reconstructing rank-1 lattice Λ(z,M, I), we have exact integration for all
multivariate trigonometric polynomials g ∈ ΠD(I) (see [25]) so that∫

Td
g(x) dx =

1

M

M−1∑
j=0

g(xj), xj ∈ Λ(z,M, I).

In particular, for f ∈ ΠI and k ∈ I , we have f(◦) e−2πik·◦ ∈ ΠD(I) and

f̂k =

∫
Td
f(x) e−2πik·x dx =

1

M

M−1∑
j=0

f(xj) e−2πik·xj , xj ∈ Λ(z,M, I).(2.7)

For an arbitrary function f ∈ Hβ(Td) ∩ C(Td) and lattice points xj ∈ Λ(z,M, I), we lose
the former mentioned exactness and get approximated Fourier coefficients f̂Λ

k ≈ f̂k of the
form (1.4) leading to the approximated Fourier partial sum SΛ

I f(x) ≈ SIf(x) as given
in (1.3).

2.3. Lattice-based approximation on the torus. We discuss upper bounds for certain
approximation errors ‖f − SΛ

IdN
f‖ of functions f in Aβ(Td) ∩ C(Td) andHβ(Td) ∩ C(Td).

For this matter, the frequency sets are hyperbolic crosses IdN as defined in (1.5) and are illus-
trated for N = 16 in two dimensions in Figure 2.1. For approximation purposes the existence
of reconstructing rank-1 lattices is secured by the arguments provided in [10, Corollary 1] and
[13, Lemma 2.1]:

LEMMA 2.1. Let I ⊂ Zd be a frequency set of finite cardinality 4 ≤ |I| < ∞ with
I ⊂ Zd ∩ (−M/2,M/2)d. For all multivariate trigonometric polynomials f ∈ ΠI , there
exists a reconstructing rank-1 lattice Λ(z,M, I) with the lattice size M ∈ N bounded by
|I| ≤M ≤ |D(I)| ≤ |I|2, such that f̂k = f̂Λ

k . The generating vector z can be constructed
using a component-by-component approach.

Then it is possible to prove an upper error bound for the L∞-approximation of functions
in the subspace Aβ(Td) of the Wiener Algebra, as observed in [13, Theorem 3.3]:

THEOREM 2.2. Let be given f ∈ Aβ(Td) ∩ C(Td) with β ≥ 0 and d ∈ N, a hyperbolic
cross IdN with |IdN | <∞ and N ∈ N, and a reconstructing rank-1 lattice Λ(z,M, IdN ). The
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approximation of f by the approximated Fourier partial sum SΛ
IdN
f leads to an approximation

error that is bounded by

‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−β‖f‖Aβ(Td).(2.8)

The approximation of functions in the Hilbert spaces Hβ(Td) was investigated by
V. N. Temlyakov; see [13, 26]. He showed that for β > 1, there exists a reconstructing
rank-1 lattice generated by a vector of Korobov form z := (1, z, z2, . . . , zd−1)> ∈ Zd such
that the L2-truncation error is bounded above by

‖f − SΛ
IdN
f‖L2(Td) ≤ N−β(logN)(d−1)/2‖f‖Hβ(Td).

A generalization of this estimate as well as an upper bound for the corresponding aliasing error
is stated in [2, Theorem 2] using dyadic hyperbolic cross frequency sets and a component-
by-component approach to construct the generating vector z ∈ Zd, which generally is not of
Korobov form anymore. However, every dyadic hyperbolic cross is embedded in a non-dyadic
one; see [30, Lemma 2.29]. Thus, the error estimates are easily translated in terms of non-
dyadic hyperbolic crosses IdN (see [30, Theorem 2.30]), and we are particularly interested in
the following special case:

THEOREM 2.3. Let be given β > 1
2 , the dimension d ∈ N, a function f ∈ Hβ(Td) ∩

C(Td), a hyperbolic cross IdN withN ≥ 2d+1, and a reconstructing rank-1 lattice Λ(z,M, IdN ).
Then we have

‖f − SΛ
IdN
f‖L2(Td) ≤ Cd,βN−β(logN)(d−1)/2‖f‖Hβ(Td)(2.9)

with some constant Cd,β := C(d, β) > 0.
As highlighted earlier in (2.2), for β = m ∈ N, the norms ‖ · ‖Hβ(Td) and ‖ · ‖Hmmix(Td) are

equivalent. Eventually, we utilize this norm equivalence in order to apply the above approxi-
mation error bounds for functions f in the Sobolev space Hm

mix(Td) that are characterized by
their derivatives.

3. Torus-to-R transformation mappings. Change of variables were discussed, for
example, in [1, 23] and were used for high-dimensional integration in, e.g., [16, 18]. In
this chapter we define transformations ψ : (− 1

2 ,
1
2 )d → Rd and provide examples that will

reappear later in this paper. Afterwards, we describe the weighted Hilbert spaces L2(Rd, ω)
with weight functions ω : Rd → [0,∞) and investigate their structure. Then we prove
sufficient conditions for ψ and ω such that an initially chosen h ∈ L2(Rd, ω) ∩ Hm

mix(Rd)
is transformed by the change of variables ψ into a function that is lying in a Sobolev space
Hm

mix(Td) of mixed natural smoothness order m ∈ N0. Eventually, we show that with an
incorporated transformation ψ, we still have upper bounds for certain approximation errors on
Rd, which are based on the already established error bounds with respect to the L∞(Td)- and
L2(Td)-norms recalled in Theorems 2.2 and 2.3, respectively.

3.1. Transformations to Rd. We call a map ψ : (− 1
2 ,

1
2 ) → R a transformation or

change of variables if it is continuously differentiable, strictly increasing, odd, and we have

lim
x→− 1

2

ψ(x) = −∞, lim
x→ 1

2

ψ(x) =∞.(3.1)

We denote its first derivative by ψ′(x) := d
dx [ψ](x). The corresponding inverse transformation

is also continuously differentiable, increasing, and it is denoted by ψ−1 : R→ (− 1
2 ,

1
2 ) in the
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sense of y = ψ(x)⇔ x = ψ−1(y). We call the derivative of the inverse transformation the
density function of ψ, which we denote as

%(y) := (ψ−1)′(y) =
1

ψ′(ψ−1(y))
,(3.2)

and for which we have %(y) ≥ 0 for all y ∈ R. Furthermore, we have lim
y→−∞

ψ−1(y) = − 1
2

and lim
y→∞

ψ−1(y) = 1
2 . We note that % is a bounded function with

‖%‖L1(R) =

∫ ∞
−∞

%(y) dy = 1.

For multivariate transformations we let

ψ(x) := (ψ1(x1), . . . , ψd(xd))
> and ψ′(x) :=

d∏
j=1

ψ′j(xj)

with x = (x1, . . . , xd)
> ∈ (− 1

2 ,
1
2 )d, where we may use different transformations ψj in each

direction. Similarly, we let ψ−1(y) := (ψ−1
1 (y1), . . . , ψ−1

d (yd))
> and

%(y) :=

d∏
j=1

%j(yj)(3.3)

with y = (y1, . . . , yd)
> ∈ Rd.

Later on, we consider families of parameterized transformations

ψ(x,η) := (ψ1(x1, η1), . . . , ψd(xd, ηd))
>(3.4)

with η = (η1, . . . , ηd)
> ∈ Rd. We only consider parametrizations for which the transforma-

tion ψ, its inverse ψ−1, and the density function % fit into the given definitions above despite
being affected by the parameter η. On several occasions throughout this paper we will replace
the transformations ψ(x) by

ψ(x,η) := η · ψ(x)(3.5)

with η ∈ (0,∞)d. As the transformations are going to be composed with functions defined
on Rd, the parameter η may influence the smoothness of the resulting transformed functions,
which we will discuss in depth later on. For now we omit the parameter in the notation for
simplicity and proceed to just write ψ(◦) until we actually consider particular parameterized
families of the form (3.4) or (3.5).

3.2. Exemplary transformations. We list some feasible univariate transformations ψ
with either an algebraic or an exponential density function %, some of which were suggested in
the literature; see, e.g., [1, Section 17.6] and [23, Section 7.5]. With the remark about (3.4) in
mind, we list these transformations here in their univariate non-parameterized form with η = 1
and ψ(x) = ψ(x, 1), for simplicity. Later on, when we fix a particular family of parameterized
transformations ψ(◦, η), η ∈ R, we recall these definitions accordingly.

Let x ∈ (− 1
2 ,

1
2 ) and y ∈ R. We are particularly interested in the following transforma-

tions:
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• algebraic transformation:

ψ(x) =
2x

(1− 4x2)
1
2

, ψ′(x) =
2

(1− 4x2)
3
2

,(3.6)

ψ−1(y) =
y

2(1 + y2)
1
2

, %(y) =
1

2(1 + y2)
3
2

,

• tangent transformation:

ψ(x) = tan (πx) , ψ′(x) =
π

cos2(πx)
,(3.7)

ψ−1(y) =
1

π
arctan (y) , %(y) =

1

π

(
1

1 + y2

)
,

• error function transformation:

ψ(x) = erf−1(2x), ψ′(x) =
√
π e(erf−1(2x))2 ,(3.8)

ψ−1(y) =
1

2
erf (y) , %(y) =

1√
π

e−y
2

,

with the error function

erf(x) =
1√
π

∫ x

−x
e−t

2

dt, x ∈ R,

and erf−1(◦) denoting the inverse error function,
• logarithmic transformation:

ψ(x) =
1

2
log

(
1 + 2x

1− 2x

)
= tanh−1(2x), ψ′(x) =

2

1− 4x2
,(3.9)

ψ−1(y) =
1

2

(
e2y − 1

e2y + 1

)
=

1

2
tanh (y) , %(y) =

2e2y

(e2y + 1)2
.

For a side-by-side comparison of their individual slope, see Figure 3.1.

3.3. Weighted Hilbert spaces on R. We describe the structure of the weightedL2(R, ω)-
function spaces as defined in (2.1). In this section the weight function ω : R → [0,∞)
remains unspecified. However, similarly to the generalization (3.4) of transformations ψ
defined in (3.1), we will later on consider families of non-negative parameterized weight
functions ω(◦, µ) with µ ∈ R for the purpose of controlling the smoothness of functions
in L2(R, ω(◦, µ)) ∩Hm(R) and of the corresponding transformed functions on the torus T.
Analogously, families of multivariate parameterized weight functions are defined as

ω(y,µ) :=

d∏
j=1

ωj(yj , µj), y,µ ∈ Rd,(3.10)

with univariate weight functions ωj(◦, µj) : R→ [0,∞).
For now we remain in the univariate setting. The system {ϕk}k∈Z of weighted exponential

functions

ϕk(y) :=

√
%(y)

ω(y)
e2πikψ−1(y), y ∈ R,(3.11)
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−0.4−0.3−0.2−0.1 0.1 0.2 0.3 0.4

−6

−4

−2

2

4

6

(3.6) algebraic transformation
(3.7) tangens transformation
(3.8) error function transformation
(3.9) logarithmic transformation

FIG. 3.1. Plots of exemplary transformations (3.6)–(3.9).

forms an orthogonal system with respect to the scalar product

(h1, h2)L2(R,ω) :=

∫
R
ω(y)h1(y)h2(y) dy,(3.12)

and for k1, k2 ∈ Z we have

(ϕk1 , ϕk2)L2(R,ω) = δk1,k2 .

The weighted scalar product (3.12) induces the norm

‖h‖L2(R,ω) :=
√

(h, h)L2(R,ω),

and in a natural way we have Fourier coefficients of the form

ĥk := (h, ϕk)L2(R,ω) =

∫
R
h(y)

√
%(y)ω(y) e−2πikψ−1(y) dy(3.13)

as well as the corresponding Fourier partial sum for I ⊂ Z given by

SIh(y) :=
∑
k∈I

ĥk ϕk(y).(3.14)

EXAMPLE 3.1.
• For the algebraic transformation (3.6) with the density %(y) = 1

2(1+y2)
3
2

and the

parameterized weight function

ω(y, µ) =

(
1

1 + y2

)µ
, µ ∈ R,(3.15)

the orthogonal system functions ϕk as in (3.11) are of the form

ϕk(y) =

√
1

2

(
1

1 + y2

) 3
2−µ

e
πik y√

1+y2 .

The graphs of their real and imaginary parts of these ϕk are shown in Figure 3.2 for
µ = 2 and k = 0, 1, 2, 3.
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−4 −2 2 4

−1

1

Re(ϕk(y)) =
√

1
2

√
1 + y2 cos

(
πk y√

1+y2

)k = 0 k = 1 k = 2 k = 3

−4 −2 2 4

−1

1

Im(ϕk(y)) =
√

1
2

√
1 + y2 sin

(
πk y√

1+y2

)k = 1 k = 2 k = 3

FIG. 3.2. Real and imaginary part of the weighted exponential functions ϕk, k = 0, 1, 2, 3, in (3.11) with the
density function % of the algebraic transformation (3.6) and the algebraic parameterized weight function ω(y, µ) as
given in (5.2) for fixed µ = 2.

• For the error function transformation (3.8) with the density %(y) = 1√
π

e−y
2

and the
Gaussian weight function

ω(y, µ) =
1√
π

e−µ
2y2 , µ ∈ R,(3.16)

the orthogonal system functions ϕk as in (3.11) are of the form

ϕk(y) = e
1
2 (µ2−1)y2+πik erf(y),

with graphs of their real and imaginary parts for µ =
√

2 and k = 0, 1, 2, 3 displayed
in Figure 3.3. The corresponding weighted scalar product (3.12) reads as

(h1, h2)L2(R,ω(◦,µ)) =
1√
π

∫
R

e−µ
2y2 h1(y)h2(y) dy.

3.4. Smoothness properties of composed functions in Sobolev spaces. In this section
we discuss the smoothness of univariate functions h defined on R and of their resulting
transformed versions f on the torus T. In [16] the authors use a change of variables for
integration problems with respect to a family of integrands with bounded Lp-norm of mixed
first-order partial derivatives with 1 ≤ p ≤ ∞ and provide sufficient conditions such that
the transformed integrand belongs to a Sobolev space of mixed smoothness order one. We
will propose a specific set of sufficient conditions for ψ and ω such that f ∈ Hm

mix(Td)
with m ∈ N0. These conditions are stated for both univariate and multivariate functions.
Afterwards, we utilize the norm equivalence of the Sobolev space Hm

mix(Td) and the subspace
Hβ(Td) of the Wiener AlgebraA(Td) form = β as described in (2.2) and combine it with the
embeddingHβ+λ(Td) ↪→ Aβ(Td) in (2.3) for all λ > 1

2 in order to discuss high-dimensional
approximation problems in which we apply rank-1 lattice-based fast Fourier approximation
methods. Throughout this section we still omit the parameters η,µ ∈ Rd in the notation of
the transformations ψ and the weight functions ω, as outlined in (3.4) and (3.10).

For now we consider univariate transformed functions f ∈ L2(T) of the form

f(x) := h(ψ(x))
√
ω(ψ(x))ψ′(x), x ∈ T,(3.17)
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−3 −2 −1 1 2 3

−4

−2

2

4

Re(ϕk(y)) = e
y2

2 cos (πk erf(y))

k = 0 k = 1 k = 2 k = 3

−3 −2 −1 1 2 3

−4

−2

2

4

Im(ϕk(y)) = e
y2

2 sin (πk erf(y))

k = 1 k = 2 k = 3

FIG. 3.3. Real and imaginary part of the weighted exponential functions ϕk, k = 0, 1, 2, 3, in (3.11) with the
density function % of the error function transformation (3.8) and the parameterized Gaussian weight function ω(y, µ)
as given in (5.8) for fixed µ =

√
2.

T ' [− 1
2 ,

1
2 ) (− 1

2 ,
1
2 ) R

C

⊃
ψ(x)

L2(T)3h(ψ(x))
√
ω(ψ(x))ψ′(x)=:f(x)

h(y)∈L2(R,ω)

ψ−1(y)

FIG. 3.4. Scheme of the relation between f and h caused by a transformation ψ.

which are the result of applying the change of variables y = ψ(x) as defined in (3.1) to a
function h ∈ L2(R, ω) and for which we have the identity

‖h‖2L2(R,ω) =

∫
R
|h(y)|2 ω(y) dy =

∫
T
|h(ψ(x))|2 ω(ψ(x))ψ′(x) dx = ‖f‖2L2(T),

schematically illustrated in Figure 3.4.

REMARK 3.2. The transformed functions f as given in (3.17) are generally not in L2(T)
for all transformations ψ. We will consider families of transformations ψ(◦, η), η ∈ R, as
in (3.4) and families of weight functions ω(◦, µ), µ ∈ R, as in (3.10). Generally, there exist
restrictions for the range of feasible parameters η, µ ∈ R for which the transformed functions
f(◦, η, µ) as in (3.17) are in L2(T). Later on, we present examples with multivariate functions
h ∈ L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd) and a fixed family of transformations ψ(◦,η),η ∈ R, and
calculate parameter ranges of η and µ for which the transformed functions f are in Hm

mix(Td)
for m ∈ N0.

It is generally rather difficult to verify if such transformed functions f are in Hm(T)
for some fixed m ∈ N0 by calculating the individual L2(T)-norms within the Sobolev
norm ‖f‖Hm(T). Therefore we propose two different sets of sufficient conditions such that
f ∈ Hm(T), with m ∈ N0, by utilizing the product structure of the functions f in (3.17). At
first we state conditions for h ∈ L2(R, ω), the weight function ω, and the transformation ψ
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to preserve a certain degree of smoothness m of h under the transformation with ψ, which
slightly simplifies the problem of the difficult evaluation of L2(T)-integrals.

THEOREM 3.3. Let be given m ∈ N0, a transformation ψ : (− 1
2 ,

1
2 ) → R as defined

in (3.1), a function h ∈ L2(R, ω) with a weight function ω : R→ [0,∞), and the correspond-
ing transformed functions f of the form (3.17). We have that f ∈ Hm(T) if either for all
k = 0, 1, . . . ,m

dk

dxk
[h ◦ ψ] (x) ∈ L∞(T) and

dk

dxk

[√
(ω ◦ ψ)ψ′

]
(x) ∈ L2(T),

or if, for all k = 0, 1, . . . ,m,

dk

dxk
[h ◦ ψ] (x) ∈ L2(T) and

dk

dxk

[√
(ω ◦ ψ)ψ′

]
(x) ∈ L∞(T).

Proof. Let f be of the form (3.17) and k = 0, 1, . . . ,m. Using the well-known generalized
Leibniz rule for the k-th derivative of a product of two functions leads to∥∥∥∥ dk

dxk
[f ](x)

∥∥∥∥
L2(T)

≤
k∑
`=0

(
k

`

)∥∥∥∥ d`

dx`
[h ◦ ψ] (x)

dk−`

dxk−`

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

.(3.18)

Now we either estimate∥∥∥∥ dk

dxk
[f ](x)

∥∥∥∥
L2(T)

≤
k∑
`=0

(
k

`

)∥∥∥∥ d`

dx`
[h ◦ ψ] (x)

∥∥∥∥
L∞(T)

∥∥∥∥ dk−`

dxk−`

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

or∥∥∥∥ dk

dxk
[f ](x)

∥∥∥∥
L2(T)

≤
k∑
`=0

(
k

`

)∥∥∥∥ d`

dx`
[h ◦ ψ] (x)

∥∥∥∥
L2(T)

∥∥∥∥ dk−`

dxk−`

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L∞(T)

.

If the ‖·‖L2(T)-norms of k-th derivatives of f are finite for all k = 0, 1, . . . ,m, then their sum,
i.e., the Hm(T)-norm, is finite, too.

Now, we derive a set of sufficient L∞-conditions for ψ and ω that ensure that a function
h ∈ L2(R, ω)∩Hm(R) can be transformed by ψ into an f ∈ Hm(T) of the form (3.17). This
eliminates the necessity to evaluate L2-integrals of the various derivatives of f . Furthermore,
once we consider particular parameterized families of transformations ψ(◦, η) and families of
weight functions ω(◦, µ), these conditions enable us, for each smoothness order m ∈ N, to
explicitly calculate how large the parameters η, µ ∈ R have to be in order to preserve the fixed
degree of smoothness m when transforming h ∈ L2(R, ω(◦, µ)) ∩Hm(R) into f ∈ Hm(T)
via ψ(◦, η).

To simplify the notation, we alternate between equivalent expressions for derivatives of
the appearing functions, and for improved readability, we write explicit arguments within
certain norms. We denote the k-th derivative of a function f(x) with respect to x by either
dk

dxk
[f ](x) or f (k)(x), and for k = 1, 2, 3, we sometimes use the notation f ′(x), f ′′(x), and

f ′′′(x).
THEOREM 3.4. Let be given m ∈ N0, a transformation ψ : (− 1

2 ,
1
2 ) → R as defined

in (3.1) with the density function % of ψ as in (3.2), a function h ∈ L2(R, ω) ∩Hm(R) with a
non-negative weight function ω : R→ [0,∞), and the corresponding transformed functions
f of the form (3.17).
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If for all ` = 0, 1, . . . ,m we have

d`

dy`
[%] (y) ∈ C0(R),

d`

dx`
[ψ] (x) ∈ C((−1/2, 1/2)),

and max
k=0,...,`

∥∥∥∥ d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2 ,2k−
3
2 )

∥∥∥∥
L∞(T)

<∞,

then we have f ∈ Hm(T).
Proof. For h ∈ L2(R, ω) ∩ Hm(R) with m ∈ N0 and a transformation ψ as defined

in (3.1), we consider the function f given in (3.17). In order to prove that f ∈ Hm(T), we
have to show that

∥∥ dn

dxn [f ](x)
∥∥
L2(T)

<∞ for all n = 0, 1, . . . ,m. We present the arguments
for n = m, and they are applicable in the same way for n = 0, 1, . . . ,m− 1, too. We consider∥∥ dm

dxm [f ](x)
∥∥
L2(T)

and apply the generalized Leibniz rule as in (3.18), so that we now have to
ensure that ∥∥∥∥ dk

dxk
[h ◦ ψ] (x)

dm−k

dxm−k

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

<∞,(3.19)

for all k = 0, . . . ,m. We leave h ◦ ψ in the term corresponding to k = 0 untouched for
now. For k = 1, . . . ,m we use the Faá di Bruno formula to write the k-th derivative of the
composition of the functions h and ψ as

dk

dxk
[h ◦ ψ] (x) =

k∑
`=1

h(`)(ψ(x)) ·Bk,`(ψ′(x), ψ′′(x), . . . , ψ(k−`+1)(x)),(3.20)

with the well-known Bell polynomials Bk,`, for k, ` ∈ N0, given by

Bk,`(z) :=
∑

j1+j2+...+jk−`+1=`,
j1+2j2+...+(k−`+1)jk−`+1=k

`!

j1! · . . . · jk−`+1!

k−`+1∏
r=1

(zr
r!

)jr

with z = (z1, . . . , zk−`+1)>. By differentiating both sides of ψ−1(ψ(x)) = x, we obtain

ψ′(x) =
1

%(ψ(x))
, ψ′′(x) = −%

′(ψ(x))ψ′(x)

%(ψ(x))2
= −%′(ψ(x))ψ′(x)3.

Based on this we also observe that, for k ∈ N,

d

dx

[
(ψ′)k

]
(x) = kψ′(x)k−1ψ′′(x) = −kψ′(x)k+2%′(ψ(x)).(3.21)

Hence, the k-th derivative of ψ can be expressed solely in terms of powers of ψ′ and the first
(k − 1) derivatives of % by repeated insertion of the expression of ψ′′. Formula (3.21) implies
that the highest appearing power of ψ′ increases by 2 with each differentiation. For example,

ψ′′′(x) = ψ′(x)5

(
−%
′′(ψ(x))

ψ′(x)
+ 3%′(ψ(x))

)
,

ψ(4)(x) = ψ′(x)7

(
−%
′′′(ψ(x))

ψ′(x)2
+

4%′′(ψ(x))%′(ψ(x)) + 6%′(ψ(x))

ψ′(x)
− 15%′(ψ(x))3

)
.

We note that each derivative of ψ is bounded, based on the fact that % is by definition in C0(R).
Hence, % ◦ ψ = 1/ψ′ ∈ C(T), and any power of 1/ψ′ is bounded, too. Additionally, we have
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assumed that the first k derivatives of % are in C0(R), too. Therefore, with constants Ck > 0
and C > 0, for all k ∈ N, we can estimate∣∣∣∣ dk

dxk
[ψ](x)

∣∣∣∣ ≤ Ck|ψ′(x)|2k−1,

and for the Bell polynomials Bk,` in (3.20) we then estimate

|Bk,`(ψ′(x), ψ′′(x), . . . , ψ(k−`+1)(x))|(3.22)

≤ C ·Bk,`(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−`+1)−1).

The Bell polynomials are defined according to the rules to partition a number k ∈ N into a
sum of ` ∈ {1, 2, . . . , k} natural numbers j1, . . . , j` ∈ N leading to the identities

j1 + j2 + j3 + . . .+ jk−`+1 = `,

j1 + 2j2 + 3j3 + . . .+ (k − `+ 1)jk−`+1 = k.

Subtracting the first rule from two times the second rule results in the equation

j1 + 3j2 + 5j3 + . . .+ (2(k − `+ 1)− 1)jk−`+1 = 2k − `,

which reveals that in the polynomials Bk,`(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−`+1)−1), as de-
fined in (3.22), the highest appearing power of |ψ′| is 2k − 1 for ` = 1. By extracting
|ψ′(x)|2k−1 from eachBk,`, the remaining polynomials consist only of powers of 1/ψ′, which
are all bounded. Hence, in (3.22) we further estimate

|Bk,`(ψ′(x), ψ′′(x), . . . , ψ(k−`+1)(x))|(3.23)

≤ C
∣∣∣∣ψ′(x)2k−1Bk,`(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−`+1)−1)

ψ′(x)2k−1

∣∣∣∣
≤ C ′

∣∣ψ′(x)2k−1
∣∣

with constants C,C ′ > 0.
We go back to the derivatives of h ◦ ψ in (3.20) and bound them individually. For k = 0,

we simply estimate

‖h ◦ ψ‖L2(T) =

(∫ 1
2

− 1
2

∣∣∣h(ψ(x))ψ′(x)−
1
2

∣∣∣2 ψ′(x) dx

) 1
2

(3.24)

≤ ‖ψ′(◦)− 1
2 ‖L∞(T)

(∫ ∞
−∞
|h(y)|2 dy

) 1
2

,

which exists if ψ′(◦)− 1
2 ∈ L∞(T). With the Faá di Bruno formula (3.20) and the upper

bound (3.23) for dk

dxk
[h ◦ ψ] (x), we obtain∥∥∥∥ dk

dxk
[h ◦ ψ] (x)

∥∥∥∥
L2(T)

=

(∫ 1
2

− 1
2

∣∣∣∣ dk

dxk
[h ◦ ψ] (x)ψ′(x)−

1
2

∣∣∣∣2 ψ′(x) dx

) 1
2

≤ ‖ψ′(x)2k− 3
2 ‖L∞(T)

∫ 1
2

− 1
2

∣∣∣∣∣∣
k∑
j=1

h(j)(ψ(x))

∣∣∣∣∣∣
2

ψ′(x) dx


1
2

≤ C · ‖ψ′(x)2k− 3
2 ‖L∞(T)

k∑
j=1

∥∥∥∥ dj

dyj
[h(y)]

∥∥∥∥
L2(R)

.(3.25)
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By inserting (3.24) and (3.25) into (3.19), we in total have, for all ` ∈ N0, the estimate

∥∥∥∥ d`

dx`
[f ](x)

∥∥∥∥
L2(T)

(3.26)

≤
∑̀
k=0

(
`

k

)∥∥∥∥ dk

dxk
[h ◦ ψ] (x)

d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

≤
∥∥∥∥ d`

dx`

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)−

1
2

∥∥∥∥
L∞(T)

‖h‖L2(R)

+ C ·
∑̀
k=1

(
`

k

)∥∥∥∥ d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)2k− 3

2

∥∥∥∥
L∞(T)

k∑
j=1

∥∥∥∥ dj

dyj
[h(y)]

∥∥∥∥
L2(R)

≤ C ′ max
k=0,...,`

∥∥∥∥ d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2 ,2k−
3
2 )

∥∥∥∥
L∞(T)

×

×

(
‖h‖L2(R) +

∑̀
k=1

‖h‖Hk(R)

)

≤ C ′ max
k=0,...,`

∥∥∥∥ d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2 ,2k−
3
2 )

∥∥∥∥
L∞(T)

(`+ 1)‖h‖H`(R)

with constants C,C ′ ≥ 1. This upper bound is finite as long as the L∞-norms are finite and
h ∈ Hm(R). In total we finally obtain the estimate

‖f‖Hm(T) =

(
m∑
`=0

∥∥∥∥ d`

dx`
[f ](x)

∥∥∥∥2

L2(T)

) 1
2

≤ C max
`=0,...,m

(
max

k=0,...,`

∥∥∥∥ d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2 ,2k−
3
2 )

∥∥∥∥
L∞(T)

)

×

(
m∑
`=0

(`+ 1)2‖h‖2H`(R)

) 1
2

≤ C max
`=0,...,m

(
max

k=0,...,`

∥∥∥∥ d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2 ,2k−
3
2 )

∥∥∥∥
L∞(T)

)
× (m+ 1)

3
2 ‖h‖Hm(R).

Next, we generalize the previous theorem by proving its multivariate version. Again,
to simplify the notation in (1.6) of the d-variate differential operator Dm[f ](x) with both
m = (m1, . . . ,md) ∈ Nd0 and x = (x1, . . . , xd)

> ∈ Rd, we use equivalent expressions for
certain (partial) derivatives and state explicit arguments in the various norms. When differenti-
ating a multivariate function f with respect to the j-th coordinate mj-times, we write

∂mj [f ](x) :=
∂mj

∂x
mj
j

[f ](x) = D(0,...,0,mj ,0,...,0)[f ](x).
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For the first and `-th derivatives of univariate functions with ` ∈ N, we use the notation

ψ′j(xj) :=
d

dxj
[ψj ](xj) and ψ

(`)
j (xj) :=

d`

dx`j
[ψj ](xj).

Similar to (3.17) we consider multivariate transformed functions f ∈ L2(Td) of the form

f(x) = (h ◦ ψ)(x)
√

(ω ◦ ψ)(x)D1[ψ](x)

= h(ψ1(x1), . . . , ψd(xd))

d∏
k=1

√
ωk(ψk(xk))ψ′k(xk), x ∈ Td,(3.27)

which are the result of applying the multivariate change of variables

y = (y1, . . . , yd)
> = (ψ1(x1), . . . , ψd(xd))

> = ψ(x)

defined in (3.4) to a function h ∈ L2(Rd, ω) with a product weight ω as in (3.10). For this,
we have the identity

‖h‖2L2(Rd,ω) =

∫
Rd
|h(y)|2 ω(y) dy

=

∫
Td
|(h ◦ ψ)(x)|2 (ω ◦ ψ)(x)D1[ψ](x) dx = ‖f‖2L2(Td).

Again, we derive a set of sufficient L∞-conditions for the multivariate transformation ψ and
the product weight ω that determine when a function h ∈ L2(Rd, ω) ∩ Hm

mix(Rd) can be
transformed by ψ into an f ∈ Hm

mix(Td) of the form (3.27).
THEOREM 3.5. Let be given the dimension d ∈ N, m ∈ N0, a d-variate transformation

ψ : (− 1
2 ,

1
2 )d → Rd as defined in (3.4) with the d-variate density function %(y) =

∏d
j=1 %j(yj)

of ψ as in (3.3), a non-negative product weight function ω : Rd → [0,∞) as in (3.10), a mul-
tivariate function h ∈ L2(Rd, ω) ∩Hm

mix(Rd), and the corresponding transformed functions
f of the form (3.27).

If for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0, ‖m‖`∞ ≤ m, and all j` = 0, . . . ,m,

` = 1, . . . , d, we have

∂j` [%] (y`) ∈ C0(R), ∂j` [ψ] (x`) ∈ C((−1/2, 1/2))(3.28)

and max
j`=0,...,m`

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)

<∞,

then f ∈ Hm
mix(Td).

Proof. For h ∈ L2(Rd, ω) ∩Hm
mix(Rd) with m ∈ N0 and a transformation ψ as defined

in (3.4), we consider the function f given in (3.27). In order to prove that f ∈ Hm
mix(Td), we

have to show that for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0 with ‖m‖`∞ ≤ m, we

have ‖Dm[f ](x)‖L2(Td) <∞.
Let m = (m1, . . . ,md)

> ∈ Nd0 be any multi-index with ‖m‖`∞ ≤ m. For a multivariate
transformed function of the form (3.27) we have

‖Dm[f ](x)‖L2(Td) =

∫
Td

∣∣∣∣∣Dm

[
(h ◦ ψ)

d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x)

∣∣∣∣∣
2

dx

 1
2

.(3.29)
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The product weight function in the transformed function f in (3.27) yields

Dm

[
(h ◦ ψ)

d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x)

= ∂md

[
. . . ∂m2

[
∂m1

[
(h ◦ ψ)

d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x1)

]
(x2) . . .

]
(xd).(3.30)

By applying the Leibniz formula as in (3.18) we obtain, for all ` = 1, . . . , d,

∂m`

[
(h ◦ ψ)

d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x`)

=

m∑̀
j`=0

(
m`

j`

)
∂j` [h ◦ ψ](x`) ∂

m`−j`

[
d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x`),(3.31)

and in total we rewrite the expression in (3.30) as

Dm

[
(h ◦ ψ)

d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x)(3.32)

=

m1∑
j1=0

(
m1

j1

)
. . .

md∑
jd=0

(
md

jd

)
D(j1,...,jd)[h ◦ ψ](x)

×D(m1−j1,...,md−jd)

[
d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x).

Next, we apply the Faá di Bruno formula (3.20) to each univariate jk-th derivative of h ◦ ψ
in (3.31) so that for ` = 1, . . . , d we have

∂j` [h ◦ ψ](x) =


j∑̀
i`=1

∂i` [h](ψ(x))Bj`,i`(ψ
′
`(x`), . . . , ψ

(j`−i`+1)
` (x`)) j` ∈ N,

h(ψ(x)) j` = 0,

(3.33)

i.e., B0,i`(ψ
′
`(x`), ψ

′′
` (x`), . . . , ψ

(j`−i`+1)
` (x`)) = 1.

We combine the norm ‖Dm[f ](x)‖L2(Td) in (3.29) with the expression resulting from
applying the Leibniz formula to Dm[f ] in (3.32) and the subsequent application of the Faá di
Bruno formula in (3.33). Then we estimate

‖Dm[f ](x)‖L2(Td) ≤
m1,...,md∑

j1=0,...,jd=0

d∏
`=1

(
m`

j`

) j1,...,jd∑
i1=1,...,id=1

(∫
Td
|D(i1,...,id)[h](ψ(x))|2

(3.34)

×
d∏
`=1

|Bj`,i`(ψ′`(x`), . . . , ψ
(j`−i`+1)
` (x`))|2

×

∣∣∣∣∣D(m1−j1,...,md−jd)

[
d∏
k=1

√
(ωk ◦ ψk)ψ′k

]
(x)

∣∣∣∣∣
2

dx

) 1
2

.
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In the multivariate integral appearing in (3.34) we bound each coordinate separately with the
univariate arguments of the previous proof by fixing all but one coordinate one after another.
Recalling the arguments in (3.23), if all appearing derivatives of ψ` are in C(−1/2, 1/2) and
the corresponding derivatives of the density %` are in C0(R), then for all Bell polynomials
Bj`,i` with j` ≥ 1 appearing in (3.33) and (3.34), there is some constant C > 0 so that we
can estimate

|Bj`,i`(ψ′`(x`), ψ′′` (x`), . . . , ψ
(j`−i`+1)
` (x`))| ≤ C|ψ′`(x`)|2j`−1.

Analogously to (3.24) and (3.25), for each ` = 1, . . . , d, we have to separate the summand
for j` = 0 from the summands corresponding to j` = 1, . . . , d. Starting with ` = 1 we
bound (3.34) as in (3.26) after inserting the productive one 1 = ψ′1(x1) 1

ψ′1(x1) , so that

‖Dm[f ](x)‖L2(Td)

≤ C1

(
m1

dm1

2 e

)
max

j1=0,...,m1

∥∥∥∥∂m1−j1
[√

(ω1 ◦ ψ1)ψ′1

]
(x1)ψ′1(x1)max(− 1

2 ,2j1−
3
2 )

∥∥∥∥
L∞(T)

×
m2,...,md∑

j2=0,...,jd=0

d∏
`=2

(
m`

j`

) j2,...,jd∑
i2=1,...,id=1

(∫
Td−1∫

T
|D(i1,...,id)[h](ψ1(x1), . . . , ψd(xd))|2ψ′1(x1) dx1

×
d∏
`=2

|Bj`,i`(ψ′`(x`), . . . , ψ
(j`−i`+1)
` (x`))|2

×

∣∣∣∣∣D(m2−j2,...,md−jd)

[
d∏
k=2

√
(ωk ◦ ψk)ψ′k

]
(x2, . . . , xd)

∣∣∣∣∣
2

d(x2, . . . , xd)

) 1
2

.

After repeating this process for ` = 2, . . . , d and inserting the inverse transformations
x` = ψ−1

` (y`) for all ` = 1, . . . , d, we end up with the estimate

‖Dm[f ](x)‖L2(Td)

≤
d∏
`=1

C`

(
m`

dm`2 e

)
max

j`=0,...,m`

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)

×
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑
i1=1,...,id=1

(∫
Td
|D(i1,...,id)[h](ψ1(x1), . . . , ψd(xd))|2

d∏
`=1

ψ′`(x`) dx

) 1
2

≤ C
d∏
`=1

max
j`=0,...,m`

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)

×
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑
i1=1,...,id=1

(∫
Rd
|D(i1,...,id)[h](y1, . . . , yd)|2 dy

) 1
2

≤ C
d∏
`=1

max
j`=0,...,m`

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)
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×
m1,...,md∑

j1=0,...,jd=0

‖h‖Hjmix(Rd),

with j = max(j1, . . . , jd) in the last inequality.
Since the previous estimate is valid for all multi-indices m = (m1, . . . ,md)

> ∈ Nd0 with
‖m‖`∞ ≤ m, we finally obtain the bound

‖f‖Hmmix(Td)

=

 ∑
‖m‖`∞≤m

‖Dm[f ](x)‖2L2(Td)

 1
2

=

(
m,...,m∑

m1=0,...,md=0

‖Dm[f ](x)‖2L2(Td)

) 1
2

≤ C
d∏
`=1

max
m`=0,...,m(
max

j`=0,...,m`

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)

)
× (m+ 1)d‖h‖Hmmix(Rd).

3.5. Approximation of transformed functions. We establish two specific approxima-
tion error bounds for functions defined on Rd based on the approximation error bounds on the
torus Td that we recalled in Theorems 2.2 and 2.3. The corresponding proofs rely heavily on
the previously introduced sufficient conditions in Theorem 3.5 that describe when Sobolev
functions h ∈ L2(Rd, ω) ∩Hm

mix(Rd) with a multivariate weight function ω : Rd → [0,∞)
as given in (3.10) can be transformed into Sobolev functions of dominated mixed smoothness
on Td of the form (3.27) by multivariate transformations ψ : (− 1

2 ,
1
2 )d → Rd as in (3.4).

At first, we fix some notation for certain multivariate objects. Based on the definition of a
rank-1 lattice Λ(z,M) in (2.5), we define a transformed rank-1 lattice as

Λψ(z,M) := {yj := ψ(xj) : xj ∈ Λ(z,M), j = 0, . . . ,M − 1} .(3.35)

Accordingly, we denote the transformed reconstructing rank-1 lattice by Λψ(z,M, I).
Besides the weight function ω, also the density % of the transformation ψ is of product

form as defined in (3.3), i.e., it is the product of univariate densities %j(yj), j = 1, . . . , d.
Hence, based on the functions ϕk in (3.11) this product form extends to

ϕk(y) :=

d∏
j=1

ϕkj (yj).(3.36)

Similar to (3.12), the multivariate weighted L2(Rd, ω) scalar product reads as

(h1, h2)L2(Rd,ω) :=

∫
Rd

d∏
j=1

ωj(yj)h1(y)h2(y) dy,

and similar to (3.13), the multivariate Fourier coefficients are naturally given with respect to
this scalar product as

ĥk = (h, ϕk)L2(Rd,ω).(3.37)
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As before in (3.14), we define the multivariate Fourier partial sum as

SIh(y) :=
∑
k∈I

ĥk ϕk(y).

Let f ∈ L2(Td). Then for each I ⊂ Zd the system {ϕk}k∈I spans the space of transformed
trigonometric polynomials

ΠI,ψ := span

{√
%(◦)
ω(◦)

e2πik·ψ−1(◦) : k ∈ I

}
.(3.38)

Similar to (2.7), for transformed trigonometric polynomials h ∈ ΠI,ψ, transformed lattice
nodes yj ∈ Λψ(z,M, I), and k ∈ I , we have the exact integration property of the form

ĥk =

∫
Rd
h(y)

√
%(y)ω(y) e−2πik·ψ−1(y) dy =

∫
Td
f(x) e−2πik·x dx

=
1

M

M−1∑
j=0

f(xj) e−2πik·xj =
1

M

M−1∑
j=0

h(yj)

√
%(yj)

ω(yj)
e−2πik·ψ−1(yj) = ĥΛ

k .(3.39)

Generally, the multivariate approximated Fourier coefficients of the form

ĥΛ
k =

1

M

M−1∑
j=0

h(yj)

√
%(yj)

ω(yj)
e−2πik·ψ−1(yj) =

1

M

M−1∑
j=0

h(yj)ϕk(yj)

approximate the multivariate Fourier coefficients ĥk. Finally, the multivariate version of the
approximated Fourier partial sum is given by

SΛ
I h(x) :=

∑
k∈I

ĥΛ
k ϕk(y).(3.40)

Similarly to theHβ(Td)-norm in (1.2), we define a norm of weighted Fourier coefficients ĥk
of the form

‖h‖2Hm(Rd) :=
∑
k∈Zd

ωhc(k)2m|ĥk|2.

With these rewritten objects we transfer the approximation error bounds in Theorems 2.2
and 2.3 for functions defined on the torus to Rd.

3.5.1. L∞-approximation error. Based on the L∞(Td)-approximation error bound
(2.8) and the conditions proposed in Theorem 3.5, we prove a similar upper bound for the
approximation error ‖h− SΛ

IdN
h‖ in terms of a weighted L∞-norm on Rd.

THEOREM 3.6. Let be given d ∈ N, m ∈ N0, a hyperbolic cross IdN with N ≥ 2d+1,
and a reconstructing rank-1 lattice Λ(z,M, IdN ). Let ψ be a multivariate transformation as
defined in (3.4) with its corresponding density function % in product form (3.3). Let ω be a
weight function as in (3.10), and consider a multivariate function h ∈ L2(Rd, ω) ∩Hm

mix(Rd).
Let λ > 1

2 . Furthermore, for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0 with ‖m‖`∞ ≤ m

and all j` = 0, . . . ,m, ` = 1, . . . , d, we assume

∂j` [%] (y`) ∈ C0(R), ∂j` [ψ] (x`) ∈ C((−1/2, 1/2))
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and

max
j`=0,...,m`

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)

<∞.

Then there is an approximation error estimate of the form∥∥∥h− SΛ
IdN
h
∥∥∥
L∞

(
Rd,
√

ω
%

) . N−m+λ‖h‖Hm(Rd).

Proof. Let m ∈ N, d ∈ N, and let h ∈ L2(Rd, ω) ∩Hm
mix(Rd). By assumption, the

criteria in Theorem 3.5 are fulfilled, and thus the transformed function f of the form (3.27) is
in Hm

mix(Td). This f is also inHm(Td) due to the norm equivalence (2.2), and furthermore, it
has a continuous representative because of the inclusion Hm(Td) ↪→ Am−λ(Td) ↪→ C(Td)
with λ > 1

2 as in (2.3). Hence, for f ∈ Am−λ(Td) ∩ C(Td) we have the approximation error
bound

‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−m+λ‖f‖Am−λ(Td)(3.41)

as stated in Theorem 2.2.
With the inverse transformation x = ψ−1(y) we have

ĥk = (h, ϕk)L2(Rd,ω) = (f, e2πik·◦)L2(Td) = f̂k

and

‖h‖2Hm(Rd) =
∑
k∈Zd

ωhc(k)2m|ĥk|2 =
∑
k∈Zd

ωhc(k)2m|f̂k|2 = ‖f‖2Hm(Td),(3.42)

as well as

‖h− SIdNh‖L∞
(
Rd,
√

ω
%

) = ess supy∈Rd

∣∣∣∣∣∣
√
ω(y)

%(y)

h(y)−
∑
k∈IdN

ĥk ϕk(y)

∣∣∣∣∣∣
= ess supy∈Rd

∣∣∣∣∣∣h(y)

√
ω(y)

%(y)
−
∑
k∈IdN

ĥk e2πik·ψ−1(y)

∣∣∣∣∣∣
= ess supx∈Td

∣∣∣∣∣∣h(ψ(x))
√
ω(ψ(x))ψ′(x)−

∑
k∈IdN

ĥk e2πik·x

∣∣∣∣∣∣
= ‖f − SIdN f‖L∞(Td)

and

‖h− SΛ
IdN
h‖

L∞

(
Rd,
√

ω
%

) = ‖f − SΛ
IdN
f‖L∞(Td).(3.43)

In total, by combining (3.43), (3.41), (2.4), and (3.42), we have shown that for a function
f ∈ Hm(Td) ∩ C(Td), the approximation error can be bounded by

‖h− SΛ
IdN
h‖

L∞

(
Rd,
√

ω
%

) = ‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−m+λ‖f‖Am−λ(Td)

≤ 2Cd,λN
−m+λ‖f‖Hm(Td) = 2Cd,λN

−m+λ‖h‖Hm(Rd) <∞

with λ > 1
2 and some constant Cd,λ > 1.
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3.5.2. L2-approximation error. Similarly, based on the L2(Td)-approximation error
bound (2.9) and the conditions proposed in Theorem 3.5, we prove an upper bound for the
approximation error ‖h− SΛ

IdN
h‖ in terms of a weighted L2-norm on Rd.

THEOREM 3.7. Let be given d ∈ N, m ∈ N0, a hyperbolic cross IdN with N ≥ 2d+1, and
a reconstructing rank-1 lattice Λ(z,M, IdN ). Let ψ be a multivariate transformation as in (3.4)
and ω be a multivariate weight function as in (3.10). We consider a multivariate function
h ∈ L2(Rd, ω) ∩Hm

mix(Rd). Furthermore, for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0

with ‖m‖`∞ ≤ m and all j` = 0, . . . ,m, ` = 1, . . . , d, we assume

∂j` [%] (y`) ∈ C0(R), ∂j` [ψ] (x`) ∈ C((−1/2, 1/2))

and

max
j`=0,...,mj

∥∥∥∥∂m`−j` [√(ω` ◦ ψ`)ψ′`

]
(x`)ψ

′
`(x`)

max(− 1
2 ,2j`−

3
2 )

∥∥∥∥
L∞(T)

<∞.

Then there is an approximation error estimate of the form

‖h− SΛ
IdN
h‖L2(Rd,ω) . N−m(logN)(d−1)/2‖h‖Hm(Rd).

Proof. Let m ∈ N, d ∈ N, and let h ∈ L2(Rd, ω) ∩Hm
mix(Rd). By assumption, the

criteria in Theorem 3.5 are fulfilled, and thus the transformed function f of the form (3.27) is
in Hm(Td). This f is also inHm(Td) due to the norm equivalence (2.2), and it furthermore
has a continuous representative because of the inclusion Hm(Td) ↪→ C(Td) in (2.3). For
f ∈ Hm(Td) ∩ C(Td), Theorem 2.3 yields the approximation error bound of the form

‖f − SΛ
IdN
f‖L2(Td) ≤ Cd,βN−β(logN)(d−1)/2‖f‖Hβ(Td)(3.44)

with some constant Cd,β := C(d, β) > 0. With the inverse transformation x = ψ−1(y), we
have

ĥk = (h, ϕk)L2(Rd,ω) = (f, e2πik·◦)L2(Td) = f̂k,

and

‖h‖2Hm(Rd) =
∑
k∈Zd

ωhc(k)2m|ĥk|2 =
∑
k∈Zd

ωhc(k)2m|f̂k|2 = ‖f‖2Hm(Td)

as in (3.42), as well as

‖h− SIdNh‖
2
L2(Rd,ω) =

∫
Rd

∣∣∣∣∣∣h(y)−
∑
k∈IdN

ĥk ϕk(y)

∣∣∣∣∣∣
2

ω(y) dy = ‖f − SIdN f‖
2
L2(Td)

(3.45)

and

‖h− SΛ
IdN
h‖L2(Rd,ω) = ‖f − SΛ

IdN
f‖L2(Td).

In total, by combining (3.45), (3.44), and (3.42), we have shown that for f ∈Hm(Td)∩C(Td),
the approximation error can be bounded by

‖h− SΛ
IdN
h‖

L2

(
Rd,ω

) = ‖f − SΛ
IdN
f‖L2(Td) . Cd,βN

−β(logN)(d−1)/2‖f‖Hβ(Td)

= Cd,βN
−β(logN)(d−1)/2‖h‖Hm(Rd) <∞

with some constant Cd,β > 0.
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4. Algorithms. In this chapter we start including the parameters η,µ ∈ Rd in families
of multivariate parameterized transformations ψ(◦,η) as in (3.4), in families of multivariate
parameterized weight functions ω(◦,µ) as in (3.10), and in all related functions and objects.

We adapt the algorithms described in [8, Algorithm 3.1 and 3.2] that are based on
one-dimensional fast Fourier transforms (FFTs). They are used for the fast reconstruction
of approximated Fourier coefficients ĥΛ

k and the evaluation of a transformed multivariate
trigonometric polynomials, in particular, in the approximated Fourier series SΛ

I h both given
in (3.40). We introduce matrix-vector products of the form

h = Aĥ and ĥ = M−1A∗h

with η,µ ∈ Rd,

h :=

(
h(yj)

√
ω(yj ,µ)

%(yj ,η)

)
j=0,...,M−1

for yj ∈ Λψ(◦,η)(z,M), ĥ := (ĥk)k∈IN ,

and the transformed Fourier matrices A and A∗ given by

A :=
(

e2πik·ψ−1(yj ,η)
)
yj∈Λψ(◦,η)(z,M),k∈I

∈ CM×|I|,

A∗ :=
(

e−2πik·ψ−1(yj ,η)
)
k∈I,yj∈Λψ(◦,η)(z,M)

∈ C|I|×M .

We incorporate the previously described idea that the functions h ∈ L2(Rd, ω) ∩Hm
mix(Rd)

are transformed into functions f on the torus Td of the form (3.27) via transformations
xj = ψ(yj ,η) so that we have samples

h(yj)

√
ω(yj ,µ)

%(yj ,η)
= h(ψ(xj ,η))

√
ω(ψ(xj ,η),µ)ψ′(xj ,η) = f(xj ,η,µ) = f(xj),

depending on the particular choices for η,µ ∈ Rd.
REMARK 4.1. We identify Td with different cubes. On the one hand, when defining

rank-1 lattices Λ(z,M) in (2.5), we identify it with [0, 1)d. On the other hand, in order to
apply the transformations ψ, we need to consider Td ' [− 1

2 ,
1
2 )d, which we achieve by

reassigning all lattice points xj ∈ Λ(z,M) via

xj 7→
((

xj +
1

2

)
mod 1

)
− 1

2
,

for all j = 0, . . . ,M − 1.
We already have showcased in Figure 3.1 that the definition of ψ in (3.1) allows a

range of functions with different slopes, which manifests in algebraic or exponential density
functions %. In Figure 4.1 we highlight these differences once more with transformed rank-1
lattices Λψ(◦,η)(z,M) as defined in (3.35). We consider the two-dimensional rank-1 lattice
Λ(z,M) generated by z = (1, 3)> and M = 31. We compare the transformed lattices for
the algebraic transformation and the error function transformation of the form (3.5) in their
two-dimensional versions given by

ψ(x,η) =

(
2η1x1√
1− 4x2

1

,
2η2x2√
1− 4x2

2

)>
, ψ(x,η) =

(
η1erf−1(2x1), η2erf−1(2x2)

)>
.

(4.1)
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−4
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6

Λψ(◦,1)(z,M) with ψ(x,1) =

(
2x1√
1−4x21

, 2x2√
1−4x22

)>
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−4

−2

0

2

4

6

Λψ(◦,1)(z,M) with ψ(x,1) =
(
erf−1(2x1), erf−1(2x2)

)>

FIG. 4.1. A two-dimensional lattice Λ(z,M) with z = (1, 3)>,M = 31 on the left and the resulting trans-
formed lattice Λψ(◦,η)(z,M) for the algebraic transformation in the center and for the error function transformation
on the right, as given in (4.1), and both used with η = 1.

Algorithm 4.1 Evaluation at rank-1 lattice.
Input: M ∈ N lattice size of Λψ(◦,η)(z,M)

z ∈ Zd generating vector of Λψ(◦,η)(z,M)
I ⊂ Zd frequency set of finite cardinality

ĥ =
(
ĥk

)
k∈I

Fourier coefficients of h ∈ ΠI,ψ(◦,η)

ĝ = (0)
M−1
l=0

for each k ∈ I do
ĝk·z mod M = ĝk·z mod M + ĥk

end for
h = iFFT_1D(ĝ)
h = Mh

Output: h = Aĥ =
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0
function values of h ∈ ΠI,ψ(◦,η)

For η = (η1, η2)> = (1, 1)>, the graphs in the center and on the right-hand side of Figure 4.1
reveal that the algebraic transformation causes a wider spread of the lattice nodes close to the
center, whereas the slope of the error function transformation increases drastically towards the
boundary points, which we only notice for larger values M and much finer lattices with more
nodes closer to the boundary of the cube (− 1

2 ,
1
2 )2.

4.1. Evaluation of transformed multivariate trigonometric polynomials. Given a
frequency set I ⊂ Zd of finite cardinality |I| <∞, we consider the multivariate trigonometric
polynomial h ∈ ΠI,ψ(◦,η) as in (3.38) with Fourier coefficients ĥk. The evaluation of h at
lattice points yj ∈ Λψ(◦,η)(z,M) simplifies to

h(yj)

√
ω(yj ,µ)

%(yj ,η)
=
∑
k∈I

ĥk e2πik·ψ−1(yj ,η)

=

M−1∑
`=0

 ∑
k∈I,

k·z≡` ( mod M)

ĥk

 e2πi` jM =

M−1∑
`=0

ĝ` e2πi` jM ,
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Algorithm 4.2 Reconstruction from sampling values along a transformed reconstructing rank-1
lattice.

Input: I ⊂ Zd frequency set of finite cardinality
M ∈ N lattice size of Λψ(◦,η)(z,M, I)
z ∈ Zd generating vector of Λψ(◦,η)(z,M, I)

h =
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0
function values of h ∈ ΠI,ψ(◦,η)

ĝ = FFT_1D(h)
for each k ∈ I do
ĥk = 1

M ĝk·z mod M

end for
Output: ĥ = M−1A∗h =

(
ĥk

)
k∈I

Fourier coefficients supported on I

with

ĝ` =
∑
k∈I,

k·z≡` ( mod M)

ĥk.

In total, the evaluation of such a function is realized by simply precomputing (ĝ`)
M−1
`=0 and

applying a one-dimensional inverse fast Fourier transform; see Algorithm 4.1.

4.2. Reconstruction of transformed multivariate trigonometric polynomials. For
the reconstruction of a multivariate trigonometric polynomial h ∈ ΠI,ψ(◦,η) as in (3.38)
from lattice points yj ∈ Λψ(◦,η)(z,M, I), we utilize the exact integration property (3.39) and
the fact that we have

M−1∑
j=0

(
e2πi

(k−h)·z
M

)j
=

{
M for k · z ≡ k · h (modM),

0 otherwise,
(4.2)

and thus, A∗A = MI with I ∈ C|I|×|I| being the identity matrix. For fixed parameters
η,µ ∈ Rd, we have input sample points of the form

h(yj)

√
ω(yj ,µ)

%(yj ,η)
= h(ψ(xj ,η))

√
ω(ψ(xj ,η),µ)ψ′(xj ,η) = f(xj ,η,µ) = f(xj).

For the reconstruction of the Fourier coefficients ĥk we use a single one-dimensional fast
Fourier transform. The entries of the resulting vector (ĝ`)

M−1
`=0 are renumbered by means of

the unique inverse mapping k 7→ k · z mod M ; see Algorithm 4.2.

4.3. Discrete approximation error. In order to use Algorithms 4.1 and 4.2 to illustrate
the proposed error bounds of Theorems 3.6 and 3.7, we sample the approximated Fourier
partial sum SΛ

I h in order to discretize and thus approximate the error

‖h− SΛ
I h‖L∞

(
Rd,
√
ω(◦,µ)
%(◦,η)

),
which is equal to ‖f −SΛ

I f‖L∞(Td) as shown in the proof of Theorem 3.6. Based on the given
sample data in the vector

h =

(
h(yj)

√
ω(yj ,µ)

%(yj ,η)

)M−1

j=0
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with lattice points yj ∈ Λψ(◦,η)(z,M, I), we apply Algorithm 4.2 yielding a vector of ap-
proximated Fourier coefficients via ĥ = M−1A∗h, which we use as input for Algorithm 4.1.
After applying both algorithms we have computed the vector

happrox := M−1AA∗h =

(√
ω(yj ,µ)

%(yj ,η)
SΛ
IdN
h(yj)

)M−1

j=0

.

In [10, Corollary 1] it was shown that under mild assumptions, for each frequency
set I ⊂ Zd that induces a reconstructing rank-1 lattice, there is an M ∈ N such that
|I| ≤M . |I|2. Furthermore, in (4.2) we already observed that for a reconstruction rank-1
lattice Λψ(◦,η)(z,M, I), we have A∗A = MI with I ∈ C|I|×|I| being the identity matrix.
However, AA∗ ∈ CM×M is generally not an identity matrix. Hence, there is a gap between
the initially given values h and the resulting vector happrox which we quantify with the discrete
approximation error

‖h− happrox‖`∞ := max
j=0,...,M−1

∣∣∣∣∣
√
ω(yj ,µ)

%(yj ,η)

(
h(yj)− SΛ

IdN
h(yj)

)∣∣∣∣∣ .(4.3)

But it is important to note that we only discuss this particular discretization approach, which
is exclusively sampling on the rank-1 lattice nodes and does not measure the quality of the
approximation at any point outside the rank-1 lattice. Nevertheless, for hyperbolic crosses IdN
we still have the upper bound

‖h− happrox‖`∞ ≤ ‖h− SΛ
IdN
h‖

L∞

(
Rd,
√
ω(◦,µ)
%(◦,η)

)(4.4)

= ‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−m‖h‖Hm(Rd)

for appropriately chosen parameters η,µ ∈ Rd as shown in Theorem 3.6. Hence, the
theoretical results predict a certain decay rate of the discretized approximation error for
increasing N ∈ N with fixed m ∈ N and suitably chosen parameter η and µ.

On the other hand, for the L2-approximation error we lack a similar discretization ap-
proach. However, by Theorem 3.7 we know that for fixed m ∈ N and suitably chosen
parameters η and µ, the error ‖h− SΛ

IdN
h‖L2(Rd,ω) = ‖f − SΛ

IdN
f‖L2(Td) is bounded above

by N−m(logN)(d−1)/2‖f‖Hm(Td). By Parseval’s equation we have

‖f − SΛ
IdN
f‖2L2(Td) =

∑
k∈Zd

|f̂k − f̂Λ
k |2 =

∑
k∈Zd\IdN

|f̂k|2 +
∑
k∈IdN

|f̂k − f̂Λ
k |2

= ‖f‖2L2(Td) +
∑
k∈IdN

(
|f̂k − f̂Λ

k |2 − |f̂k|2
)
.

Hence, we can evaluate the L2-approximation error if we use Algorithm 4.2 to reconstruct the
approximated Fourier coefficients f̂Λ

k and if it is possible to calculate the Fourier coefficients
f̂k for all k ∈ IdN . Later on, we present an example where the Fourier coefficients f̂k can
be computed for all k ∈ Zd. Generally this is not possible, so that we have to resort on the
theoretical approach based on norm equivalences presented earlier in this paper in order to
obtain the information if the Fourier coefficients f̂k are square summable.
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5. Examples. Based on the algebraic transformation (3.6) and the error function transfor-
mations (3.8) we discuss certain choices of test functions h and weight functions ω for which
the proposed smoothness conditions (3.28) in Theorem 3.5 are fulfilled. In both cases we
proceed similarly: We fix a family of multivariate weight functions ω(◦,µ),µ ∈ Rd, as well
as the test function h in L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd). Then we fix a family of multivariate
transformations ψ(◦,η),η ∈ Rd, of the form (3.5). Afterwards we calculate lower bounds
for µ and η such that f(x,η,µ) := h(ψ(x,η))

√
ω(ψ(x,η),µ)ψ′(x,η) is in Hm

mix(Td) for
Sobolev smoothness orders m = 0, 1, 2, 3. Finally, we switch to dimension d = 2, and, based
on the calculated parameter bounds, we use Algorithms 4.1 and 4.2 for numerical tests of
the L∞-approximation error bound proposed in Theorems 3.6 and discuss the possibility to
evaluate the Fourier coefficients ĥk.

Throughout this section we repeatedly specify parameter vectors that have the same
number in each entry, for which we recall the short notation of just using a single bold number,
e.g., 1 = (1, . . . , 1)> that appeared earlier in the definition of rank-1 lattices Λ(z,M) in (2.5).

5.1. Algebraic transformation. The test function is of the form

h(y) =
1

1 + ‖y‖2`2
(5.1)

with ‖y‖`2 :=
√
y2

1 + . . .+ y2
d for y ∈ Rd. According to [1, pp. 363–364], for d = 1 this

function is rather difficult to approximate by classical approximation methods. We fix the
algebraic weight function (3.15) in its multivariate version of the form

ω(y,µ) :=

d∏
j=1

(
1

1 + y2
j

)µj
(5.2)

with µ=(µ1, . . . , µd)
> ∈ Rd and the algebraic transformation ψ(x,η)=((ψj(xj , ηj))

d
j=1)>

in the form (3.5) with x ∈ (− 1
2 ,

1
2 )d and the parameter η = (η1, . . . , ηd)

> ∈ Rd. The univari-
ate components of the transformation are given by

ψj(xj , ηj) =
2ηjxj

(1− 4x2
j )

1
2

, ψ′j(xj , ηj) =
2ηj

(1− 4x2
j )

3
2

,(5.3)

ψ−1
j (yj , ηj) =

yj

2(η2
j + y2

j )
1
2

, %j(yj , ηj) =
1

2(η2
j + y2

j )
3
2

.

For ηj = 1 we have stated the definition of ψj(◦, 1) earlier in (3.6). For the resulting
weighted Hilbert space L2(Rd, ω(◦,µ)), we have a system {ϕk}k∈Zd of product functions
given in (3.36) with univariate components (ϕkj )

d
j=1 as in (3.11) of the form

ϕkj (yj , ηj , µj) :=
1√
2

(1 + y2
j )

µj
2 (η2

j + y2
j )−

3
4 eπikjyj(η

2
j+y2j )−

1
2 ,

which are orthogonal with respect to the weighted scalar product

(h1, h2)L2(Rd,ω(◦,µ)) = π−
d
2

∫
Rd

d∏
j=1

(1 + y2
j )−µj h1(y)h2(y) dy.
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The Fourier coefficients ĥk of an arbitrary function h ∈ L2(Rd, ω(◦,µ)) are of the form

ĥk := (h, ϕk)L2(Rd,ω(◦,µ))

=

∫
Rd
h(y)ϕk(y,η,µ)ω(y,µ) dy

= 2−
d
2

∫
Rd
h(y)

d∏
j=1

(1 + y2
j )−

µj
2 (η2

j + y2
j )−

3
4 e−πikjyj(η

2
j+y2j )−

1
2 dy.

The test function h in (5.1) combined with the weight function (5.2) and the transforma-
tions (5.3) lead to transformed functions f in the sense of (3.27) of the form

f(x,η,µ) = h(ψ1(x1, η1), . . . , ψd(xd, ηd))

d∏
j=1

√
ωj(ψj(xj , ηj), µj)ψ′j(xj , ηj)

=

1 +

d∑
j=1

4η2
jx

2
j

1− 4x2
j

−1
d∏
j=1

√√√√( 1− 4x2
j

1− 4(1− η2
j )x2

j

)µj
2ηj

(
1− 4x2

j

)− 3
2 .(5.4)

In Figure 5.1 we provide a side-by-side comparison of the graphs of these transformed
functions d = 2 for fixed µ = (4, 4)> with varying η = (η1, η2) ∈ R2, 1/2 ≤ η1, η2 ≤ 2,
and for fixed η = (1, 1)> with varying µ = (µ1, µ2)>, 0 ≤ µ1, µ2 ≤ 10.

We proceed to determine the values η,µ ∈ R for which f(◦,η,µ) in (5.4) is an element
of Hm

mix(Td) by investigating the conditions (3.28) in Theorem 3.5. First of all, we observe
that for η1, . . . , ηd > 0, the components ψ1, . . . , ψd of the function ψ(◦,η) in (5.3) are
transformations in the sense of (3.1) by being increasing, continuously differentiable, and
invertible functions. Furthermore, for all ` = 1, . . . , d, it is easy to verify that the first three
derivatives of all ψj(◦, ηj) are in fact continuous on (− 1

2 ,
1
2 ) for ηj > 0 and that the first

three derivatives of %j(◦, ηj) are in C0(R) for all non-zero ηj ∈ R. Finally, we verify the
L∞-conditions (3.28) in Theorem 3.5 for m = 0, 1, 2, 3. We suppose that for ` = 1, . . . , d
we have m = m`, and we need to inspect if the appearing L∞(T)-norms are finite for all
j` = 0, . . . ,m:

• Let m = 0. Then we only have a condition for the norm∥∥∥∥√ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`) (ψ′`(x`, η`))
− 1

2

∥∥∥∥
L∞(T)

=

∥∥∥∥( 1− 4x2
`

1− 4(1− η2
` )x2

`

)µ`∥∥∥∥
L∞(T)

,

which is finite for µ` ≥ 0.
• Let m = 1. We have to consider two conditions. For j` = 0 we have∥∥∥∥ ∂

∂x`

[√
ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`)

]
ψ′`(x`, η`)

− 1
2

∥∥∥∥
L∞(T)

=

∥∥∥∥∥x`
(

(1− 4x2
`)

1 + 4(η2
` − 1)x2

`

)µ`
2 −1

(−(µ2
` + 3)µ` + 6(1 + (η2

` − 1)x2
`))

(1 + 4(η2
` − 1)x2

`)
2

∥∥∥∥∥
L∞(T)

,

and this is finite if µ` > 2.
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FIG. 5.1. Plots of the two-dimensional transformed function f(◦,η,µ) for various combinations of the
parameters µ and η with an algebraic weight function ω(◦,µ) in (5.2) and the algebraic transformation ψ(◦,η)
in (5.3). Horizontally, µ = (4, 4)> is fixed, vertically η = (1, 1)> is fixed. The individual univariate functions
f((x1, 0),η,µ), f((0, x2),η,µ) are shown with dashed lines.

For j` = 1 we have∥∥∥∥√ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`) (ψ′`(x`, η`))
1
2

∥∥∥∥
L∞(T)

=

∥∥∥∥∥2η`

(
1− 4x2

`

1 + 4(η2
` − 1)x2

`

)µ`
2

(1− 4x2
`)
− 3

2

∥∥∥∥∥
L∞(T)

,

and this is finite for µ` > 3.
• Likewise, after verifying the individual conditions, we conclude that for m = 2 we

have a lower bound of µ` > 9 and for m = 3 of µ` > 15.
In total, f is at least an L2(Td)-function for all µ1, . . . , µd ≥ 0, it is at least in H1

mix(Td) for
µ1, . . . , µd > 3, at least in H2

mix(Td) for µ1, . . . , µd > 9, and at least an H2
mix(Td)-function

for µ1, . . . , µd > 15. Apparently, the parameters η1, . . . , ηd in the transformation ψ(◦,η) do
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FIG. 5.2. Comparison of the discrete `∞-approximation error ‖h−happrox‖`∞/‖h‖`∞ of the two-dimensional
test function (5.1) in combination with the algebraic transformation ψ(◦,η) (5.3) and the algebraic weight function
ω(◦,µ) (5.2) in their two-dimensional versions with fixed η = 1 and µ ∈ {0,4,10,16} .

not have an impact on the Sobolev smoothness of f(◦,η,µ) as in (5.4) according to this
specific set of conditions. In other words, if η is able to control the smoothness of f , then
we can not recognize it with these conditions—at least for this particular combination of the
transformation ψ and the weight function ω.

5.1.1. Discussion of the L∞-approximation error. Next we discuss the application
of the multivariate L∞(Rd)-approximation error bound in Theorem 3.6 for d = 2 with the
two-dimensional test function h in (5.1), the weight function (5.2), the transformations (5.3),
and the resulting transformed functions f given in (5.4).

Let a reconstructing rank-1 lattice Λ(z,M, I2
N ) with N ≥ 8 be given. We have already

evaluated the sufficient conditions proposed in Theorem 3.5, yielding lower bounds for µ ≥ 0
such that f is at least of Sobolev smoothness order m = 0, 1, 2, 3, i.e., f ∈ Hm

mix(T2),
and thus f ∈ Hm(T2). We fix λ = 1, and for m ∈ N0, we choose µ,η ∈ R2 such that
f ∈ Hm+1(T2) ↪→ Am(T2). As outlined in (4.4) we expect the discrete approximation
error (4.3) to be bounded by

‖h− happrox‖`∞ ≤ ‖f − SΛ
I2N
f‖L∞(T2) .


N0 for µj ≥ 0,

N−1 for µj > 3,

N−2 for µj > 9,

N−3 for µj > 15.

(5.5)

For N = 8, . . . , 80, η = 1, and µ ∈ {0,4,10,16}, we actually observe this behavior for the
relative discrete approximation error ‖h− happrox‖`∞/‖h‖`∞ as seen in Figure 5.2.

5.1.2. Discussion of the L2-approximation error. We switch to dimension d = 1. In
Theorem 3.7 we proved that when f of the form (3.17) is inHm(T) ∩ C(T), we have

‖h− SΛ
I1N
h‖L2(R,ω) = ‖f − SΛ

I1N
f‖L2(T) . N−m.

For one particular special case with explicitly computable Fourier coefficients f̂k, we observe
that their rate of decay is consistent with the theoretical propositions. The conditions of

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

TRANSFORMED RANK-1 LATTICES FOR HIGH-DIMENSIONAL APPROXIMATION 271

Theorem 3.4 yield, for m = 1, 2, 3, that

f ∈


H1(T) for µ > 3,

H2(T) for µ > 9,

H3(T) for µ > 15.

(5.6)

We compare these lower bounds with the specific lower bounds for the chosen h in (5.1).
Fixing η = 1, the transformed function f in (5.4) simplifies to

f(x, 1, µ) = f(x, µ) := (1− 4x2)
1
2 (µ+ 1

2 ).

We then explicitly calculate that∫
T

∣∣∣∣ d

dx
[f ](x, µ)

∣∣∣∣2 dx =

(
µ+

1

2

)2 ∫
T

16x2
∣∣1− 4x2

∣∣µ− 3
2 dx <∞

for µ ≥ 3
2 , as well as∫

T

∣∣∣∣ d2

dx2
[f ](x, µ)

∣∣∣∣2 dx = 4 (2µ+ 1)
2
∫
T

(
1− (4µ− 2)x2

)2 ∣∣1− 4x2
∣∣µ− 7

2 dx <∞

for µ ≥ 7
2 , and so forth, which is summarized for m = 1, 2, 3 as

f ∈


H1(T) for µ ≥ 3

2 ,

H2(T) for µ ≥ 7
2 ,

H3(T) for µ ≥ 11
2 .

(5.7)

Due to the norm equivalence (2.2), we know that the absolute Fourier coefficients |f̂k| of a
function f ∈ Hm

mix(T) decay at least as fast as |k|−m. In our particular example with the above
function f(x, µ) we have a decay twice as fast, which is observed by considering k ∈ Z \ {0}
and calculating that

|f̂k| =
√

2 ·



∫
T
(1− 4x2) e−2πikx dx =

2
√

2

π2|k|2
for µ = 3

2 ,∫
T
(1− 4x2)2 e−2πikx dx =

24
√

2

π4|k|4
for µ = 7

2 ,∫
T
(1− 4x2)3 e−2πikx dx =

48
√

2|π2|k|2 − 15|
π6|k|6

for µ = 11
2 .

The general L∞-parameter bounds in (5.6) look relatively coarse in comparison to the
exact bounds in (5.7). However, generally we can not compute the Fourier coefficients f̂k of a
transformed function f , which makes the conditions proposed in Theorem 3.4 so powerful as
they work independently of the particular choice of h ∈ L2(R, ω) ∩Hm(R) at the cost of not
yielding the most precise lower parameter bounds.

5.2. Error function transformation. In this section we settle for the constant function
h(y) ≡ 1. We could choose h(y) = e−‖y‖

2
`2 or even the algebraic function h(y) = 1

1+‖y‖2`2
in (5.1), but they all have the same problem that we are not able to compute their Fourier
coefficients ĥk. We proceed in the same way as in the previous section with the algebraic
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transformation. We fix the multivariate version of the Gaussian weight function (3.16), reading
as

ω(y,µ) =
1

π
d
2

d∏
j=1

e−µ
2
jy

2
j ,(5.8)

with µ ∈ Rd, as well as the error function transformation ψ(x,η) = ((ψj(xj , ηj))
d
j=1)>

in the form (3.5) with x ∈ (− 1
2 ,

1
2 )d and the parameter η = (η1, . . . , ηd)

> ∈ Rd and its
univariate components given by

ψj(xj , ηj) = ηj erf−1(2xj), ψ′j(xj , ηj) = ηj
√
π e(erf−1(2xj))

2

,(5.9)

ψ−1(yj , ηj) =
1

2
erf

(
yj
ηj

)
, %(yj , ηj) =

1√
πη2

j

e
−
(
yj
ηj

)2

.

For ηj = 1 we have already stated the definition of ψj(◦, 1) in (3.8). For the resulting
weighted Hilbert space L2(Rd, ω(◦,µ)), we have a system {ϕk}k∈Zd of product functions
given in (3.36) with univariate components (ϕkj )

d
j=1 as in (3.11) of the form

ϕkj (yj , ηj , µj) =
1

ηj
e

1
2 (µ2

j− 1

η2
j

)y2j+πikj erf
(
yj
ηj

)
,

which are orthogonal with respect to the weighted scalar product

(h1, h2)L2(Rd,ω(◦,µ)) =
1

π
d
2

∫
Rd

d∏
j=1

e−µ
2
jy

2
j h1(y)h2(y) dy.

The Fourier coefficients f̂k of an arbitrary function h ∈ L2(Rd, ω(◦,µ)) are of the form

ĥk := (h, ϕk)L2(Rd,ω(◦,µ)) =

∫
Rd
h(y)ϕk(y,η,µ)ω(y,µ) dy

=

∫
Rd
h(y)

d∏
j=1

1

ηj
e

1
2 (µ2

j− 1

η2
j

)y2j−πikj erf
(
yj
ηj

)
1√
π

e−µ
2
jy

2
j dy

= π−
d
2

d∏
j=1

1

ηj

∫
Rd
h(y)

d∏
j=1

e
−πikj erf

(
yj
ηj

)
e
− 1

2 (µ2
j+

1

η2
j

)y2j
dy.

The constant test function h(y) ≡ 1 combined with the weight function (5.8) and the transfor-
mations (5.9) lead to transformed functions f in the sense of (3.27) of the form

f(x,η,µ) = h(ψ1(x1, η1), . . . , ψd(xd, ηd))

d∏
j=1

√
ωj(ψj(xj , ηj), µj)ψ′j(xj , ηj)

=

d∏
j=1

η
1
2
j e

1
2 (1−µ2

j η
2
j )erf−1(2xj)

2

.(5.10)

In Figure 5.3 we provide a side-by-side comparison of the graphs of these transformed
functions with d = 1 for fixed µ2 = 3 with varying 1/2 ≤ η2 ≤ 3 and for fixed η = 1 with
varying 1 ≤ µ2 ≤ 10.
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FIG. 5.3. Plots of the univariate transformed function f for various combinations of the parameters µ and η
with a Gaussian weight function ω (5.8) and the error function transformation (5.9). On the left-hand side with fixed
µ2 = 3 and on the right-hand side with fixed η2 = 1.

We proceed to determine the values η,µ ∈ Rd for which f(◦,η,µ) in (5.10) is an
element of Hm

mix(Td) by investigating the conditions (3.28) in Theorem 3.5. First of all, we
observe that for η1, . . . , ηd > 0, the components ψ1, . . . , ψd of the function ψ(◦,η) in (5.9)
are transformations in the sense of (3.1) by being increasing, continuously differentiable, and
invertible functions. Furthermore, for all ` = 1, . . . , d, it is easy to see that its first three
derivatives of all ψj(◦, ηj) are in fact continuous on (− 1

2 ,
1
2 ) for ηj > 0 and that the first

three derivatives of %j(◦, ηj) are in C0(R) for all non-zero ηj ∈ R. Finally, we verify the L∞-
conditions (3.28) in Theorem 3.5 for m = 0, 1, 2, 3. We suppose that for ` = 1, . . . , d we have
m = m` and need to inspect if the appearing L∞(T)-norms are finite for all j` = 0, . . . ,m:

• Let m = 0. We have∥∥∥√ω(ψ(x, η), µ)
∥∥∥
L∞(T)

= π−
1
4

∥∥∥e−
1
2η

2µ2 erf−1(2x)2
∥∥∥
L∞(T)

<∞

for η2µ2 ≥ 0.
• Let m = 1. We have to verify two conditions. For j` = 0 we have∥∥∥∥ ∂

∂x`

[√
ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`)

]
ψ′`(x`, η`)

− 1
2

∥∥∥∥
L∞(T)

= π
1
4

∣∣∣∣η2
` − µ2

`

η2
`

∣∣∣∣ ∥∥∥erf−1(2x`) e−
1
2 (η2`µ

2
`−2) erf−1(2x`)

2
∥∥∥
L∞(T)

being finite for η2µ2 > 2. For j` = 1 we have∥∥∥∥√ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`) (ψ′`(x`, η`))
1
2

∥∥∥∥
L∞(T)

= π
1
4

∥∥∥e−
1
2 (µ2

`η
2
`−2)(erf−1(2x`)

2
∥∥∥
L∞(T)

,

and this is finite if the exponent is negative or zero, which is the case for η2µ2 ≥ 2.
• Let m = 2. We verify three conditions. For j` = 0∥∥∥∥ ∂2

∂x2
`

[√
ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`)

]
ψ′`(x`, η`)

− 1
2

∥∥∥∥
L∞(T)

<∞
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for all η2
`µ

2
` > 4. For j` = 1∥∥∥∥ ∂

∂x`

[√
ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`)

]
ψ′`(x`, η`)

1
2

∥∥∥∥
L∞(T)

<∞

for all η2
`µ

2
` > 4. For j` = 2∥∥∥∥√ω`(ψ`(x`, η`), µ`)ψ′`(x`, η`) (ψ′`(x`, η`))

5
2

∥∥∥∥
L∞(T)

<∞

for all η2
`µ

2
` ≥ 6.

• For m = 3 the individual conditions for k = 0, 1, 2, 3 are finite in case of η2
`µ

2
` > 6,

η2
`µ

2
` > 6, η2

`µ
2
` > 8, and η2

`µ
2
` ≥ 10, respectively. Hence, we need η2

`µ
2
` ≥ 10 in

order to have f ∈ H3
mix(Td).

In total we have calculated that

f ∈


H1

mix(Td) for η2
`µ

2
` ≥ 2,

H2
mix(Td) for η2

`µ
2
` ≥ 6,

H3
mix(Td) for η2

`µ
2
` ≥ 10.

Contrary to the previous section concerned with the algebraic transformation (5.3), the
L2-approximation error can not be discussed this time as we are not able to compute the
Fourier coefficients

f̂k =

∫
Td
f(x,η,µ) e−2πikx dx

=

∫
T
h(ψ(x,η))

d∏
j=1

η
1
2
j e

1
2 (1−µ2

j η
2
j )erf−1(2xj)

2

e−2πikjxj dx

regardless of the chosen h. Even for trivial choices of h we are not able to integrate the
transformed weight function.

Hence, we only discuss the application of the weighted L∞(Rd)-approximation error
bound from Theorem 3.6 for the dimension d = 2. With the constant test function given by
h(y) = h(y1, y2) ≡ 1 for d = 2, the weight function (5.8), the transformations (5.9), and the
corresponding transformed functions f in (5.10) read as

f(x) =

2∏
j=1

√
ωj(ψj(xj , ηj), µj)ψ′j(xj , ηj).

Let be given N ≥ 8, the two-dimensional hyperbolic cross I2
N as in (1.5), and a reconstructing

rank-1 lattice Λ(z,M, I2
N ). We have already evaluated the sufficient conditions proposed in

Theorem 3.4 yielding lower bounds for η,µ ≥ 0 such that f is at least of Sobolev smoothness
orderm = 0, 1, 2, 3, i.e., f ∈ Hm

mix(T2) and thus f ∈ Hm(T2). We fix λ = 1, and form ∈ N0

we choose η = (η1, η2)>,µ = (µ1, µ2)> ∈ R2 such that f ∈ Hm+1(T2) ↪→ Am(T2). As
outlined in (4.4), we expect the discrete approximation error (4.3) to be bounded by

‖h− happrox‖`∞ ≤ ‖f − SΛ
IdN
f‖L∞(T2) .


N0 for η2

jµ
2
j > 0,

N−1 for η2
jµ

2
j > 2,

N−2 for η2
jµ

2
j ≥ 6,

N−3 for η2
jµ

2
j ≥ 10.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

TRANSFORMED RANK-1 LATTICES FOR HIGH-DIMENSIONAL APPROXIMATION 275

0 20 40 60 80

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

10−11

10−12

10−13

10−14

10−15

10−16

N

‖h
−

h
a
p
p
ro

x
‖ `
∞
/‖

h
‖ `
∞

h(y) = 1

(η,µ) = (1,1) (η,µ) = (1,
√
3)

(η,µ) = (1,
√
6) (η,µ) = (1,

√
10)

0 20 40 60 80

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

N

‖h
−

h
a
p
p
ro

x
‖ `
∞
/‖
h
‖ `
∞

h(y) = e−y
2
1−y

2
2

(η,µ) = (1,1) (η,µ) = (1,
√
3)

(η,µ) = (1,
√
6) (η,µ) = (1,

√
10)

FIG. 5.4. Comparison of the discrete `∞-approximation error ‖h − happrox‖`∞/‖h‖`∞ when using the
Gaussian weight function ω(◦,µ) as in (5.8) and the error function transformation ψ(◦,η) as in (5.9) with µ ∈
{1,
√
3,
√
6,
√
10} and fixed η = 1.

We actually observe this behavior numerically, as showcased in Figure 5.4, where we display
in the left graph the decay of the approximation error of the constant test function h(y) ≡ 1
for N = 8, . . . , 80, fixed η = 1, and µ ∈ {1,

√
3,
√
6,
√
10}. The outlier for η = µ = 1 is

explained by the fact that the corresponding Fourier coefficients are trivial as these parameters
lead to a constant weight function ω(y) ≡ 1. We repeat this numerical test with the non-
constant test function h(y) = e−y

2
1−y

2
2 , which is in L2(R2, ω(◦,µ)) for all µ ∈ R2 with

µ1, µ2 > −2. Then we have a similar decay of the discrete approximation error as displayed
in the right graph of Figure 5.4.

6. Remarks on multiple rank-1 lattices and sparse frequency sets. Now that we are
able to construct functions on the torus Td with a guaranteed minimal Sobolev smoothness
degree m ∈ N0, we adapt the techniques of both multiple rank-1 lattices [12] and sparse FFT
algorithms [21]. Usually we consider the algebraic test function in (5.1), which was given by

h(y) =
1

1 + ‖y‖2`2
, y ∈ Rd.

6.1. Multiple rank-1 lattices. In Lemma 2.1 we recalled that under mild assumptions
it is possible to generate a reconstructing rank-1 lattice Λ(z,M, I) with some frequency set
I ⊂ Zd of finite cardinality |I| <∞ such that

|I| ≤M ≤ |I|2.

Even though this upper bound is independent of the dimension d, the lattice size M is usually
close to |I|2 and is therefore still quite large. In order to overcome this limitation of the single
rank-1 lattice approach, L. Kämmerer suggested the use of multiple rank-1 lattices which are
obtained by taking a union of s rank-1 lattices

Λ(z1,M1, . . . , zs,Ms) :=
⋃

j=1,...,s

Λ(zj ,Mj);

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

276 R. NASDALA AND D. POTTS

see [11, 12]. Then it is possible to determine a reconstructing sampling set for multivariate
trigonometric polynomials in ΠI supported on the given frequency set I with a probability of
at least 1− δs, where

δs = C1 e−C2s

is an upper bound for the probability that the approach fails and where C1, C2 > 0 are
constants. In [11] it was proven that the upper bound for the lattice size improves with high
probability to

M ≤ C|I| log |I|

for these particular reconstructing lattices. For the adaptation of this approach in the context
of families of transformations ψ(◦,η) with η ∈ Rd, we analogously consider unions of s
transformed rank-1 lattices

Λψ(◦,η)(z1,M1, . . . , zs,Ms) :=
⋃

j=1,...,s

Λψ(◦,η)(zj ,Mj)

in order to sample the test function h ∈ L2(Rd, ω).
For an example in dimension d = 2, we consider the test function h in (5.1), the algebraic

weight function

ω(y,µ) :=

(
1

1 + y2
1

)µ1
(

1

1 + y2
2

)µ2

,

and the algebraic transformation

ψ(x,η) =

(
2η1x1√
1− 4x2

1

,
2η2x2√
1− 4x2

2

)>
(6.1)

based on their univariate versions in (5.2) and (5.3). We consider the sample data vector

h =

(
h(yj)

√
ω(yj ,µ)

%(yj ,η)

)M−1

j=0

and the corresponding approximated data vector of the form

happrox =

(√
ω(yj ,µ)

%(yj ,η)
SΛ
IdN
h(yj)

)M−1

j=0

with lattice points yj in the multiple rank-1 lattice Λψ(◦,η)(z1,M1, . . . , zs,Ms, I) transformed
by the algebraic transformation ψ(◦,η) in (6.1). In (5.5) we already discussed that the
discretized approximation error defined in (4.3) is bounded above by

‖h− happrox‖`∞ ≤ ‖f − SΛ
I2N
f‖L∞(T2) . N−m

for µj ≥ 0 if m = 0 and for µj > 3m if m = 1, 2, 3. Similarly to the results of the nu-
merical test with single rank-1 lattices shown in Figure 5.2, we achieve this behavior of the
relative discrete approximation error ‖h − happrox‖`∞/‖h‖`∞ when applying the multiple
rank-1 algorithms described in [11, 12]. In particular, we adapted [11, Algorithm 6]. For
N = 8, . . . , 80, µ ∈ {0,4,10,16}, and η = 1, we initialize this algorithm with the param-
eters c = 30, n = 30, and δ = 0.5 and still have the proposed decay rates of the discrete
approximation errors as seen in Figure 6.1. A major advantage of this approach is that we
do not have to construct the generating vector z via component-by-component construction
methods, which generally takes quite some time.
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FIG. 6.1. Comparison of the discrete `∞-approximation error ‖h− happrox‖`∞/‖h‖`∞ of the test function
(5.1) for multiple rank-1 lattices Λψ(◦,η)(z1,M1, . . . , zs,Ms) with the algebraic transformation ψ(◦,η) (5.3)
and the algebraic weight function ω(◦,µ) (5.2) in their two-dimensional versions with fixed η = 1 and µ ∈
{0,4,10,16}.

6.2. The construction of sparse frequency sets. Once we set up the transformed func-
tion f on the torus of the form (3.17), we can make use of dimension incremental algorithms—
the sparse fast Fourier transforms (sparse FFT) (see [21, 29])—that reconstruct sparse multi-
variate trigonometric polynomials with an unknown support in a frequency domain I ⊂ Zd.
Based on a component-by-component construction of rank-1 lattices, the approach of [21, Al-
gorithm 1 and Algorithm 2] describes a dimension incremental construction of a frequency
set I ⊂ Zd belonging to the non-zero or approximately largest Fourier coefficients. This is
achieved by restricting the search space to a full grid [−N,N ]d∩Zd of refinement N ∈ N and
by assuming that the cardinality of the support of the multivariate trigonometric polynomial
is bounded by a sparsity constraint s ∈ N. Then we end up with up to s non-zero Fourier
coefficients f̂k of the corresponding test function f .

We adapt these algorithms for transformed reconstructing rank-1 lattices Λψ(◦,η)(z,M, I)
by again calculating the relative discretized approximation error ‖h− happrox‖`∞/‖h‖`∞ as
in (4.3) with the samples

h =

(
h(yj)

√
ω(yj ,µ)

%(yj ,η)

)M−1

j=0

and happrox =

(√
ω(yj ,µ)

%(yj ,η)
SΛ
I h(yj)

)M−1

j=0

,

but using an unknown frequency set I with cardinality |I| = s that was constructed via a
dimensional incremental construction method as outlined above.

6.2.1. An example for the algebraic transformation. We use the algebraic test func-
tion (5.1) in combination with the multivariate version of the algebraic weight function (5.2)
and the multivariate algebraic transformation based on (5.3) reading as

ω(y,µ) =

d∏
j=1

(
1

1 + y2
j

)µj
, ψ(x,η) =

(
2η1x1√
1− 4x2

1

, . . . ,
2ηdxd√
1− 4x2

d

)>
with µ = 4 and η = 1. Earlier we have used a similar setup for d = 2, where we choose a
hyperbolic cross IdN as the frequency set.
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FIG. 6.2. Relative discrete approximation error ‖h−happrox‖`∞/‖h‖`∞ in dimension d = 5 for the algebraic
transformation with the hyperbolic cross IdN with N = 2, . . . , 10 compared to the frequency set generated by the
sparse FFT algorithm (left). In the center and on the right are the two-dimensional projections of I510 and of the
frequency set generated by the sparse FFT algorithm.

Now we let the sparse FFT algorithm [21, Algorithm 2] determine a suitable frequency
set I . For dimension d = 5 and for each N = 2, 3, . . . , 10, we choose the algorithm ’a2r1l’
in [29] and use the cardinality of the hyperbolic crosses I5

N as the sparsity parameter ’spar-
sity_s’ = s = |I5

N |. As expected, the resulting discretized relative approximation errors
‖h − happrox‖`∞/‖h‖`∞ are just as good as the ones where we fixed the hyperbolic cross
IdN , but the two-dimensional projections of both frequency sets to their first two coordinates
differ substantially in size and shape even though they have the same cardinality as seen in
Figure 6.2.

6.2.2. An example of the error function transformation and logarithmic transfor-
mation. The sparse FFT algorithm is especially interesting for the error function trans-
formation (3.8) and the logarithmic transformation (3.9) because we can not calculate the
transformed Fourier coefficients ĥk given in (3.37). Again we simply let the sparse FFT
algorithm [21, Algorithm 2] construct a suitable frequency set I depending on the sparsity
s ∈ N.

We return to dimension d = 2 and use

h(y) = e−y
2
1−y

2
2

as the test function and consider the constant weight function ω(y) ≡ 1. We again apply two
different transformations. The two-dimensional error function transformation

ψ(x,η) = (η1erf−1(2x1), η2erf−1(2x2))>,

which we consider for η = 1, is based on its univariate version given in (5.9). The two-
dimensional logarithmic transformation is also based on its univariate version given in (3.9)
and reads as

ψ(x,η) :=

(
η1 log

(
1 + 2x1

1− 2x1

)
, η2 log

(
1 + 2x2

1− 2x2

))>
,

which we consider only for η = 1, too.
At first we fix the refinement N = 20. Then the full 41 × 41-integer grid contains

(2 · 20 + 1)2 = 1681 elements. Again, we initialize the algorithm ’a2r1l’ in [29] with the
default threshold parameter ’threshold_theta’ of 1e-12 and denote the sparsity parameter
’sparsity_s’ as s ∈ N. For the sparsity parameters s = 100 and s = 500, the error function
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FIG. 6.3. Two-dimensional frequency sets IN with N = 20 and s ∈ {100, 500} for the error function
transformation (left column) and the logarithmic transformation (right column).

transformation leads to a frequency set IN that reminds us of a hyperbolic cross, whereas the
logarithmic transformation leads to a frequency set that could also resemble an appropriately
scaled unit ball

{
x ∈ Z2 : (|x1|p + |x2|p)

1
p ≤ N

}
of a two-dimensional sequence space `p

with 0 < p < 1; see Figure 6.3.
Finally, we focus on the two-dimensional error function transformation with η = 1 and

compare the corresponding relative approximation errors ‖h− happrox‖`∞/‖h‖`∞ calculated
by the spare FFT algorithm in two different setups. At first we keep the refinement N = 20
and consider increasing sparsity parameters s = 2, . . . , 1681. Hence, for small values of
s we have frequency sets that look like hyperbolic crosses, as shown in the left column
of Figure 6.3, whose branches along the central axes become thicker as s increases and
eventually end up with the full 41 × 41-grid. Based on these frequency sets, the relative
approximation errors stagnate at a certain point, displayed on the left in Figure 6.4, because
the relatively small refinement value forces the algorithm to include frequencies within the
41 × 41 grid that do not significantly improve the approximation of h. In comparison, we
raise the refinement to N = 150 and let the sparsity parameter s run from 2 to 1681 again so
that the resulting frequency sets have the same cardinality as before but keep their hyperbolic
cross-like shape, which is shown on the right-hand side of Figure 6.4, where we have the
frequency set constructed by the sparse FFT algorithm for N = 150 and s = 1681. With these
frequency sets we now have steadily decreasing relative approximation errors for increasing
sparsity values, as displayed in the center plot of Figure 6.4.
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FIG. 6.4. Relative approximation errors ‖h − happrox‖`∞/‖h‖`∞ calculated by the spare FFT algorithm
for the error function transformation with η = 1, s = 2, . . . , 1681 and the refinement N = 20 on the left and
N = 150 in the center. The automatically constructed frequency set I for N = 150, s = 1681 is shown on the right.

6.2.3. An example with the tangent transformation. Finally, we consider a different
algebraic test function that is given in product form by

h(y) =

d∏
j=1

1

1 + y2
j

.

Additionally we consider the constant weight function ω(y) ≡ 1 and the multivariate tangent
transformation

ψ(x,η) := (η1 tan(πx1), . . . , ηd tan(πxd))
>

with η = 1 based on the univariate version defined in (3.7). The resulting transformed function
is of the form

f(x,1,µ) :=

d∏
j=1

1

1 + tan(πxj)2
.(6.2)

This product form extends to the corresponding Fourier coefficients, i.e., ĥk =
∏d
j=1 ĥkj , and

the one-dimensional Fourier coefficients ĥkj are of the form

ĥkj =

∫ 1/2

−1/2

e−2πikjxj

1 + tan(πxj)2
dxj =

∫ 1/2

−1/2

cos(πxj)
2 e−2πikjxjdxj =


1
2 for kj = 0,
1
4 for |kj | = 1,

0 otherwise.

(6.3)

Hence, over a full grid [−N,N ]d ∩ Zd with (2N + 1)d points, there are only 3d non-zero
multivariate Fourier coefficients ĥk. Again we verify this for the dimension d = 12 and
N = 4 with the sparse FFT algorithm; see [21, Algorithm 2] and [29]. We initialize this
algorithm with the test function f in (6.2), choose the algorithm ’a2r1l’, set the sparsity
parameter ’sparsity_s’ to 106 and the threshold parameter ’threshold_theta’ to 1e-12. This
results in an exact reconstruction as the algorithm indeed only detects the 312 = 531441 out of
(2 ·4+1)12 ≈ 2.8 ·1011 possible frequencies corresponding to the 12-dimensional integer unit
cube of radius 1 for which the transformed Fourier coefficients ĥkj are non-zero, as calculated
in (6.3).
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7. Conclusion. In this paper we considered functions h ∈ L2(Rd, ω(◦,µ)) ∩Hm
mix(Rd)

with a parameterized weight function ω(◦,µ) : Rd → [0,∞),µ ∈ Rd, and we discussed
strategies for transforming them into functions f on the torus Td. A parameterized trans-
formation ψ(◦,η) : (− 1

2 ,
1
2 )d → Rd with parameter η ∈ Rd in combination with the

weight function ω(◦,µ) allows us to control the degree of smoothness m ∈ N of a func-
tion h defined on Rd, which is preserved under the change of variables ψ(◦,η). Hence,
the parameters η and µ control which Sobolev space Hm

mix(Td) the transformed functions
f(◦,η,µ) = h(ψ(◦,η))

√
ω(ψ(◦,η),µ)ψ′(◦,η) belong to. Due to the embedding of the

Sobolev spaceHm
mix(Td) into the Wiener algebraA(Td) of functions with absolutely summable

Fourier coefficients, we have information on the rate of decay of the Fourier coefficients f̂k
and ĥk without having to calculate them—which in a lot of cases is not possible. Thus, the
essential theoretical L2- and L∞-approximation error bounds on the torus Td proposed in
[30, Theorem 2.30] and [13, Theorem 3.3] can be transferred to Rd by means of the inverse
transformation ψ−1(◦,η) : Rd → (− 1

2 ,
1
2 )d. Furthermore, only slight modifications are nec-

essary to incorporate such transformations into algorithms based on single reconstructing
rank-1 lattices for the evaluation and the reconstruction of transformed multivariate trigono-
metric polynomials presented in [8, Algorithm 3.1 and 3.2]. Algorithms based on multiple
reconstructing rank-1 lattices [12] and sparse fast Fourier transformations [21] can be adjusted,
too.

Our numerical tests show that these algorithms are still working within the proposed
upper bounds for the approximation error. Additionally, special cases in which we can actually
calculate the Fourier coefficients confirm the theoretical parameter bounds for µ and η that are
sufficient to achieve a certain degree of Sobolev smoothness under a change of variables. In
several examples we apply the adapted multiple rank-1 lattice methods and adjusted dimension
incremental construction methods for sparse frequency sets.
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