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BLOCK GENERALIZED LOCALLY TOEPLITZ SEQUENCES:
THEORY AND APPLICATIONS IN THE MULTIDIMENSIONAL CASE∗

GIOVANNI BARBARINO†, CARLO GARONI‡, AND STEFANO SERRA-CAPIZZANO§

Abstract. In computational mathematics, when dealing with a large linear discrete problem (e.g., a linear system)
arising from the numerical discretization of a partial differential equation (PDE), knowledge of the spectral distribution
of the associated matrix has proved to be useful information for designing/analyzing appropriate solvers—especially,
preconditioned Krylov and multigrid solvers—for the considered problem. Actually, this spectral information is
of interest also in itself as long as the eigenvalues of the aforementioned matrix represent physical quantities of
interest, which is the case for several problems from engineering and applied sciences (e.g., the study of natural
vibration frequencies in an elastic material). The theory of multilevel generalized locally Toeplitz (GLT) sequences
is a powerful apparatus for computing the asymptotic spectral distribution of matrices An arising from virtually
any kind of numerical discretization of PDEs. Indeed, when the mesh-fineness parameter n tends to infinity, these
matrices An give rise to a sequence {An}n, which often turns out to be a multilevel GLT sequence or one of its
“relatives”, i.e., a multilevel block GLT sequence or a (multilevel) reduced GLT sequence. In particular, multilevel
block GLT sequences are encountered in the discretization of systems of PDEs as well as in the higher-order finite
element or discontinuous Galerkin approximation of scalar/vectorial PDEs. In this work, we systematically develop
the theory of multilevel block GLT sequences as an extension of the theories of (unilevel) GLT sequences [Garoni
and Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications. Vol. I., Springer, Cham,
2017], multilevel GLT sequences [Garoni and Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and
Applications. Vol. II., Springer, Cham, 2018], and block GLT sequences [Barbarino, Garoni, and Serra-Capizzano,
Electron. Trans. Numer. Anal., 53 (2020), pp. 28–112]. We also present several emblematic applications of this theory
in the context of PDE discretizations.
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1. Introduction. The theory of generalized locally Toeplitz (GLT) sequences stems
from Tilli’s work on locally Toeplitz (LT) sequences [66] and from the spectral theory of
Toeplitz matrices [2, 17, 18, 19, 20, 49, 53, 67, 69, 70, 71]. It was then carried forward in
[40, 41, 62, 63], and it has been recently extended in [3, 4, 5, 6, 7, 9]. This theory, especially in
its multidimensional version [41, 62, 63], is a powerful apparatus for computing the asymptotic
spectral distribution of matrices arising from the numerical discretization of continuous
problems such as integral equations (IEs) and, especially, partial differential equations (PDEs).
Experience reveals that virtually any kind of numerical method for the discretization of PDEs
gives rise to structured matrices An whose asymptotic spectral distribution, as the mesh-
fineness parameter n tends to infinity, can be computed through the theory of GLT sequences.
We refer the reader to [40, Section 10.5], [41, Section 7.3], and [16, 62, 63] for applications of
the theory of GLT sequences in the context of finite difference (FD) discretizations of PDEs;
to [40, Section 10.6], [41, Section 7.4], and [11, 16, 33, 55, 63] for the finite element (FE)
case; to [13] for the finite volume (FV) case; to [40, Section 10.7], [41, Sections 7.5–7.7],
and [27, 35, 36, 37, 38, 56] for the case of isogeometric analysis (IgA) discretizations, both in
the collocation and Galerkin frameworks; and to [31] for a further application to fractional
differential equations. We also refer the reader to [40, Section 10.4] and [1, 59] for a look at
the GLT approach for sequences of matrices arising from IE discretizations.

It is worth emphasizing that the asymptotic spectral distribution of PDE discretization
matrices, whose computation is the main objective of the theory of GLT sequences, is not
only interesting from a theoretical viewpoint but can also be used for practical purposes. For
example, it is known that the convergence properties of mainstream iterative solvers, such
as multigrid and preconditioned Krylov methods, strongly depend on the spectral features
of the matrices to which they are applied. The spectral distribution can then be exploited to
design efficient solvers of this kind and to analyze/predict their performance. In this regard,
we recall that noteworthy estimates on the superlinear convergence of the conjugate gradient
method obtained by Beckermann and Kuijlaars in [10] are closely related to the asymptotic
spectral distribution of the considered matrices. More recently, in the context of Galerkin and
collocation IgA discretizations of elliptic PDEs, the spectral distribution computed through the
theory of GLT sequences in a series of papers [27, 35, 36, 37, 38] was exploited in [25, 26, 28]
to devise and analyze optimal and robust multigrid solvers for IgA linear systems. In addition
to the design and analysis of appropriate solvers, the spectral distribution of PDE discretization
matrices is of interest also in itself whenever the eigenvalues of such matrices represent relevant
physical quantities. This is the case for a broad class of problems arising in engineering and
applied sciences such as the study of natural vibration frequencies for an elastic material; see
the review [47] and the references therein.

In [8], starting from the original intuition in [63, Section 3.3] and based on the recent
contributions [3, 6, 7, 9, 39, 42, 45, 46], the theory of block GLT sequences has been developed
in a systematic way as an extension of the theory of GLT sequences. The focus of [8], however,
is only on the unidimensional (or unilevel) version of the theory, which allows one to face only
unidimensional PDEs (i.e., ordinary differential equations). In this work, we complete [8]
by covering the multidimensional (or multilevel) version of the theory, also known as the
theory of multilevel block GLT sequences. Such a completion is of the utmost importance in
practical applications; in particular, it provides the necessary tools for computing the spectral
distribution of multilevel block matrices arising from the discretization of systems of PDEs [63,
Section 3.3] and from the higher-order FE or discontinuous Galerkin (DG) approximation of
scalar/vectorial PDEs [12, 34, 44, 47]. In addition to developing the theory of multilevel block
GLT sequences, we also present some of its most emblematic applications in the context of
PDE discretizations.
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The present work is structured as a long research article in book form. Chapter 2 collects
the necessary preliminaries. Chapters 3 and 4 cover the theory of multilevel block GLT
sequences, which is finally summarized in Chapter 5. Chapter 6 is devoted to applications.
The exposition in this work is conducted on an abstract level; for motivations and insights we
recommend that the reader takes a look at the extended introduction of [8]. Needless to say,
the reader who knows [8] will be certainly facilitated in reading this work.

2. Mathematical background. This chapter collects the necessary preliminaries for
developing the theory of multilevel block GLT sequences.

2.1. Notation and terminology.

2.1.1. General notation and terminology.
• A permutation σ of the set {1, 2, . . . , n} is denoted by [σ(1), σ(2), . . . , σ(n)].
• Om and Im denote, respectively, the m ×m zero matrix and the m ×m identity matrix.

Sometimes, when the size m can be inferred from the context, O and I are used instead of
Om and Im. The symbol O is also used to indicate rectangular zero matrices whose sizes
are clear from the context.

• For every s ∈ N and every α, β = 1, . . . , s, we denote by E(s)
αβ the s× s matrix having 1 in

position (α, β) and 0 elsewhere.
• The eigenvalues and the singular values of a matrix X ∈ Cm×m are denoted by λj(X),
j = 1, . . . ,m, and σj(X), j = 1, . . . ,m, respectively. The maximum and minimum
singular values ofX are also denoted by σmax(X) and σmin(X), respectively. The spectrum
of X is denoted by Λ(X).

• If 1 ≤ p ≤ ∞, the symbol | · |p denotes both the p-norm of vectors and the associated
operator norm for matrices:

|x|p =

{
(
∑m
i=1 |xi|p)

1/p
, if 1 ≤ p <∞,

maxi=1,...,m |xi|, if p =∞,
x ∈ Cm,

|X|p = max
x∈Cm

x6=0

|Xx|p
|x|p

, X ∈ Cm×m.

The 2-norm | · |2 is also known as the spectral (or Euclidean) norm; it will be preferably
denoted by ‖ · ‖.

• Given X ∈ Cm×m and 1 ≤ p ≤ ∞, ‖X‖p denotes the Schatten p-norm of X , which is
defined as the p-norm of the vector (σ1(X), . . . , σm(X)). The Schatten 1-norm is also
called the trace-norm. The Schatten 2-norm ‖X‖2 coincides with the classical Frobenius
norm (

∑m
i,j=1 |xij |2)1/2. The Schatten∞-norm ‖X‖∞ = σmax(X) is the classical 2-norm

‖X‖. For more on Schatten p-norms, see [14].
• <(X) and =(X) are, respectively, the real and imaginary parts of the (square) matrix X ,

i.e., <(X) = X+X∗

2 and =(X) = X−X∗
2i , where X∗ is the conjugate transpose of X and i

is the imaginary unit.
• If X,Y ∈ Cm×`, their componentwise (or Hadamard) product X ◦ Y is the m× ` matrix

defined by (X ◦ Y )ij = xijyij , for i = 1, . . . ,m and j = 1, . . . , `.
• If X ∈ Cm×m, we denote by X† the Moore-Penrose pseudoinverse of X .
• Cc(C) (resp., Cc(R)) is the space of complex-valued continuous functions defined on C

(resp., R) and with bounded support.
• Let wi : Di → Cri×ri , i = 1, . . . , d, set r = (r1, . . . , rd) andN(r) = r1 · · · rd. We define

the tensor-product function w1 ⊗ · · · ⊗wd : D1 × · · · ×Dd → CN(r)×N(r) as follows: for
every (ξ1, . . . , ξd) ∈ D1 × · · · ×Dd,

(w1 ⊗ · · · ⊗ wd)(ξ1, . . . , ξd) = w1(ξ1)⊗ · · · ⊗ wd(ξd),
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where ⊗ denotes the tensor (Kronecker) product of matrices (see Section 2.2.2).
• If z ∈ C and ε > 0, we denote by D(z, ε) the open disk with center z and radius ε, i.e.,
D(z, ε) = {w ∈ C : |w − z| < ε}. If S ⊆ C and ε > 0, we denote by D(S, ε) the
ε-expansion of S, which is defined as D(S, ε) =

⋃
z∈S D(z, ε).

• χE is the characteristic (indicator) function of the set E.
• A concave bounded continuous function ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0 and
ϕ > 0 on (0,∞) is referred to as a gauge function. It can be shown that any gauge function
ϕ is non-decreasing and subadditive, i.e., ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ [0,∞);
see, e.g., [40, Exercise 2.4].

• If g : D → C is continuous over D, with D ⊆ Ck for some k, then we denote by ωg(·) the
modulus of continuity of g,

ωg(δ) = sup
x,y∈D
|x−y|∞≤δ

|g(x)− g(y)|, δ > 0.

• If x,y ∈ Rd are such that xi ≤ yi for all i = 1, . . . , d, then the symbol [x,y) denotes the
hyperrectangle [x,y) = [xi, yi)×· · ·× [xd, yd). Similar meanings have the symbols (x,y],
(x,y), [x,y].
• µk denotes the Lebesgue measure in Rk. Throughout this work, unless stated otherwise, all

the terminology from measure theory (such as “measurable set”, “measurable function”,
“a.e.”, etc.) is always referred to the Lebesgue measure.
• Let D ⊆ Rk, let r ≥ 1 and 1 ≤ p ≤ ∞. A matrix-valued function f : D → Cr×r is said to

be measurable (resp., continuous, a.e. continuous, bounded, Riemann-integrable, in Lp(D),
in C∞(D), etc.) if its components fαβ : D → C, α, β = 1, . . . , r, are measurable (resp.,
continuous, a.e. continuous, bounded, Riemann-integrable, in Lp(D), in C∞(D), etc.). The
space of functions f : D → Cr×r belonging to Lp(D) will be denoted by Lp(D, r) in
order to emphasize the dependence on r. For the space of scalar functions Lp(D, 1), we
will preferably use the traditional simpler notation Lp(D).
• Let fm, f : D ⊆ Rk → Cr×r be measurable. We say that fm converges to f in measure

(resp., a.e., in Lp(D), etc.) if (fm)αβ converges to fαβ in measure (resp., a.e., in Lp(D),
etc.) for all α, β = 1, . . . , r.

• If D is any measurable subset of some Rk and r ∈ N, then we set

M
(r)
D = {f : D → Cr×r : f is measurable}.

If D = [0, 1]d × [−π, π]d, we preferably use the notation M
(r)
d instead of M(r)

D :

M
(r)
d = {κ : [0, 1]d × [−π, π]d → Cr×r : κ is measurable}.

• We use a notation borrowed from probability theory to indicate sets. For example, if
f, g : D ⊆ Rk → Cr×r, then {σmax(f) > 0} = {x ∈ D : σmax(f(x)) > 0},
µk{‖f − g‖ ≥ ε} is the measure of the set {x ∈ D : ‖f(x)− g(x)‖ ≥ ε}, etc.

• A function of the form f(θ) =
∑q
j=−q fj e

ijθ with f−q, . . . , fq ∈ Cr×r is said to be a
(matrix-valued) trigonometric polynomial. If f−q 6= Or or fq 6= Or, then the number q is
referred to as the degree of f .
• A sequence of matrices is a sequence of the form {An}n, where An is a square matrix of

size dn such that dn →∞ as n→∞.

2.1.2. Multi-index notation. A multi-index i of size d, also called a d-index, is simply
a (row) vector in Zd; its components are denoted by i1, . . . , id.
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• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be clear from
the context).

• For any d-index m, we set N(m) =
∏d
j=1mj , and we write m → ∞ to indicate that

min(m) → ∞. The notation N(α) =
∏d
j=1 αj will be actually used for any vector α

with d components and not only for d-indices.
• If h,k are d-indices, then h ≤ k means that hr ≤ kr for all r = 1, . . . , d, while h 6≤ k

means that hr > kr for at least one r ∈ {1, . . . , d}.
• If h,k are d-indices such that h ≤ k, then the multi-index range h, . . . ,k (or, more

precisely, the d-index range h, . . . ,k) is the set of cardinality N(k − h + 1) given by
{j ∈ Zd : h ≤ j ≤ k}. We assume for this set the standard lexicographic ordering:

(2.1)
[
. . .
[

[ (j1, . . . , jd) ]jd=hd,...,kd

]
jd−1=hd−1,...,kd−1

. . .

]
j1=h1,...,k1

.

For instance, in the case d = 2, the ordering is

(h1, h2), (h1, h2 + 1), . . . , (h1, k2),

(h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2),

. . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).

• When a d-index j varies over a d-index range h, . . . ,k (this is often written as j=h, . . . ,k),
it is understood that j varies from h to k following the specific ordering (2.1). For
instance, if m ∈ Nd and we write x = [xi]

m
i=1, then x is a vector of size N(m) whose

components xi, i = 1, . . . ,m, are ordered in accordance with (2.1): the first component
is x1 = x(1,...,1,1), the second component is x(1,...,1,2), and so on until the last component,
which is xm = x(m1,...,md). Similarly, if

(2.2) X = [xij ]
m
i,j=1,

then X is an N(m)×N(m) matrix whose components are indexed by a pair of d-indices
i, j, both varying from 1 tom according to the lexicographic ordering (2.1).

• If h,k are d-indices such that h ≤ k, then the notation
∑k
j=h indicates the summation

over all j in h, . . . ,k.
• If i, j are d-indices, then i � j means that i precedes (or equals) j in the lexicographic

ordering (which is a total ordering on Zd). Moreover, we define

i ∧ j =

{
i, if i � j,
j, if i � j.

Note that i ∧ j is the minimum among i and j with respect to the lexicographic order-
ing. In the case where i and j are 1-indices (i.e., normal scalar indices), it is clear that
i ∧ j = min(i, j).

• Let {an}n∈Nd be a family of numbers parameterized by a d-index n. The limit of an as
n→∞ is defined, as in the case of a traditional sequence {an}n∈N, in the following way:
limn→∞ an = a if and only if for every ε > 0 there existsN such that an ∈ D(a, ε) for
n ≥N . Moreover, we define

lim sup
n→∞

an = lim
n→∞

(
sup
m≥n

am

)
, lim inf

n→∞
an = lim

n→∞

(
inf
m≥n

am

)
.
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• Operations involving d-indices that have no meaning in the vector space Zd must be
interpreted in the componentwise sense. For instance,

ij = (i1j1, . . . , idjd),

αi/j = (αi1/j1, . . . , αid/jd), α ∈ C,
min(i, j) = (min(i1, j1), . . . ,min(id, jd)),

imodm = (i1 modm1, . . . , id modmd),

etc.
• When a multi-index appears as subscript or superscript, we sometimes suppress the brackets

to simplify the notation. For instance, the component of the vector x = [xi]
m
i=1 correspond-

ing to the d-index i is denoted by xi or xi1,...,id , and we often avoid the heavy notation
x(i1,...,id).

• For every s ∈ N and n ∈ Nd, we denote by Πn,s the permutation matrix given by

Πn,s =


Is ⊗ eT1

Is ⊗ eT2
...

Is ⊗ eTn

 =

n∑
k=1

ek ⊗ Is ⊗ eTk ,

where ⊗ denotes the tensor (Kronecker) product (see Section 2.2.2) and ei, i = 1, . . . ,n,
are the vectors of the canonical basis of CN(n), which, for convenience, are indexed by a
d-index i = 1, . . . ,n instead of a linear index i = 1, . . . , N(n). For every s, r ∈ N and
n ∈ Nd, we define the permutation matrix

(2.3) Πn,s,r = Πn,s ⊗ Ir.

• For every s ∈ Nd and every `,k = 1, . . . , s, we denote by E(s)
`k the N(s)×N(s) matrix

having 1 in position (`,k) and 0 elsewhere.
• A d-variate r × r matrix-valued trigonometric polynomial is a finite linear combination,

with coefficients in Cr×r, of the d-variate Fourier frequencies

eik·θ = ei(k1θ1+...+kdθd), k ∈ Zd,

that is, a function of the form

f(θ) =
N∑

k=−N

fk e
ik·θ, f−N , . . . , fN ∈ Cr×r, N ∈ Nd.

A number of examples in order to help the reader become familiar with the multi-index
notation are presented in [41, Section 2.1.2].

2.1.3. Multilevel block matrix-sequences. Recall from Section 2.1.1 that a sequence
of matrices is a sequence of the form {An}n, where n varies in some infinite subset of N
and An is a square matrix of size dn → ∞. A d-level r-block matrix-sequence is a special
sequence of matrices of the form {An}n, where:
• n varies in some infinite subset of N;
• n = n(n) is a d-index with positive components which depends on n and satisfies n→∞

as n→∞;
• An is a square matrix of size N(n)r.
Recall from Section 2.1.2 that n→∞ means that min(n)→∞.
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2.2. Preliminaries on matrix analysis.

2.2.1. Matrix norms. For the reader’s convenience, we report in this section some
matrix-norm inequalities that we shall use throughout this work. Given a matrix X ∈ Cm×m,
important bounds for ‖X‖ in terms of the components of X are the following [40, pp. 29–30]:

|xij | ≤ ‖X‖, i, j = 1, . . . ,m, X ∈ Cm×m,

‖X‖ ≤
√
|X|1|X|∞ ≤ max(|X|1, |X|∞) ≤

m∑
i,j=1

|xij |, X ∈ Cm×m.

Since ‖X‖ = σmax(X) and rank(X) is the number of nonzero singular values of X , we have

‖X‖ ≤ ‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖, X ∈ Cm×m.

Another important trace-norm inequality is the following [40, p. 33]:

‖X‖1 ≤
m∑

i,j=1

|xij |, X ∈ Cm×m.

A bound for the Frobenius norm in terms of the spectral norm and the trace-norm is provided
by the following inequality:

(2.4) ‖X‖2 =

√√√√ m∑
i=1

σi(X)
2 ≤

√√√√σmax(X)

m∑
i=1

σi(X) =
√
‖X‖‖X‖1, X ∈ Cm×m.

If 1 ≤ p, q ≤ ∞ are conjugate exponents, i.e., 1/p+ 1/q = 1, then the following Hölder-type
inequality holds for the Schatten norms [14]:

(2.5) ‖XY ‖1 ≤ ‖X‖p‖Y ‖q, X, Y ∈ Cm×m.

Moreover, for 1 ≤ p ≤ ∞, we have

(2.6) ‖AXB‖p ≤ ‖A‖ ‖X‖p‖B‖, A,X,B ∈ Cm×m.

This inequality actually holds for all unitarily invariant norms and not only for the Schatten
norms; see [14, Proposition IV.2.4].

2.2.2. Tensor products and direct sums. If X,Y are matrices of any dimension, say
X ∈ Cm1×m2 and Y ∈ C`1×`2 , then the tensor (Kronecker) product of X and Y is the
m1`1 ×m2`2 matrix defined by

X ⊗ Y =
[
xijY

]
i=1,...,m1
j=1,...,m2

=

 x11Y · · · x1m2
Y

...
...

xm11Y · · · xm1m2
Y

 ,
and the direct sum of X and Y is the (m1 + `1)× (m2 + `2) matrix defined by

X ⊕ Y = diag(X,Y ) =

[
X O
O Y

]
.

Tensor products and direct sums possess a lot of nice algebraic properties.
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(i) Associativity: for all matrices X,Y, Z,

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z),

(X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z).

(ii) If X1, X2 can be multiplied and Y1, Y2 can be multiplied, then

(X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2),

(X1 ⊕ Y1)(X2 ⊕ Y2) = (X1X2)⊕ (Y1Y2).

(iii) For all matrices X,Y ,

(X ⊗ Y )∗ = X∗ ⊗ Y ∗, (X ⊗ Y )T = XT ⊗ Y T

(X ⊕ Y )∗ = X∗ ⊕ Y ∗, (X ⊕ Y )T = XT ⊕ Y T .

(iv) Bilinearity (of tensor products): for each fixed matrix X , the application

Y 7→ X ⊗ Y

is linear on C`1×`2 for all `1, `2 ∈ N; for each fixed matrix Y , the application

X 7→ X ⊗ Y

is linear on Cm1×m2 for all m1,m2 ∈ N.
From (i)–(iv), a lot of other properties follow. For example, if v is a (column) vector and X,Y
are matrices that can be multiplied, then (v⊗X)Y = (v⊗X)([1]⊗Y ) = v⊗(XY ). IfX,Y
are invertible, then X ⊗ Y is invertible with inverse X−1 ⊗ Y −1. If X,Y are normal (resp.,
Hermitian, symmetric, unitary), then X ⊗ Y is also normal (resp., Hermitian, symmetric,
unitary). If X ∈ Cm×m and Y ∈ C`×`, then the eigenvalues and singular values of X ⊗ Y
are given by

{λi(X)λj(Y ) : i = 1, . . . ,m, j = 1, . . . , `},
{σi(X)σj(Y ) : i = 1, . . . ,m, j = 1, . . . , `},

and the eigenvalues and singular values of X ⊕ Y are given by

{λi(X), λj(Y ) : i = 1, . . . ,m, j = 1, . . . , `},
{σi(X), σj(Y ) : i = 1, . . . ,m, j = 1, . . . , `};

see [40, Exercise 2.5]. In particular, for all X ∈ Cm×m, Y ∈ C`×`, and 1 ≤ p ≤ ∞, we have

‖X ⊗ Y ‖p = ‖X‖p ‖Y ‖p,

‖X ⊕ Y ‖p =
∣∣(‖X‖p, ‖Y ‖p)∣∣p =

{
(‖X‖pp + ‖Y ‖pp)1/p, if 1 ≤ p <∞,
max(‖X‖∞, ‖Y ‖∞), if p =∞,

(2.7)

and

rank(X ⊗ Y ) = rank(X)rank(Y ),

rank(X ⊕ Y ) = rank(X) + rank(Y ).(2.8)
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In addition to the properties considered so far, we need to highlight two further properties
of tensor products that can be found in [41, Section 2.5]. The first one is the multi-index
formula for tensor products: if we have d matrices Xk ∈ Cmk×`k , k = 1, . . . , d, then

(2.9) (X1 ⊗X2 ⊗ · · · ⊗Xd)ij = (X1)i1j1(X2)i2j2 · · · (Xd)idjd

for i = 1, . . . ,m and j = 1, . . . , `, wherem = (m1,m2, . . . ,md) and ` = (`1, `2, . . . , `d).
Note that (2.9) can be rewritten as follows:

X1 ⊗X2 ⊗ · · · ⊗Xd = [(X1)i1j1(X2)i2j2 · · · (Xd)idjd ]i=1,...,m
j=1,...,`

.

The second property is a natural upper bound for the rank of the difference of two tensor
products formed by d factors. More precisely, suppose we have 2d matrices X1, . . . , Xd,
Y1, . . . , Yd, with Xi, Yi ∈ Cmi×mi for all i = 1, . . . , d, then,

rank(X1 ⊗ · · · ⊗Xd − Y1 ⊗ · · · ⊗ Yd) ≤ N(m)

d∑
i=1

rank(Xi − Yi)
mi

,

wherem = (m1, . . . ,md).
Concerning the distributive properties of tensor products with respect to direct sums, it

follows directly from the definitions that, for all matrices X1, . . . , Xd, Y ,

(2.10) (X1 ⊕X2 ⊕ · · · ⊕Xd)⊗ Y = (X1 ⊗ Y )⊕ (X2 ⊗ Y )⊕ · · · ⊕ (Xd ⊗ Y ).

DEFINITION 2.1 (Permutation matrix). Let ς be a permutation of the set {1, . . . ,m}. The
permutation matrix Πς associated with ς is the m×m matrix whose rows are eTς(1), . . . , e

T
ς(m)

(in this order), where e1, . . . , em are the vectors of the canonical basis of Cm.
LEMMA 2.2. For every m ∈ Nd and every permutation σ of the set {1, . . . , d}, there

exists a unique permutation matrix Πm;σ that depends only onm and σ and satisfies

(2.11) Xσ(1) ⊗ · · · ⊗Xσ(d) = Πm;σ(X1 ⊗ · · · ⊗Xd)Π
T
m;σ

for all matrices X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md .
Proof. The existence of a matrix Πm;σ with the required properties has already been

proved in [41, Lemma 2.6]. We prove the uniqueness. Suppose that Π̂m;σ is another
permutation matrix that depends only on m and σ and satisfies (2.11) for all matrices
X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md . This immediately implies that

Πm;σ(X1 ⊗ · · · ⊗Xd)Π
T
m;σ = Π̂m;σ(X1 ⊗ · · · ⊗Xd)Π̂

T
m;σ

for all matrices X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md , and hence

Πm;σXΠT
m;σ = Π̂m;σXΠ̂T

m;σ

for all matrices X ∈ CN(m)×N(m) because

span(X1 ⊗ · · · ⊗Xd : X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md) = CN(m)×N(m).

Indeed, CN(m)×N(m) = span(Eij : i, j = 1, . . . ,m), where Eij = Ei1j1 ⊗ · · · ⊗ Eidjd
and Eikjk is the mk ×mk matrix having 1 in position (ik, jk) and 0 elsewhere, so that Eij is
the matrix having 1 in position (i, j) and 0 elsewhere. Thus,

(2.12) X = PXPT , P = ΠT
m;σΠ̂m;σ,
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for all matrices X ∈ CN(m)×N(m). Considering that P is the product of two permutation
matrices, it is itself a permutation matrix, say PT = Πτ with τ being a permutation of
{1, . . . , N(m)}. Hence, by definition, the columns of P are eτ(1), . . . , eτ(N(m)) (in this
order), with e1, . . . , eN(m) being the vectors of the canonical basis of CN(m). Let Eij be the
N(m)×N(m) matrix having 1 in position (i, j) and 0 elsewhere for all i, j = 1, . . . , N(m).
By (2.12), for all i, j = 1, . . . , N(m), we have

eie
T
j = Eij = PEijP

T = Peie
T
j P

T = eτ(i)e
T
τ(j),

which implies that τ(i) = i and τ(j) = j for all i, j = 1, . . . , N(m). Hence, τ is the identity
permutation, PT = Πτ = IN(m) = P , and Π̂m;σ = Πm;σ .

REMARK 2.3 (The permutation matrix Γm,s). Letm, s ∈ Nd, and let σ be the permuta-
tion of the set {1, . . . , 2d} given by σ = [1, d + 1, 2, d + 2, . . . , d, 2d]. In what follows, we
denote by (m, s) the 2d-index (m1, . . . ,md, s1, . . . , sd).
• If s = 1, then Π(m,s);σ = IN(m). Indeed, by definition, Π(m,1);σ is the unique permutation

matrix that satisfies

X1 ⊗Xd+1 ⊗X2 ⊗Xd+2 ⊗ · · · ⊗Xd ⊗X2d

= Π(m,1);σ(X1 ⊗X2 ⊗ · · · ⊗Xd ⊗Xd+1 ⊗Xd+2 ⊗ · · · ⊗X2d)Π
T
(m,1);σ

for all X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md , Xd+1 ∈ C1×1, . . . , X2d ∈ C1×1. Considering
that Xd+1, . . . , X2d are scalars, the previous equation becomes

(Xd+1 · · ·X2d)(X1 ⊗X2 ⊗ · · · ⊗Xd)

= (Xd+1 · · ·X2d)Π(m,1);σ(X1 ⊗X2 ⊗ · · · ⊗Xd)Π
T
(m,1);σ

for all X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md , Xd+1 ∈ C1×1, . . . , X2d ∈ C1×1, which is
equivalent to

(X1 ⊗X2 ⊗ · · · ⊗Xd) = Π(m,1);σ(X1 ⊗X2 ⊗ · · · ⊗Xd)Π
T
(m,1);σ

for all X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md . Since IN(m) satisfies the previous equation,
we conclude that Π(m,1);σ = IN(m).
• If d = 1, then Π(m,s);σ = Π(m,s);[1,2] = Ims. This is obvious because Ims satisfies the

same equation satisfied by Π(m,s);[1,2], due to the fact that σ = [1, 2] is the identity.
In what follows, the matrix Π(m,s);σ will be denoted by Γm,s.

LEMMA 2.4. For every m ∈ Nd and every permutation σ of the set {1, . . . , d}, there
exists a permutation matrix Vm;σ of size m1 + . . .+md such that

Xσ(1) ⊕Xσ(2) ⊕ · · · ⊕Xσ(d) = Vm;σ(X1 ⊕X2 ⊕ · · · ⊕Xd)V
T
m;σ

for all matrices X1 ∈ Cm1×m1 , X2 ∈ Cm2×m2 , . . . , Xd ∈ Cmd×md .
Proof. See [41, Lemma 2.7].

2.3. Preliminaries on measure and integration theory.

2.3.1. Measurability. The following lemma is derived from the results in [14, Sec-
tion VI.1]. It will be used essentially everywhere in this work, either explicitly or implicitly.

LEMMA 2.5. Let f : D ⊆ Rk → Cr×r be measurable and g : Cr → C be continuous
and symmetric in its r arguments, i.e., g(λ1, . . . , λr) = g(λρ(1), . . . , λρ(r)) for all permu-
tations ρ of {1, . . . , r}. Then, the function x 7→ g(λ1(f(x)), . . . , λr(f(x))) is well-defined
(independently of the ordering of the eigenvalues of f(x)) and measurable. As a consequence:
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• the function x 7→ g(σ1(f(x)), . . . , σr(f(x))) is measurable;
• the functions x 7→

∑r
i=1 F (λi(f(x))) and x 7→

∑r
i=1 F (σi(f(x))) are measurable for

all continuous F : C→ C;
• the function x 7→ ‖f(x)‖p is measurable for all p ∈ [1,∞].

REMARK 2.6 (Existence of an ordering for the eigenvalues λi(f(x))). Let the matrix-
valued function f : D ⊆ Rk → Cr×r be measurable. In the case where all the eigenvalues
of the matrix f(x) are real for almost every x ∈ D, one can define the eigenvalue function
λi(f(x)) as a measurable function taking the value of the ith largest eigenvalue of f(x).
In general, even if f is continuous, we are not able to find r continuous functions acting as
eigenvalue functions; see [14, Example VI.1.3]. Thus, a convenient ordering on the eigenvalues
λi(f(x)) cannot be prescribed beforehand. In such cases, λi(f(x)) has not to be intended
as a function in x but as an element of the spectrum Λ(f(x)) ordered in an arbitrary way.
Lemma 2.5 is then important as it allows us to work with the spectrum as a whole, without
having to specify which ordering we are imposing on the eigenvalues λi(f(x)). In what
follows, when we talk about the ith eigenvalue function λi(f(x)), we are implicitly assuming
that this function exists as a measurable function; more precisely, we are assuming that there
exist r measurable functions λi(f(x)), i = 1, . . . , r, from D to C such that, for each fixed
x ∈ D, the eigenvalues of f(x) are given by λ1(f(x)), . . . , λr(f(x)).

2.3.2. Essential range of matrix-valued functions. If f : D ⊆ Rk → Cr×r is a
measurable matrix-valued function, then the essential range of f is denoted by ER(f) and is
defined as follows:

ER(f) = {z ∈ C : µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} > 0 for all ε > 0}
= {z ∈ C : µk{minj=1,...,r|λj(f)− z| < ε} > 0 for all ε > 0},

where we recall that, according to our notation,

{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} = {x ∈ D : ∃ j ∈ {1, . . . , r} : λj(f(x)) ∈ D(z, ε)}

and

{minj=1,...,r|λj(f)− z| < ε} = {x ∈ D : minj=1,...,r|λj(f(x))− z| < ε}.

Note that ER(f) is well-defined because the function x 7→ minj=1,...,r |λj(f(x)) − z| is
measurable by Lemma 2.5. It can be shown that ER(f) is closed and Λ(f) ⊆ ER(f) a.e. [8,
Lemma 2.2]. In the case where the eigenvalue functions λj(f) : D → C, j = 1, . . . , r, are
measurable, we have

ER(f) =

r⋃
j=1

ER(λj(f)).

2.3.3. Lp-norms of matrix-valued functions. Let D be any measurable subset of some
Rk, let r ≥ 1, and let 1 ≤ p ≤ ∞. For any measurable function f : D → Cr×r we define

‖f‖Lp =

{ (∫
D
‖f(x)‖ppdx

)1/p
, if 1 ≤ p <∞,

ess supx∈D‖f(x)‖, if p =∞.

Note that this definition is well-posed by Lemma 2.5. In the case where r = 1, it reduces to
the classical definition of Lp-norms for scalar functions. As highlighted in [29, p. 164], for
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every p ∈ [1,∞] there exist constants Ap, Bp > 0 such that, for all f ∈ Lp(D, r),

Ap‖f‖pLp ≤
r∑

α,β=1

‖fαβ‖pLp ≤ Bp‖f‖pLp , if 1 ≤ p <∞,

A∞‖f‖L∞ ≤ max
α,β=1,...,r

‖fαβ‖L∞ ≤ B∞‖f‖L∞ , if p =∞.

This means that Lp(D, r), which we defined in Section 2.1.1 as the set of functions
f : D → Cr×r such that each component fαβ belongs to Lp(D), can also be defined as
the set of measurable functions f : D → Cr×r such that ‖f‖Lp < ∞. Moreover, if we
identify two functions f, g ∈ Lp(D, r) whenever f(x) = g(x) for almost every x ∈ D, then
the map f 7→ ‖f‖Lp is a norm on Lp(D, r) which induces on Lp(D, r) the componentwise
Lp convergence, that is, fm → f in Lp(D, r) according to the norm ‖ · ‖Lp if and only if
(fm)αβ → fαβ in Lp(D) for all α, β = 1, . . . , r.

2.3.4. Convergence in measure and the topology τmeasure. The convergence in mea-
sure plays a central role in the theory of multilevel block GLT sequences. A basic lemma
about this convergence is reported below [15, Corollary 2.2.6].

LEMMA 2.7. Let fm, gm, f, g : D ⊆ Rk → Cr×r be measurable functions.
• If fm → f in measure and gm → g in measure, then αfm + βgm → αf + βg in measure

for all α, β ∈ C.
• If fm → f in measure, gm → g in measure, and µk(D) < ∞, then fmgm → fg in

measure.
Let ϕ : [0,∞) → [0,∞) be a gauge function, let D ⊂ Rk be a measurable set with

0 < µk(D) <∞, and let

M
(r)
D = {f : D → Cr×r : f is measurable}.

Suppose first that r = 1. If we define

pϕmeasure(f) =
1

µk(D)

∫
D

ϕ(|f |), f ∈M
(1)
D ,

dϕmeasure(f, g) = pϕmeasure(f − g), f, g ∈M
(1)
D ,

then dϕmeasure is a complete pseudometric on M
(1)
D such that a sequence {fm}m ⊂ M

(1)
D

converges to f ∈M
(1)
D according to dϕmeasure if and only if fm → f in measure. In particular,

dϕmeasure(f, g) = 0 if and only if f → g in measure, that is, if and only if f = g a.e. The
topology induced on M

(1)
D by dϕmeasure is the same for all gauge functions ϕ; it is denoted by

τmeasure, and it is referred to as the topology of convergence in measure on M
(1)
D .

Suppose now that r ≥ 1. If we define

p̂ϕmeasure(f) = max
α,β=1,...,r

pϕmeasure(fαβ), f ∈M
(r)
D ,

d̂ϕmeasure(f, g) = p̂ϕmeasure(f − g), f, g ∈M
(r)
D ,

then d̂ϕmeasure is a complete pseudometric on M
(r)
D such that a sequence {fm}m ⊂ M

(r)
D

converges to f ∈M
(r)
D according to d̂ϕmeasure if and only if fm → f in measure. In particular,

d̂ϕmeasure(f, g) = 0 if and only if f → g in measure, that is, if and only if f = g a.e. The
topology induced on M

(r)
D by d̂ϕmeasure is the same for all gauge functions ϕ; it is denoted by

τmeasure, and it is referred to as the topology of convergence in measure on M
(r)
D .
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Now, let

pϕmeasure(f) =
1

µk(D)

∫
D

∑r
i=1 ϕ(σi(f))

r
, f ∈M

(r)
D ,

dϕmeasure(f, g) = pϕmeasure(f − g), f, g ∈M
(r)
D .

As highlighted in [8, Section 2.3.4], dϕmeasure is another pseudometric on M
(r)
D , which is

metrically equivalent to d̂ϕmeasure because

1

r
p̂ϕmeasure(f) ≤ pϕmeasure(f) ≤ r2p̂ϕmeasure(f).

In particular, dϕmeasure induces on M
(r)
D the topology τmeasure of convergence in measure, and it

is complete on M
(r)
D , just as d̂ϕmeasure. Throughout this work, we will use the notations

pmeasure = pψmeasure, dmeasure = dψmeasure, ψ(x) =
x

1 + x
.

For the next lemma, see [8, Lemma 2.4].
LEMMA 2.8. Let gm, g : D ⊂ Rk → Cr×r be measurable functions defined on a set D

with 0 < µk(D) <∞. If

lim
m→∞

1

µk(D)

∫
D

∑r
j=1 F (σj(gm − g))

r
= F (0), ∀F ∈ Cc(R),

then gm → g in measure.
REMARK 2.9. Let f : D → Cr×r be a measurable function defined on a set D ⊂ Rk

with 0 < µk(D) <∞, and assume that

1

µk(D)

∫
D

∑r
j=1 F (σj(f))

r
= F (0), ∀F ∈ Cc(R).

Then f = Or a.e. Indeed, by Lemma 2.8, the previous equation implies that f → Or in
measure, i.e., f = Or a.e.

2.3.5. Multivariate Riemann-integrable functions. A function a : [0, 1]d → C is said
to be Riemann-integrable if its real and imaginary parts<(a),=(a) : [0, 1]d → R are Riemann-
integrable in the classical sense. Recall that any Riemann-integrable function is bounded by
definition. We report below a list of properties possessed by Riemann-integrable functions
that will be used in this paper, either explicitly or implicitly.
• If α, β ∈ C and a, b : [0, 1]d → C are Riemann-integrable, then αa + βb is Riemann-

integrable.
• If a, b : [0, 1]d → C are Riemann-integrable, then ab is Riemann-integrable.
• If a : [0, 1]d → C is Riemann-integrable and F : C → C is continuous, then F (a) :

[0, 1]d → C is Riemann-integrable.
• If a : [0, 1]d → C is Riemann-integrable, then a belongs to L∞([0, 1]d) and its Lebesgue

and Riemann integrals over [0, 1]d coincide.
• If a : [0, 1]d → C is bounded, then a is Riemann-integrable if and only if a is continuous

a.e.
Note that the last two properties imply the first three. The proof of the second-to-last property
can be found in [57, pp. 73–74], while the last property is Lebesgue’s characterization theorem
of Riemann-integrable functions [57, p. 104]. Note that the proofs in [57] are made for the
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case d = 1 only, but the generalization to the case d > 1 is straightforward. A further property
of Riemann-integrable functions that will be used in this paper is reported in the next lemma
[41, Lemma 2.5].

LEMMA 2.10. Let a : [0, 1]d → R be Riemann-integrable. For each n ∈ Nd, consider
the partition of (0, 1]d given by the d-dimensional hyperrectangles

Ii,n =

(
i− 1

n
,
i

n

]
=

(
i1 − 1

n1
,
i1
n1

]
× · · · ×

(
id − 1

nd
,
id
nd

]
, i = 1, . . . ,n,

and let

ai,n ∈
[

inf
x∈Ii,n

a(x), sup
x∈Ii,n

a(x)

]
, i = 1, . . . ,n.

Then
n∑
i=1

ai,nχIi,n → a a.e. in [0, 1]d as n→∞, lim
n→∞

1

N(n)

n∑
i=1

ai,n =

∫
[0,1]d

a(x)dx.

2.4. Singular value and eigenvalue distribution of a sequence of matrices.

2.4.1. The notion of singular value and eigenvalue distribution. We here introduce
the fundamental definitions of singular value and eigenvalue (or spectral) distribution for a
given sequence of matrices.

DEFINITION 2.11 (Singular value and eigenvalue distribution of a sequence of matrices).
Let {An}n be a sequence of matrices with An of size dn, and let f : D ⊂ Rk → Cr×r be a
measurable matrix-valued function defined on a set D with 0 < µk(D) <∞.
• We say that {An}n has a (asymptotic) singular value distribution described by f , and we

write {An}n ∼σ f , if

(2.13) lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx, ∀F ∈ Cc(R).

In this case, the function f is referred to as the singular value symbol of {An}n.
• We say that {An}n has an (asymptotic) eigenvalue (or spectral) distribution described by
f , and we write {An}n ∼λ f , if

(2.14) lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

In this case, the function f is referred to as the eigenvalue (or spectral) symbol of {An}n.
Note that Definition 2.11 is well-posed by Lemma 2.5, which ensures that the functions

x 7→
∑r
i=1 F (σi(f(x))) and x 7→

∑r
i=1 F (λi(f(x))) are measurable. In this work, when-

ever we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood that f is as in
Definition 2.11, that is, f is a measurable function taking values in Cr×r for some r ≥ 1 and
is defined on a subset D of some Rk with 0 < µk(D) <∞.

REMARK 2.12 (Informal meaning of the singular value and eigenvalue distribution). The
informal meaning behind the spectral distribution (2.14) is the following: assuming that f
possesses r a.e. continuous eigenvalue functions λi(f(x)), i = 1, . . . , r, then the eigenvalues
of An, except possibly for o(dn) outliers, can be subdivided into r different subsets of
approximately the same cardinality, and, for n large enough, the eigenvalues belonging to
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the ith subset are approximately equal to the samples of the ith eigenvalue function λi(f(x))
over a uniform grid in the domain D. For instance, if k = 1, dn = nr, and D = [a, b], then,
assuming we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a+ j

b− a
n

))
, j = 1, . . . , n, i = 1, . . . , r,

for n large enough. Similarly, if k = 2, dn = n2r, and D = [a1, b1]× [a2, b2], then, assuming
we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a1 + j1

b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , r,

for n large enough; and so on for k ≥ 3. A completely analogous meaning can also be given
for the singular value distribution (2.13).

REMARK 2.13 (Rearrangement). Let D = [a1, b1] × · · · × [ak, bk] ⊂ Rk, and let
f : D → Cr×r be a measurable function possessing r real-valued a.e. continuous eigenvalue
functions λi(f(x)), i = 1, . . . , r. Compute for each ρ ∈ N the uniform samples

λi

(
f
(
a1 + j1

b1 − a1

ρ
, . . . , ak + jk

bk − ak
ρ

))
, j1, . . . , jk = 1, . . . , ρ, i = 1, . . . , r,

sort them in non-decreasing order, and put them into a vector (ς1, ς2, . . . , ςrρk). Let
φρ : [0, 1]→ R be the piecewise linear non-decreasing function that interpolates the samples
(ς0 = ς1, ς1, ς2, . . . , ςrρk) at the nodes (0, 1

rρk
, 2
rρk

, . . . , 1), i.e.,
φρ

( i

rρk

)
= ςi, i = 0, . . . , rρk,

φρ linear on
[
i

rρk
,
i+ 1

rρk

]
, i = 0, . . . , rρk − 1.

When ρ → ∞, the function φρ converges a.e. to a function φ, which is non-decreasing on
(0, 1) and satisfies

(2.15)
∫ 1

0

F (φ(t))dt =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

The proof of this result is omitted because it is rather technical; it involves arguments from
[40, solution of Exercise 3.1] and [6]. The function φ is referred to as the canonical rearranged
version of f . What is interesting about φ is that, by (2.15), if {An}n ∼λ f , then {An}n ∼λ φ,
i.e., if f is a spectral symbol of {An}n, then the same is true for φ. Moreover, φ is a univariate
non-decreasing scalar function, and hence it is much easier to handle than f . According to
Remark 2.12, if we have {An}n ∼λ f (and hence also {An}n ∼λ φ), then, for n large enough,
the eigenvalues of An, with the possible exception of o(dn) outliers, are approximately equal
to the samples of φ over a uniform grid in [0, 1].

2.4.2. Clustering and attraction. In what follows, if S ⊆ C and ε > 0, we denote by
D(S, ε) the ε-expansion of S, which is defined as D(S, ε) =

⋃
z∈S D(z, ε).

DEFINITION 2.14 (Clustering of a sequence of matrices). Let {An}n be a sequence of
matrices with An of size dn, and let S ⊆ C be a nonempty subset of C.
• We say that {An}n is strongly clustered at S (in the sense of the eigenvalues), or equivalently,

that the eigenvalues of {An}n are strongly clustered at S, if, for every ε > 0, the number
of eigenvalues of An lying outside D(S, ε) is bounded by a constant Cε independent of n,
that is, for every ε > 0,

(2.16) #{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = O(1).
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• We say that {An}n is weakly clustered at S (in the sense of the eigenvalues), or equivalently,
that the eigenvalues of {An}n are weakly clustered at S, if, for every ε > 0,

(2.17) #{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = o(dn).

By replacing “eigenvalues” with “singular values” and λj(An) with σj(An) in (2.16)–(2.17),
we obtain the definitions of a sequence of matrices strongly or weakly clustered at a nonempty
subset of C in the sense of the singular values.

Throughout this work, when we speak of strong/weak cluster, sequence of matrices
strongly/weakly clustered, etc., without further specifications, it is understood “in the sense of
the eigenvalues”. When the clustering is intended in the sense of the singular values, this is
specified every time.

DEFINITION 2.15 (Spectral attraction). Let {An}n be a sequence of matrices with An of
size dn, and let z ∈ C. We say that z strongly attracts the spectrum Λ(An) with infinite order
if, once we have ordered the eigenvalues of An according to their distance from z,

|λ1(An)− z| ≤ |λ2(An)− z| ≤ . . . ≤ |λdn(An)− z|,

the following limit relation holds for each fixed j ≥ 1:

lim
n→∞

|λj(An)− z| = 0.

For the next theorem and its corollary, see [8, Theorem 2.12 and Corollary 2.13].
THEOREM 2.16. If {An}n ∼λ f , then {An}n is weakly clustered at the essential range

ER(f) and every point of ER(f) strongly attracts the spectrum Λ(An) with infinite order.
COROLLARY 2.17. If {An}n ∼λ f and Λ(An) is contained in S ⊆ C for all n, then

ER(f) is contained in the closure S.

2.4.3. Zero-distributed sequences. A sequence of matrices {Zn}n with Zn of size dn
is said to be zero-distributed if {Zn}n ∼σ 0, i.e.,

lim
n→∞

1

dn

dn∑
j=1

F (σj(Zn)) = F (0), ∀F ∈ Cc(R).

It is clear that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or. Theorem 2.18
provides a characterization of zero-distributed sequences together with a sufficient condition
for detecting such sequences. For the related proof, see [40, Theorems 3.2 and 3.3].

THEOREM 2.18. Let {Zn}n be a sequence of matrices with Zn of size dn.
1. {Zn}n ∼σ 0 if and only if Zn = Rn +Nn with lim

n→∞
(rank(Rn)/dn) = lim

n→∞
‖Nn‖ = 0.

2. {Zn}n ∼σ 0 if there exists p ∈ [1,∞) such that lim
n→∞

(‖Zn‖pp/dn) = 0.

2.4.4. Sparsely unbounded and sparsely vanishing sequences of matrices. The no-
tions of sparsely unbounded and sparsely vanishing sequences of matrices play an important
role within the framework of the theory of multilevel block GLT sequences.

DEFINITION 2.19 (Sparsely unbounded sequence of matrices). A sequence of matrices
{An}n with An of size dn is said to be sparsely unbounded (s.u.), if for every M > 0 there
exists nM such that, for n ≥ nM ,

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

≤ r(M),

where lim
M→∞

r(M) = 0.
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For the proofs of the next three propositions, we refer the reader to Proposition 5.3 of [40]
and Propositions 2.2 and 2.3 of [45]. Note that the proof in [40] is made for dn = n and the
proofs in [45] are made for dn = sn for a fixed s ∈ N, but the extension to the case of a
general dn tending to infinity is straightforward.

PROPOSITION 2.20. Let {An}n be a sequence of matrices with An of size dn. The
following statements are equivalent.
1. {An}n is s.u.

2. lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

= 0.

3. For every M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)dn, ‖Ãn,M‖ ≤M,

where lim
M→∞

r(M) = 0.

PROPOSITION 2.21. If {An}n, {A′n}n are s.u., then {AnA′n}n is s.u.
PROPOSITION 2.22. If {An}n ∼σ f , then {An}n is s.u.
REMARK 2.23. Let {An}n be an s.u. sequence of Hermitian matrices with An of size

dn. Then, the following stronger version of condition 3 in Proposition 2.20 is satisfied [8,
Remark 2.19]: for every M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)dn, ‖Ãn,M‖ ≤M,

where limM→∞ r(M) = 0, the matrices Ân,M and Ãn,M are Hermitian, and for all functions
g : R→ R satisfying g(0) = 0, we have

g(Ân,M + Ãn,M ) = g(Ân,M ) + g(Ãn,M ).

Strictly related to the notion of sparsely unbounded sequences of matrices is the notion of
sparsely vanishing sequences of matrices.

DEFINITION 2.24 (Sparsely vanishing sequence of matrices). A sequence of matrices
{An}n with An of size dn is said to be sparsely vanishing (s.v.), if for every M > 0 there
exists nM such that, for n ≥ nM ,

#{i ∈ {1, . . . , dn} : σi(An) < 1/M}
dn

≤ r(M),

where lim
M→∞

r(M) = 0.

REMARK 2.25. If {An}n is s.v., then {A†n}n is s.u. This follows from the fact that the
singular values of A† are 1/σ1(A), . . . , 1/σr(A), 0, . . . , 0, where σ1(A), . . . , σr(A) are the
nonzero singular values of A (r = rank(A)).

REMARK 2.26. A sequence of matrices {An}n with An of size dn is s.v. if and only if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) < 1/M}
dn

= 0;

see [40, Remark 8.6].
Proposition 2.27 is the analog of Proposition 2.22 for s.v. sequences of matrices [46,

Proposition 2.3].
PROPOSITION 2.27. If {An}n ∼σ f , then {An}n is s.v. if and only if f is invertible a.e.
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2.4.5. Spectral distribution of sequences of perturbed/compressed/expanded Her-
mitian matrices. Theorem 2.28 reports from [9] a recent important result about the spectral
distribution of sequences of perturbed Hermitian matrices. It nicely extends previous results
obtained in [43, 48].

THEOREM 2.28. Let {Xn}n, {Yn}n be sequences of matrices with Xn, Yn of size dn,
and set An = Xn + Yn. Assume that the following conditions are met.
1. Every Xn is Hermitian and {Xn}n ∼λ f .
2. ‖Yn‖2 = o(

√
dn).

Then {An}n ∼λ f .
REMARK 2.29. If ‖Yn‖ ≤ C for some constant C independent of n and ‖Yn‖1 = o(dn),

then Yn satisfies the second assumption in Theorem 2.28 by (2.4).
Theorem 2.30 concerns the singular value and spectral distribution of sequences of

matrices obtained as a compression (or expansion) of another sequence of matrices. For the
proof, we refer the reader to [52, Theorem 4.3 and Corollary 4.4].

THEOREM 2.30. Let {Xn}n be a sequence of matrices withXn of size dn, and let {Pn}n
be a sequence such that Pn ∈ Cdn×δn , P ∗nPn = Iδn , δn ≤ dn, and δn/dn → 1 as n→∞.
• We have {Xn}n ∼σ f if and only if {P ∗nXnPn}n ∼σ f .
• In the case where the matrices Xn are Hermitian, we have {Xn}n ∼λ f if and only if
{P ∗nXnPn}n ∼λ f .

2.5. Approximating classes of sequences.

2.5.1. Definition of a.c.s. and the a.c.s. topology τa.c.s..
DEFINITION 2.31 (Approximating class of sequences). Let {An}n be a sequence of

matrices withAn of size dn, and let {{Bn,m}n}m be a sequence of sequences of matrices with
Bn,m of size dn. We say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for
{An}n if the following condition is met: for every m there exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large m, the
sequence {Bn,m}n approximates (asymptotically) the sequence {An}n in the sense that An
is eventually equal to Bn,m plus a small-rank matrix (with respect to the matrix size dn) plus
a small-norm matrix.

It turns out that, for each fixed sequence of positive integers dn such that dn → ∞,
the notion of a.c.s. is a notion of convergence in the space of all sequences of matrices
corresponding to {dn}n, i.e.,

(2.18) E = {{An}n : An ∈ Cdn×dn for every n}.

To be precise, for every ϕ : [0,∞)→ [0,∞) and every square matrix A ∈ C`×`, let

pϕ(A) =
1

`

∑̀
i=1

ϕ(σi(A))

and define

pϕa.c.s.({An}n) = lim sup
n→∞

pϕ(An), {An}n ∈ E ,

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n), {An}n, {Bn}n ∈ E .(2.19)

THEOREM 2.32. Let ϕ : [0,∞)→ [0,∞) be a gauge function. Fix a sequence of positive
integers dn such that dn →∞, and let E be the space (2.18). The following properties hold.
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1. dϕa.c.s. in (2.19) is a complete pseudometric on E such that dϕa.c.s.({An}n, {Bn}n) = 0 if
and only if {An −Bn}n is zero-distributed.

2. Suppose {An}n ∈ E and {{Bn,m}n}m ⊂ E . Then, {{Bn,m}n}m is an a.c.s. for {An}n
if and only if we have dϕa.c.s.({An}n, {Bn,m}n)→ 0 as m→∞.

Theorem 2.32 was proved in [7]. It justifies the convergence notation {Bn,m}n
a.c.s.−→

{An}n, which will be used to indicate that {{Bn,m}n}m is an a.c.s. for {An}n. The topology
induced on E by the pseudometric dϕa.c.s. is the same for all gauge functions ϕ, it is denoted
by τa.c.s., and it is referred to as the a.c.s. topology. Throughout this work, we will use the
notations

pa.c.s. = pψa.c.s., da.c.s. = dψa.c.s., ψ(x) =
x

1 + x
.

2.5.2. τa.c.s. and τmeasure. Theorem 2.33 highlights important connections between τa.c.s.
and τmeasure or, to be more precise, between the pseudometrics dϕa.c.s. and dϕmeasure inducing
these two topologies. Actually, the connections between τa.c.s. and τmeasure are so deep that
they may lead to a “bridge”, in the precise mathematical sense established in [22], between
measure theory and the asymptotic linear algebra theory underlying the notion of a.c.s.; a
bridge that could be exploited to obtain matrix theory results from measure theory results and
vice versa. For deeper insights on this topic, we suggest reading [7, Section 1]. For the proof
of Theorem 2.33, see [8, Section 2.5.2].

THEOREM 2.33. If {An}n ∼σ f , then pϕa.c.s.({An}n) = pϕmeasure(f) for every bounded
continuous function ϕ : [0,∞)→ [0,∞).

2.5.3. The a.c.s. tools for computing singular value and eigenvalue distributions.
The importance of the a.c.s. notion resides in Theorems 2.34 and 2.35, for which we refer the
reader to [45, Theorems 3.1 and 3.2].

THEOREM 2.34. Let {An}n, {Bn,m}n be sequences of matrices and f, fm : D → Cr×r
be measurable functions defined on a set D ⊂ Rk with 0 < µk(D) <∞. Assume that:
1. {Bn,m}n ∼σ fm for every m;
2. {Bn,m}n

a.c.s.−→ {An}n;
3. fm → f in measure.
Then {An}n ∼σ f .

THEOREM 2.35. Let {An}n, {Bn,m}n be sequences of Hermitian matrices, and let
f, fm : D → Cr×r be measurable functions defined on a set D ⊂ Rk with 0 < µk(D) <∞.
Assume that:
1. {Bn,m}n ∼λ fm for every m;
2. {Bn,m}n

a.c.s.−→ {An}n;
3. fm → f in measure.
Then {An}n ∼λ f .

REMARK 2.36. Let {An}n and {Bn}n be sequences of matrices with An and Bn of size
dn, and suppose that da.c.s.({An}n, {Bn}n) = 0 (which is equivalent to {An − Bn}n ∼σ 0
by Theorem 2.32). By Theorems 2.34 and 2.35,
• {An}n ∼σ f ⇐⇒ {Bn}n ∼σ f ;
• if the matrices An and Bn are Hermitian, then {An}n ∼λ f ⇐⇒ {Bn}n ∼λ f .

2.5.4. The a.c.s. algebra. Theorem 2.37 collects important algebraic properties pos-
sessed by the a.c.s. For the proof, we refer the reader to [45, Theorem 2.3].

THEOREM 2.37. Let {An}n, {A′n}n, {Bn,m}n, {B′n,m}n be sequences of matrices such
that {Bn,m}n

a.c.s.−→ {An}n and {B′n,m}n
a.c.s.−→ {A′n}n. Then, the following properties hold.

• {B∗n,m}n
a.c.s.−→ {A∗n}n.
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• {αBn,m + βB′n,m}n
a.c.s.−→ {αAn + βA′n}n for all α, β ∈ C.

• If {An}n, {A′n}n are s.u., then {Bn,mB′n,m}n
a.c.s.−→ {AnA′n}n.

• If {Cn}n is s.u., then {Bn,mCn}n
a.c.s.−→ {AnCn}n.

Another important algebraic property of a.c.s. is stated in the next theorem [39, Lemma 1].
THEOREM 2.38. Let s ∈ N, let {An = [An,ij ]

s
i,j=1}n and {B(m)

n = [B
(m)
n,ij ]

s
i,j=1}n be

sequences of block matrices, and suppose that

{B(m)
n,ij}n

a.c.s.−→ {An,ij}n, i, j = 1, . . . , s.

Then {B(m)
n }n

a.c.s.−→ {An}n.

2.5.5. A criterion to identify a.c.s. In practical applications, it often happens that a
sequence of sequences of matrices {{Bn,m}n}m is given together with another sequence of
matrices {An}n, and one would like to show that {Bn,m}n

a.c.s.−→ {An}n without resorting to
Definition 2.31. A way for solving this problem consists in choosing a suitable gauge function
ϕ and proving that dϕa.c.s.({Bn,m}n, {An}n)→ 0 as m→∞. Another criterion is provided
in the next theorem [40, Corollary 5.3].

THEOREM 2.39. Let {An}n, {Bn,m}n be sequences of matrices with An, Bn,m of size
dn, and let 1 ≤ p <∞. Suppose that for every m there exists nm such that, for n ≥ nm,

‖An −Bn,m‖pp ≤ ε(m,n)dn,

where lim
m→∞

lim sup
n→∞

ε(m,n) = 0. Then {Bn,m}n
a.c.s.−→ {An}n.

2.5.6. An extension of the concept of a.c.s. We now provide a natural extension of the
a.c.s. notion. The underlying idea is that, in Definition 2.31, one could choose to approximate
{An}n by a class of sequences {{Bn,α}n}α∈A parameterized by a not necessarily integer
parameter α. For example, one may want to use a parameter ε > 0 and claim that a given
class of sequences {{Bn,ε}n}ε>0 is an a.c.s. for {An}n as ε→ 0. Intuitively, this assertion
should have the following meaning: for every ε > 0 there exists nε such that, for n ≥ nε,

An = Bn,ε +Rn,ε +Nn,ε, rank(Rn,ε) ≤ c(ε)dn, ‖Nn,ε‖ ≤ ω(ε),

where nε, c(ε), ω(ε) depend only on ε and both c(ε) and ω(ε) tend to 0 as ε→ 0. This is in
fact the correct meaning.

For the definition of multilevel block LT sequences (Definition 3.10), we need the concept
of a.c.s. parameterized by a multi-indexm→∞. In what follows, a multi-index sequence of
sequences of matrices is any class of sequences of the form {{Bn,m}n}m∈M which satisfies
the following two properties.
1. M ⊆ Nq for some q ≥ 1 andM∩ {i ∈ Nq : i ≥ k} is nonempty for every k ∈ Nq.

We express the latter condition by saying that∞ is an accumulation point forM. This is
required to ensure thatm can tend to∞ insideM.

2. For every m ∈ M, {Bn,m}n is a sequence of matrices as defined at the end of Sec-
tion 2.1.1.

DEFINITION 2.40 (Approximating class of sequences as m → ∞). Let {An}n be a
sequence of matrices with An of size dn, and let {{Bn,m}n}m∈M be a multi-index sequence
of sequences of matrices with Bn,m of size dn. We say that {{Bn,m}n}m∈M is an a.c.s. for
{An}n asm→∞ if the following property holds: for everym ∈M there exists nm such
that, for n ≥ nm,

(2.20) An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),
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where the quantities nm, c(m), ω(m) depend only onm and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.
Note that an equivalent definition is obtained by replacing, in Definition 2.40, “for all

m ∈M” with “for all sufficiently largem ∈M” (i.e., “for everym ∈M that is greater than
or equal to some m̂”). Indeed, suppose the splitting (2.20) holds form ≥ m̂. For the other
values ofm, define nm = 1, c(m) = 1, ω(m) = 0 and Rn,m = An −Bn,m, Nn,m = Odn .
Then, we see that (2.20) holds for everym ∈M.

REMARK 2.41. Definition 2.40 extends the classical definition of a.c.s. (Definition 2.31).
Indeed, a classical a.c.s. {{Bn,m}n}m for {An}n is an a.c.s. also in the sense of Definition 2.40
(takeM as the infinite subset of N wherem varies). In addition, if {{Bn,m}n}m∈M is an a.c.s.
for {An}n in the sense of Definition 2.40, then {{Bn,m}n}m is an a.c.s. for {An}n (in the
sense of the classical Definition 2.31) for all sequences of multi-indices {m = m(m)}m ⊆M
such thatm→∞ as m→∞.

REMARK 2.42. Let {Bn,m}n
a.c.s.−→ {An}n and {B′n,m}n

a.c.s.−→ {A′n}n asm→∞. The
following properties hold.
• {B∗n,m}n

a.c.s.−→ {A∗n}n asm→∞.
• {αBn,m + βB′n,m}n

a.c.s.−→ {αAn + βA′n}n asm→∞ for all α, β ∈ C.
• If {An}n and {A′n}n are s.u., then {Bn,mB′n,m}n

a.c.s.−→ {AnA′n}n.
The proof of these results is essentially the same as the proof of the analogous results for
standard a.c.s.; see Theorem 2.37. Based on the topological results of Section 2.5.1, we can
give the following elegant characterization of a.c.s. parameterized by a multi-indexm→∞.

A multi-index sequence of sequences of matrices {{Bn,m}n}m∈M is an
a.c.s. for {An}n as m → ∞ if and only if da.c.s.({An}n, {Bn,m}n) → 0
asm→∞.

Throughout this paper, we write “{Bn,m}n
a.c.s.−→ {An}n as m → ∞” to indicate that

{{Bn,m}n}m∈M is an a.c.s. for {An}n asm→∞.

2.6. Multilevel block Toeplitz matrices. Given n ∈ Nd, a matrix of the form

[Ai−j ]
n
i,j=1 ∈ CsN(n)×sN(n),

with blocks Ak ∈ Cs×s for k = −(n − 1), . . . ,n − 1, is called a d-level s-block Toeplitz
matrix. If s = 1 (resp., d = 1), it is simply referred to as a d-level (resp., s-block) Toeplitz
matrix. Given a function f ∈ L1([−π, π]d, s), its Fourier coefficients are denoted by

fk =
1

(2π)d

∫
[−π,π]d

f(θ)e−ik·θdθ ∈ Cs×s, k ∈ Zd,

where the integrals are computed componentwise. The nth (d-level s-block) Toeplitz matrix
associated with f is defined as

Tn(f) = [fi−j ]
n
i,j=1 ∈ CsN(n)×sN(n).

We call {Tn(f)}n∈Nd the family of (d-level s-block) Toeplitz matrices associated with f ,
which in turn is called the generating function of {Tn(f)}n∈Nd .

For each s ∈ N and n ∈ Nd, the map Tn(·) : L1([−π, π]d, s)→ CsN(n)×sN(n) is linear,
i.e.,

(2.21) Tn(αf + βg) = αTn(f) + βTn(g), α, β ∈ C, f, g ∈ L1([−π, π]d, s).

Moreover, it is clear from the definition that Tn(Is) = IsN(n). If f ∈ L1([−π, π]d, s), let f∗

be its conjugate transpose. It can be shown that

(2.22) Tn(f)∗ = Tn(f∗), f ∈ L1([−π, π]d, s), s ∈ N, n ∈ Nd.
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In particular, if f is Hermitian a.e., then the matrices Tn(f) are Hermitian.
Theorem 2.43 is a fundamental result about multilevel block Toeplitz matrices. It provides

the singular value distribution of multilevel block Toeplitz sequences generated by a matrix-
valued function f ∈ L1([−π, π]d, s) and the spectral distribution of multilevel block Toeplitz
sequences generated by a Hermitian matrix-valued function f ∈ L1([−π, π]d, s). For the
eigenvalues it goes back to Szegő [49], and for the singular values it was established by
Avram [2] and Parter [53]. They assumed d = 1, s = 1, and f ∈ L∞([−π, π]d, s); see
[19, Section 5] and [20, Section 10.14] for more on the subject in the case of L∞ generating
functions. The extension to d ≥ 1, s = 1, and f ∈ L1([−π, π]d, s) was performed by
Tyrtyshnikov and Zamarashkin [69, 70, 71], and the final generalization to f ∈ L1([−π, π]d, s)
with arbitrary s, d ≥ 1 is due to Tilli [67]. We also refer the reader to [40, Section 6.5] for
a proof of Theorem 2.43 based on the notion of approximating classes of sequences; the
proof in [40, Section 6.5] is made only for d = s = 1, but the argument is general and can
be extended to the case d, s ≥ 1. Note that the extension to the case s = 1 and d ≥ 1 was
performed in [41, Section 3.5].

THEOREM 2.43. If f ∈ L1([−π, π]d, s) and {n = n(n)}n ⊆ Nd is any sequence
such that n → ∞ as n → ∞, then {Tn(f)}n ∼σ f . If moreover f is Hermitian a.e., then
{Tn(f)}n ∼λ f .

Important inequalities involving Toeplitz matrices and Schatten p-norms originally ap-
peared in [64, Corollary 4.2]. They have been generalized to multilevel block Toeplitz matrices
in [61, Corollary 3.5]. We report them in the next theorem for future use.

THEOREM 2.44. Let f ∈ Lp([−π, π]d, s) andn ∈ Nd, then, using the natural convention
1/∞ = 0, the inequality

‖Tn(f)‖p ≤
(
N(n)

(2π)d

)1/p

‖f‖Lp

holds for all p ∈ [1,∞].
The next result provides an important relation between tensor products and multilevel

block Toeplitz matrices. Observe that, if fi ∈ L1([−π, π]d, si), i = 1, . . . , d, and
s = (s1, . . . , sd), then f1 ⊗ · · · ⊗ fd ∈ L1([−π, π]d, N(s)) by Fubini’s theorem.

LEMMA 2.45. For every n, s ∈ Nd, we have

Tn(f1 ⊗ · · · ⊗ fd) = ΓTn,s
[
Tn1

(f1)⊗ · · · ⊗ Tnd
(fd)

]
Γn,s

for all functions f1 ∈ L1([−π, π], s1), . . . , fd ∈ L1([−π, π], sd), where Γn,s is defined in
Remark 2.3.

Proof. The result has already been proved in the case where f1, . . . , fd are matrix-valued
trigonometric polynomials; see [44, Lemma 4]. For general functions f1 ∈ L1([−π, π], s1),
. . . , fd ∈ L1([−π, π], sd), simply take an si × si matrix-valued trigonometric polynomial pi
such that Tni(fi) = Tni(pi), and observe that Tn(p1 ⊗ · · · ⊗ pd) = Tn(f1 ⊗ · · · ⊗ fd); for
example, one can take pi(θ) =

∑ni−1
j=−(ni−1)(fi)j e

ijθ.
The next theorem shows that the product of multilevel block Toeplitz matrices generated

by functions in L∞([−π, π]d, s) is “close” to the multilevel block Toeplitz matrix generated
by the product of the generating functions.

THEOREM 2.46. Let fi ∈ L∞([−π, π]d, s) for i = 1, . . . , q. Then,

lim
n→∞

∥∥∏q
i=1 Tn(fi)− Tn

(∏q
i=1 fi

)∥∥
1

N(n)
= 0.
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Proof. For q = 2 the result is proved in [29, Proposition 2]. In the general case we proceed
by induction. Fix p ≥ 3 and suppose that the result holds for q = p− 1. If q = p, using (2.5)
and Theorem 2.44, we obtain

1

N(n)

∥∥∥∥∥
p∏
i=1

Tn(fi)− Tn
( p∏
i=1

fi

)∥∥∥∥∥
1

=
1

N(n)

∥∥∥∥∥
p∏
i=1

Tn(fi)−
(p−2∏
i=1

Tn(fi)

)
Tn(fp−1fp)

+

(p−2∏
i=1

Tn(fi)

)
Tn(fp−1fp)− Tn

( p∏
i=1

fi

)∥∥∥∥∥
1

≤ 1

N(n)

∥∥∥∥∥
(p−2∏
i=1

Tn(fi)

)
(Tn(fp−1)Tn(fp)− Tn(fp−1fp))

∥∥∥∥∥
1

+
1

N(n)

∥∥∥∥∥
(p−2∏
i=1

Tn(fi)

)
Tn(fp−1fp)− Tn

( p∏
i=1

fi

)∥∥∥∥∥
1

≤ 1

N(n)

(p−2∏
i=1

‖fi‖L∞
)
‖Tn(fp−1)Tn(fp)− Tn(fp−1fp)‖1

+
1

N(n)

∥∥∥∥∥
(p−2∏
i=1

Tn(fi)

)
Tn(fp−1fp)− Tn

((p−2∏
i=1

fi

)
(fp−1fp)

)∥∥∥∥∥
1

.

Now, the first term on the right-hand side tends to zero as n→∞ by [29, Proposition 2], and
the second term tends to zero as n→∞ by the induction hypothesis.

We end this section with a result highlighting the connection between multilevel block
Toeplitz matrices and block matrices with multilevel block Toeplitz blocks. It generalizes [39,
Lemma 3]. Recall that Πn,s,r denotes the special permutation matrix (2.3).

THEOREM 2.47. Let n ∈ Nd, let fij : [−π, π]d → Cr×r be in L1([−π, π]d, r),
for i, j = 1, . . . , s, and set f = [fij ]

s
i,j=1. The block matrix Tn = [Tn(fij)]

s
i,j=1 is

similar via the permutation (2.3) to the multilevel block Toeplitz matrix Tn(f), that is,
Πn,s,rTnΠT

n,s,r = Tn(f).

Proof. Since Tn =
∑s
i,j=1E

(s)
ij ⊗ Tn(fij) and Tn(f) =

∑s
i,j=1 Tn(E

(s)
ij ⊗ fij) by the

linearity of the map Tn(·), it is enough to show that

Πn,s,r(E ⊗ Tn(g))ΠT
n,s,r = Tn(E ⊗ g), ∀ g ∈ L1([−π, π]d, r), ∀E ∈ Cs×s.

By properties of tensor products (see Section 2.2.2),

Πn,s,r(E ⊗ Tn(g))ΠT
n,s,r

=

[
n∑
k=1

ek ⊗ Is ⊗ eTk ⊗ Ir

]
(E ⊗ Tn(g))

[
n∑
`=1

eT` ⊗ Is ⊗ e` ⊗ Ir

]

=

n∑
k,`=1

(ek ⊗ Is ⊗ eTk ⊗ Ir)(E ⊗ Tn(g))(eT` ⊗ Is ⊗ e` ⊗ Ir)

=

n∑
k,`=1

eke
T
` ⊗ E ⊗ (eTk ⊗ Ir)Tn(g)(e` ⊗ Ir)
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=

n∑
k,`=1

eke
T
` ⊗ E ⊗ gk−` =

n∑
k,`=1

eke
T
` ⊗ (E ⊗ g)k−` = Tn(E ⊗ g),

as required.

2.7. Multilevel block diagonal sampling matrices. If n ∈ Nd and a : [0, 1]d → Cr×r,
then we define the nth (d-level r-block) diagonal sampling matrix generated by a as the
following multilevel block diagonal matrix of size N(n)r:

Dn(a) = diag
i=1,...,n

a
( i
n

)
,

where we recall that i varies from 1 to n following the lexicographic ordering. Note that
Dn(a) can also be defined through a recursive formula: if d = 1, then

Dn(a) = diag
i=1,...,n

a
( i
n

)
;

if d > 1, then

(2.23) Dn(a) = Dn1,...,nd
(a) = diag

i1=1,...,n1

Dn2,...,nd

(
a
( i1
n1
, x2, . . . , xd

))
,

where a(i1/n1, x2, . . . , xd) is the (d− 1)-variate function defined as follows:

a
( i1
n1
, x2, . . . , xd

)
: [0, 1]d−1 → Cr×r, (x2, . . . , xd) 7→ a

( i1
n1
, x2, . . . , xd

)
.

If (Cr×r)[0,1]d denotes the space of all functions a : [0, 1]d → Cr×r, then the mapping
Dn(·) : (Cr×r)[0,1]d → CrN(n)×rN(n) is linear, i.e.,

Dn(αa+ βb) = αDn(a) + βDn(b), α, β ∈ C, a, b ∈ (Cr×r)[0,1]d .

Moreover, it is clear from the definition that Dn(E) = Tn(E) for all constant matrices
E ∈ Cr×r and Dn(a)∗ = Dn(a∗) for all a ∈ (Cr×r)[0,1]d . The next result, which is the
version of Theorem 2.47 for multilevel block diagonal sampling matrices, highlights the
connection between multilevel block diagonal sampling matrices and block matrices with
multilevel block diagonal sampling blocks. It is a generalization of [39, Lemma 4].

THEOREM 2.48. Let n ∈ Nd, let aij : [0, 1]d → Cr×r, for i, j = 1, . . . , s, and set
a = [aij ]

s
i,j=1. The block matrix Dn = [Dn(aij)]

s
i,j=1 is similar via the permutation (2.3) to

the multilevel block diagonal sampling matrix Dn(a), that is, Πn,s,rDnΠT
n,s,r = Dn(a).

Proof. With obvious adaptations, it is the same as the proof of Theorem 2.47.
For n, s ∈ N, we denote by {x(n)

i,s }nsi=1 = {x(n)
1,s , . . . , x

(n)
ns,s} the sequence of points

{x(n)
1,s , . . . , x

(n)
ns,s} =

{
1

n
, . . . ,

1

n︸ ︷︷ ︸
s

,
2

n
, . . . ,

2

n︸ ︷︷ ︸
s

, . . . ,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
s

}
.

In formulas,

x
(n)
i,s =

(⌊ i− 1

s

⌋
+ 1
) 1

n
, i = 1, . . . , ns.
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Similarly, for n, s ∈ Nd, we denote by {x(n)
i,s }nsi=1 = {x(n)

1,s , . . . ,x
(n)
ns,s} the sequence of

points

x
(n)
i,s = (x

(n1)
i1,s1

, . . . , x
(nd)
id,sd

), i = 1, . . . ,ns.

For n, s ∈ Nd and a : [0, 1]d → C, we denote by Dn,s(a) the d-level diagonal sampling
matrix given by

Dn,s(a) = diag
i=1,...,ns

a(x
(n)
i,s ).

Note that Dn,s(a) can also be defined through a recursive formula: if d = 1, then

(2.24) Dn,s(a) = diag
i=1,...,ns

a(x
(n)
i,s ) = Dn(aIs),

as defined in [8, Section 2.7]; if d > 1, then
(2.25)
Dn,s(a) = Dn1,...,nd,s1,...,sd(a) = diag

i1=1,...,n1s1

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, x2, . . . , xd)),

where a(x
(n1)
i1,s1

, x2, . . . , xd) is the (d− 1)-variate function defined as follows:

a(x
(n1)
i1,s1

, x2, . . . , xd) : [0, 1]d−1 → C, (x2, . . . , xd) 7→ a(x
(n1)
i1,s1

, x2, . . . , xd).

If C[0,1]d denotes the space of all functions a : [0, 1]d → C, it is not difficult to see that
the operator Dn,s(·) : C[0,1]d → CN(sn)×N(sn) enjoys the following properties: for every
n, s ∈ Nd, every a, b : [0, 1]d → C, and every α, β ∈ C,

Dn,s(a) = Dn,s(a)∗,(2.26)
Dn,s(ab) = Dn,s(a)Dn,s(b),(2.27)

Dn,s(αa+ βb) = αDn,s(a) + βDn,s(b).(2.28)

LEMMA 2.49. Let n, s ∈ Nd, and let a : [0, 1]d → C. Then

(2.29) Dn,s(a) = Γn,sDn(aIN(s))Γ
T
n,s,

where Γn,s is the permutation matrix defined in Remark 2.3.
Proof. Suppose first that a is a separable function, i.e., a(x) = a1(x1) · · · ad(xd) with

a1, . . . , ad : [0, 1]→ C. Then, by definition of Γn,s (see Remark 2.3),

Dn,s(a) = diag
i=1,...,ns

a(x
(n)
i,s ) = diag

i=1,...,ns
a1(x

(n1)
i1,s1

) · · · ad(x(nd)
id,sd

)

= Dn1,s1(a1)⊗ · · · ⊗Dnd,sd(ad) = Dn1
(a1Is1)⊗ · · · ⊗Dnd

(adIsd)

= Dn1
(a1)⊗ Is1 ⊗ · · · ⊗Dnd

(ad)⊗ Isd
= Γn,s [Dn1(a1)⊗ · · · ⊗Dnd

(ad)⊗ Is1 ⊗ · · · ⊗ Isd ] ΓTn,s

= Γn,s
[
Dn(a)⊗ IN(s)

]
ΓTn,s = Γn,sDn(aIN(s))Γ

T
n,s,

which completes the proof of equation (2.29) in the case where a is separable. By the properties
(2.26)–(2.28), equation (2.29) continues to hold if a belongs to the *-subalgebra of C[0,1]d
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generated by separable functions; in particular, it continues to hold if a is a linear combinations
of separable functions.

Suppose now that a : [0, 1]d → C is an arbitrary function. We show that there exists a
linear combination b of separable functions such that b(x(n)

i,s ) = a(x
(n)
i,s ) for all i = 1, . . . ,ns.

Once this is done, equation (2.29) is proved because, by the first part of the proof,

Dn,s(a) = Dn,s(b) = Γn,sDn(bIN(s))Γ
T
n,s = Γn,sDn(aIN(s))Γ

T
n,s.

To prove the existence of a function b with the required properties, it suffices to find a linear
combination b of separable functions such that

b(i/n) = a(i/n), i = 1, . . . ,n,

because the set {x(n)
i,s : i = 1, . . . ,ns} coincides with {i/n : i = 1, . . . ,n} regardless of s.

In the following, we provide an explicit construction of a function b satisfying the required
properties. For i = 1, . . . , n, let bi,n : [0, 1] → C be any function such that bi,n(j/n) = 1
if j = i and bi,n(j/n) = 0 if j 6= i. For i = 1, . . . ,n, define bi,n : [0, 1]d → C by setting
bi,n(x) = bi1,n1

(x1) · · · bid,nd
(xd), and note that bi,n(j/n) = 1 if j = i and bi,n(j/n) = 0

if j 6= i. Finally, define

b(x) =

n∑
i=1

a(i/n)bi,n(x),

and note that b satisfies all the required properties.

Since Γn,s = Ins, formula (2.29) is a generalization of (2.24) to the d-level case.

We conclude this section by introducing a notation that we shall use later on. If n ∈ Nd
and a : [0, 1]d → C, the nth (d-level) arrow-shaped sampling matrix generated by a is the
symmetric N(n)×N(n) matrix denoted by Sn(a) and defined as follows:

Sn(a) = [(Dn(a))i∧j,i∧j ]
n
i,j=1 =

[
a
(i ∧ j
n

)]n
i,j=1

.

3. Multilevel block locally Toeplitz sequences. The theory of (scalar) LT sequences
dates back to Tilli’s pioneering paper [66]. It was then carried forward in [62, 63], and
it was finally developed in a systematic way in [40, Chapter 7] and [41, Chapter 4]. The
theory of block LT sequences was originally suggested in [63, Section 3.3], carried forward
in [45], and developed in a systematic way in [8, Chapter 3]. In this chapter, we address the
multidimensional version of the theory of block LT sequences, also known as the theory of
multilevel block LT sequences. The topic is presented here on an abstract level, whereas for
motivations and insights we refer the reader to the introduction of [8]; see also the introduction
of Tilli’s paper [66] and Section 7.1 of [40].

3.1. Multilevel block LT operators. Just as the theory of block LT sequences begins
with the notion of block LT operators, the theory of multilevel block LT sequences begins with
the notion of multilevel block LT operators.
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3.1.1. Definition of multilevel block LT operators.

DEFINITION 3.1 (Multilevel block locally Toeplitz operator).
• Let m,n, s ∈ N, let a : [0, 1]→ C, and let f ∈ L1([−π, π], s). The (unilevel) block locally

Toeplitz (LT) operator is defined as the following ns× ns matrix:

LTmn,s(a, f) = Dm(a)⊗ Tbn/mc(f) ⊕ Os(nmodm)

= diag
i=1,...,m

[
a
( i
m

)
Tbn/mc(f)

]
⊕ Os(nmodm)

= diag
i=1,...,m

a
( i
m

)
Tbn/mc(f) ⊕ Os(nmodm).

It is understood that LTmn,s(a, f) = Osn if n < m and that the term Os(nmodm) is not
present if n is a multiple of m. Moreover, here and in what follows, the tensor product
operation ⊗ is always applied before the direct sum ⊕, exactly as in the case of numbers,
where multiplication is always applied before addition. Note also that in the last equality
we intentionally removed the square brackets in order to illustrate a notation that will be
used hereinafter to simplify the presentation (roughly speaking, we are assuming that the

“diag operator” is applied before the direct sum ⊕).
• Let m,n, s ∈ Nd, let a : [0, 1]d → C, and let fj ∈ L1([−π, π], sj) for j = 1, . . . , d. The

multilevel block locally Toeplitz (LT) operator is defined as the following N(ns)×N(ns)
matrix:

LTmn,s(a, f1 ⊗ · · · ⊗ fd)
= LTm1,...,md

n1,...,nd,s1,...,sd
(a(x1, . . . , xd), f1 ⊗ · · · ⊗ fd)

= ΓTn,s

[
diag

i1=1,...,m1

Tbn1/m1c(f1)⊗ Γn2,...,nd,s2,...,sdLT
m2,...,md
n2,...,nd,s2,...,sd

(
a
( i1
m1

, x2, . . . , xd

)
, f2 ⊗ · · · ⊗ fd

)
ΓTn2,...,nd,s2,...,sd

⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s.

This is a recursive definition, whose base case has been given in the previous item. For
example, in the case d = 2 we have

LTm1,m2
n1,n2,s1,s2(a, f1 ⊗ f2)

= ΓTn1,n2,s1,s2

[
diag

i1=1,...,m1

Tbn1/m1c(f1)⊗
[

diag
i2=1,...,m2

a
( i1
m1

,
i2
m2

)
Tbn2/m2c(f2) ⊕ Os2(n2 modm2)

]
⊕ Os1(n1 modm1)s2n2

]
Γn1,n2,s1,s2 ,

where we have used the fact that Γn2,s2 = In2s2 ; see Remark 2.3.
In Definition 3.1, we have defined the multilevel block LT operator LTmn,s(a, f) in the case

where f is a separable function of the form f = f1 ⊗ · · · ⊗ fd with fj ∈ L1([−π, π], sj) for
j = 1, . . . , d. We are going to see in Definition 3.3 that LTmn,s(a, f) is actually well-defined
(in a unique way) for any f ∈ L1([−π, π]d, N(s)). The crucial result in view of Definition 3.3
is Theorem 3.2. It shows that the multilevel block LT operator LTmn,s(a, f1 ⊗ · · · ⊗ fd)
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coincides with Dm(a)⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ O up to a permutation transformation
Π

(s)
n,m depending only onm,n, s and not on the functions a, f1, . . . , fd.

THEOREM 3.2. For every m,n, s ∈ Nd there exists a permutation matrix Π
(s)
n,m such

that

LTmn,s(a, f1 ⊗ · · · ⊗ fd)

= Π(s)
n,m

[
Dm(a)⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ns)−N(mbn/mcs)

]
(Π(s)
n,m)T

for every a : [0, 1]d → C and every f1 ∈ L1([−π, π], s1), . . . , fd ∈ L1([−π, π], sd).

Proof. The proof is done by induction on d. For d = 1, the result holds with Π
(s)
n,m = Ins.

For d ≥ 2, set ν = (n2, . . . , nd), µ = (m2, . . . ,md), σ = (s2, . . . , sd). By definition,

LTmn,s(a, f1 ⊗ · · · ⊗ fd) =

ΓTn,s

[
diag

i1=1,...,m1

Tbn1/m1c(f1)⊗ Γν,σLT
µ
ν,σ

(
a
( i1
m1

, ·
)
, f2 ⊗ · · · ⊗ fd

)
ΓTν,σ

⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s,

(3.1)

where a(i1/m1, ·) : [0, 1]d−1 → C is the function (x2, . . . , xd) 7→ a(i1/m1, x2, . . . , xd). By
induction hypothesis, setting N(ν,µ,σ) = N(νσ)−N(µbν/µcσ), we have

LTµν,σ

(
a
( i1
m1

, ·
)
, f2 ⊗ · · · ⊗ fd

)
= Π(σ)

ν,µ

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbν/µc(f2 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)

]
(Π(σ)
ν,µ)T .(3.2)

Let us work on the argument of the “diag operator” in (3.1). From Lemma 2.2, equation (3.2),
and properties of tensor products (see Section 2.2.2), we get

Tbn1/m1c(f1)⊗ Γν,σLT
µ
ν,σ

(
a
( i1
m1

, ·
)
, f2 ⊗ · · · ⊗ fd

)
ΓTν,σ

(3.3)

= Π(N(νσ),bn1/m1cs1);[2,1]

{
Γν,σLT

µ
ν,σ

(
a
( i1
m1

, ·
)
, f2 ⊗ · · · ⊗ fd

)
ΓTν,σ ⊗ Tbn1/m1c(f1)

}
· (Π(N(νσ),bn1/m1cs1);[2,1])

T

= Π(N(νσ),bn1/m1cs1);[2,1]

·
{

Γν,σΠ(σ)
ν,µ

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbν/µc(f2 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)

]
(Π(σ)
ν,µ)TΓTν,σ

⊗ Tbn1/m1c(f1)

}
(Π(N(νσ),bn1/m1cs1);[2,1])

T

= Π(N(νσ),bn1/m1cs1);[2,1](Γν,σΠ(σ)
ν,µ ⊗ Is1bn1/m1c)

·
{[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbν/µc(f2 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)

]
⊗ Tbn1/m1c(f1)

}
· (Γν,σΠ(σ)

ν,µ ⊗ Is1bn1/m1c)
T (Π(N(νσ),bn1/m1cs1);[2,1])

T .
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Using equation (2.10), Lemma 2.2, Lemma 2.45, and properties of tensor products and direct
sums (see Section 2.2.2), we obtain

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbν/µc(f2 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)

]
⊗ Tbn1/m1c(f1)

(3.4)

= Dµ

(
a
( i1
m1

, ·
))
⊗ Tbν/µc(f2 ⊗ · · · ⊗ fd)⊗ Tbn1/m1c(f1) ⊕ ON(ν,µ,σ)bn1/m1cs1

= Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2]

·
[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn1/m1c(f1)⊗ Tbν/µc(f2 ⊗ · · · ⊗ fd)

]
· (Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2])

T ⊕ ON(ν,µ,σ)bn1/m1cs1

= Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2]

·
[
Dµ

(
a
( i1
m1

, ·
))
⊗ (Ibn1/m1cs1 ⊗ Γbν/µc,σ)TΓbn/mc,s

· Tbn/mc(f1 ⊗ · · · ⊗ fd)ΓTbn/mc,s(Ibn1/m1cs1 ⊗ Γbν/µc,σ)

]
· (Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2])

T ⊕ ON(ν,µ,σ)bn1/m1cs1

=
[
Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2](IN(µ) ⊗ (Ibn1/m1cs1 ⊗ Γbν/µc,σ)TΓbn/mc,s)

⊕ IN(ν,µ,σ)bn1/m1cs1
]

·
[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cs1

]
·
[
Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2](IN(µ) ⊗ (Ibn1/m1cs1 ⊗ Γbν/µc,σ)TΓbn/mc,s)

⊕ IN(ν,µ,σ)bn1/m1cs1
]T
.

Substituting (3.4) into (3.3), we arrive at

Tbn1/m1c(f1)⊗ Γν,σLT
µ
ν,σ

(
a
( i1
m1

, ·
)
, f2 ⊗ · · · ⊗ fd

)
ΓTν,σ

(3.5)

= P (s)
n,m

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cs1

]
(P (s)
n,m)T ,

where

P (s)
n,m = Π(N(νσ),bn1/m1cs1);[2,1](Γν,σΠ(σ)

ν,µ ⊗ Is1bn1/m1c)

·
[
Π(N(µ),bn1/m1cs1, N(bν/µcσ));[1,3,2]

· (IN(µ) ⊗ (Ibn1/m1cs1 ⊗ Γbν/µc,σ)TΓbn/mc,s) ⊕ IN(ν,µ,σ)bn1/m1cs1 ].

Combining (3.5) and (3.1), we obtain

LTmn,s(a, f1 ⊗ · · · ⊗ fd)

= ΓTn,s

[( m1⊕
i1=1

P (s)
n,m

)
diag

i1=1,...,m1

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd)

⊕ ON(ν,µ,σ)bn1/m1cs1

]( m1⊕
i1=1

P (s)
n,m

)T
⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s.
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From Lemma 2.4 and equations (2.10) and (2.23),

diag
i1=1,...,m1

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cs1

]
=

m1⊕
i1=1

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cs1

]

= V (s)
n,m

[
m1⊕
i1=1

[
Dµ

(
a
( i1
m1

, ·
))
⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd)

]

⊕ ON(ν,µ,σ)bn1/m1cm1s1

]
(V (s)
n,m)T

= V (s)
n,m

[
Dm(a)⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cm1s1

]
(V (s)
n,m)T ,

where

V (s)
n,m = Vh(m,n,s);σ,

σ = [1,m1 + 1, 2,m1 + 2, . . . ,m1, 2m1],

h(m,n, s) =
(
N(µ)N(bn/mcs), . . . , N(µ)N(bn/mcs)︸ ︷︷ ︸

m1

,

N(ν,µ,σ)bn1/m1cs1, . . . , N(ν,µ,σ)bn1/m1cs1︸ ︷︷ ︸
m1

)
.

Thus,

LTmn,s(a, f1 ⊗ · · · ⊗ fd)

= ΓTn,s

[( m1⊕
i1=1

P (s)
n,m

)
V (s)
n,m

·
[
Dm(a)⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cm1s1

]
· (V (s)

n,m)T
( m1⊕
i1=1

P (s)
n,m

)T
⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s

= ΓTn,s

[( m1⊕
i1=1

P (s)
n,m

)
V (s)
n,m ⊕ Is1(n1 modm1)s2n2···sdnd

]
·
[
Dm(a)⊗ Tbn/mc(f1 ⊗ · · · ⊗ fd) ⊕ ON(ν,µ,σ)bn1/m1cm1s1+s1(n1 modm1)s2n2···sdnd

]
·
[
(V (s)
n,m)T

( m1⊕
i1=1

P (s)
n,m

)T
⊕ Is1(n1 modm1)s2n2···sdnd

]
Γn,s.

This concludes the proof; note that the permutation matrix Π
(s)
n,m is given by

Π(s)
n,m = ΓTn,s

[( m1⊕
i1=1

P (s)
n,m

)
V (s)
n,m ⊕ Is1(n1 modm1)s2n2···sdnd

]
,

and, moreover, the numberN(ν,µ,σ)bn1/m1cm1s1+s1(n1 modm1)s2n2 · · · sdnd is equal
to N(ns)−N(mbn/mcs).

DEFINITION 3.3 (Multilevel block locally Toeplitz operator). Let m,n, s ∈ Nd, let
a : [0, 1]d → C, and let f ∈ L1([−π, π]d, N(s)). The multilevel block locally Toeplitz (LT)
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operator is defined as the following N(ns)×N(ns) matrix:

LTmn,s(a, f) = Π(s)
n,m

[
Dm(a)⊗ Tbn/mc(f) ⊕ ON(ns)−N(mbn/mcs)

]
(Π(s)
n,m)T ,

where Π
(s)
n,m is the permutation matrix appearing in Theorem 3.2.

REMARK 3.4. We note that LTmn,s(a, f) = LTmn,s(a, g) whenever f = g a.e. Moreover,
suppose that f = f1 ⊗ · · · ⊗ fd a.e., with fj ∈ L1([−π, π], sj) for j = 1, . . . , d; then
LTmn,s(a, f) is equal to LTmn,s(a, f1 ⊗ · · · ⊗ fd), as defined in Definition 3.1. This shows that
Definition 3.3 is an extension of Definition 3.1.

3.1.2. Properties of multilevel block LT operators. For every m,n, s ∈ Nd, every
a, b : [0, 1]d → C, every f, g ∈ L1([−π, π]d, N(s)), and every α, β ∈ C, we have

LTmn,s(a, f)∗ = LTmn,s(a, f
∗),(3.6)

LTmn,s(αa+ βb, f) = αLTmn,s(a, f) + βLTmn,s(b, f),(3.7)

LTmn,s(a, αf + βg) = αLTmn,s(a, f) + βLTmn,s(a, g),(3.8)

‖LTmn,s(a, f)‖1 = ‖Dm(a)‖1 ‖Tbn/mc(f)‖1(3.9)

≤ 1

(2π)d

m∑
i=1

∣∣∣a( i
m

)∣∣∣ ‖f‖L1 N(bn/mc),

where in the last inequality we invoked Theorem 2.44.
REMARK 3.5. Let s ∈ Nd, let a : [0, 1]d → C be a bounded function, and take any

sequence {fk}k ⊂ L1([−π, π]d, N(s)) such that fk → f in L1([−π, π]d, N(s)). By (3.8)
and (3.9), for every k and every n,m ∈ Nd, we have

‖LTmn,s(a, f)− LTmn,s(a, fk)‖1 = ‖LTmn,s(a, f − fk)‖1 ≤ N(n)‖a‖∞‖f − fk‖L1 .

By Theorem 2.39, this implies that {LTmn,s(a, fk)}n
a.c.s.−→ {LTmn,s(a, f)}n as k → ∞ for

everym ∈ Nd and every sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞.
PROPOSITION 3.6. Let s ∈ Nd, let ai : [0, 1]d → C be bounded, and let

fi ∈ L∞([−π, π]d, N(s)) for i = 1, . . . , q. Then, for every n,m ∈ Nd,

∥∥∥∥ q∏
i=1

LTmn,s(ai, fi)− LTmn,s
( q∏
i=1

ai,

q∏
i=1

fi

)∥∥∥∥
1

≤ ε(bn/mc)N(n),(3.10)

where

ε(k) =

∥∥∥∥ q∏
i=1

ai

∥∥∥∥
∞

∥∥∏q
i=1 Tk(fi)− Tk

(∏q
i=1 fi

)∥∥
1

N(k)

and limk→∞ ε(k) = 0 by Theorem 2.46. In particular, for everym ∈ Nd and every sequence
{n = n(n)}n ⊆ Nd such that n→∞ as n→∞,

da.c.s.

({ q∏
i=1

LTmn,s(ai, fi)

}
n

,

{
LTmn,s

( q∏
i=1

ai,

q∏
i=1

fi

)}
n

)
= 0.(3.11)
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Proof. By Definition 3.3 and the properties of tensor products and direct sums, we have∥∥∥∥ q∏
i=1

LTmn,s(ai, fi)− LTmn,s
( q∏
i=1

ai,

q∏
i=1

fi

)∥∥∥∥
1

=

∥∥∥∥Dm( q∏
i=1

ai

)
⊗
( q∏
i=1

Tbn/mc(fi)− Tbn/mc
( q∏
i=1

fi

))
⊕ ON(ns)−N(mbn/mcs)

∥∥∥∥
1

=

∥∥∥∥Dm( q∏
i=1

ai

)∥∥∥∥
1

∥∥∥∥ q∏
i=1

Tbn/mc(fi)− Tbn/mc
( q∏
i=1

fi

)∥∥∥∥
1

≤ N(n)

∥∥∥∥ q∏
i=1

ai

∥∥∥∥
∞

∥∥∏q
i=1 Tbn/mc(fi)− Tbn/mc

(∏q
i=1 fi

)∥∥
1

N(bn/mc)
.

This proves (3.10). Since ε(k) → 0 as k → ∞ by Theorem 2.46, equation (3.11) follows
immediately from (3.10) and Theorems 2.18 and 2.32.

THEOREM 3.7. Let s ∈ Nd, let a(i,j) : [0, 1]d → C be Riemann-integrable and
f (i,j) ∈ L∞([−π, π]d, N(s)), for i = 1, . . . , p and j = 1, . . . , qi. Then, for every m ∈ Nd
and every sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞,{ p∑

i=1

qi∏
j=1

LTmn,s(a
(i,j), f (i,j))

}
n

∼σ
p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ),

where

a(i,j)
m (x) =

m∑
k=1

a(i,j)
( k
m

)
χ[k−1

m , k
m )(x).(3.12)

Proof. By Proposition 3.6 and Remark 2.36, it is enough to show that{ p∑
i=1

LTmn,s

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

)}
n

∼σ
p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ).

Note that

(Π(s)
n,m)T

 p∑
i=1

LTmn,s

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

)Π(s)
n,m

=

( p∑
i=1

Dm

( qi∏
j=1

a(i,j)

)
⊗ Tbn/mc

( qi∏
j=1

f (i,j)

))
⊕ ON(ns)−N(mbn/mcs).(3.13)

Recalling (2.21), for k = 1, . . . ,m, the kth diagonal block of size N(sbn/mc) of the matrix
(3.13) is given by

p∑
i=1

( qi∏
j=1

a(i,j)
( k
m

))
Tbn/mc

( qi∏
j=1

f (i,j)

)
= Tbn/mc

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

)
.

It follows that the singular values of
∑p
i=1 LT

m
n,s(

∏qi
j=1 a

(i,j),
∏qi
j=1 f

(i,j)) are

σ`

(
Tbn/mc

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

))
, ` = 1, . . . , N(sbn/mc), k = 1, . . . ,m,
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plus further N(ns) − N(mbn/mcs) = o(N(n)) singular values which are equal to 0.
Therefore, by Theorem 2.43, since

∑p
i=1

∏qi
j=1 a

(i,j)( km )f (i,j) ∈ L∞([−π, π]d, N(s)), for
any F ∈ Cc(R), we have

lim
n→∞

1

N(ns)

N(ns)∑
r=1

F

(
σr

( p∑
i=1

LTmn,s

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

)))(3.14)

= lim
n→∞

N(mbn/mcs)
N(ns)

1

N(m)

m∑
k=1

1

N(sbn/mc)

×
N(sbn/mc)∑

`=1

F

(
σ`

(
Tbn/mc

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

)))

=
1

N(m)

m∑
k=1

1

(2π)d

∫
[−π,π]d

1

N(s)

N(s)∑
`=1

F

(
σ`

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)(θ)

))
dθ

=
1

(2π)d

∫
[0,1]d

∫
[−π,π]d

1

N(s)

N(s)∑
`=1

F

(
σ`

( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

))
dθdx.

This concludes the proof.
THEOREM 3.8. Let s ∈ Nd, let a(i,j) : [0, 1]d → C be Riemann-integrable and

f (i,j) ∈ L∞([−π, π]d, N(s)), for i = 1, . . . , p and j = 1, . . . , qi. Then, for every m ∈ Nd
and every sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞,{

<
( p∑
i=1

qi∏
j=1

LTmn,s(a
(i,j), f (i,j))

)}
n

∼λ <
( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

)
,

where a(i,j)
m is defined in (3.12).

Proof. The proof follows the same pattern as the proof of Theorem 3.7. By Proposition 3.6
and Remark 2.36, it is enough to show that{

<
( p∑
i=1

LTmn,s

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

))}
n

∼λ <
( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

)
.

Note that

(Π(s)
n,m)T

<( p∑
i=1

LTmn,s

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

))Π(s)
n,m

= <
( p∑
i=1

Dm

( qi∏
j=1

a(i,j)

)
⊗ Tbn/mc

( qi∏
j=1

f (i,j)

))
⊕ ON(ns)−N(mbn/mcs).(3.15)

Recalling (2.21) and (2.22), for k = 1, . . . ,m, the kth diagonal block of size N(sbn/mc)
of the matrix (3.15) is given by

<
( p∑
i=1

( qi∏
j=1

a(i,j)
( k
m

))
Tbn/mc

( qi∏
j=1

f (i,j)

))
= Tbn/mc

(
<
( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

))
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: MULTIDIMENSIONAL CASE 147

It follows that the eigenvalues of <(
∑p
i=1 LT

m
n,s(

∏qi
j=1 a

(i,j),
∏qi
j=1 f

(i,j))) are

λ`

(
Tbn/mc

(
<
( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

)))
, ` = 1, . . . , N(s bn/mc), k = 1, . . . ,m,

plus furtherN(ns)−N(mbn/mcs) = o(N(n)) eigenvalues which are equal to 0. Therefore,
by Theorem 2.43, since <(

∑p
i=1

∏qi
j=1 a

(i,j)( km )f (i,j)) ∈ L∞([−π, π]d, N(s)), following
the same derivation as in (3.14) we obtain, for any F ∈ Cc(C),

lim
n→∞

1

N(sn)

N(sn)∑
r=1

F

(
λr

(
<
( p∑
i=1

LTmn,s

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

))))

=
1

(2π)d

∫
[0,1]d

∫
[−π,π]d

1

N(s)

N(s)∑
`=1

F

(
λ`

(
<
( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

)))
dθdx.

This concludes the proof.
PROPOSITION 3.9. Let s ∈ Nd, let a : [0, 1]d → C be a Riemann-integrable function and

f ∈ L1([−π, π]d, N(s)). Then, for everym ∈ Nd and every sequence {n = n(n)}n ⊆ Nd
such that n→∞ as n→∞, we have

{LTmn,s(a, f)}n ∼σ am(x)f(θ),

where

am(x) =

m∑
k=1

a
( k
m

)
χ[k−1

m , k
m )(x).

Proof. Take any sequence {fk}k ⊂ L∞([−π, π]d, N(s)) such that fk → f a.e. and in
L1([−π, π]d, N(s)). We have:
• {LTmn,s(a, fk)}n

a.c.s.−→ {LTmn,s(a, f)}n by Remark 3.5;
• {LTmn,s(a, fk)}n ∼σ am(x)fk(θ) by Theorem 3.7;
• am(x)fk(θ)→ am(x)f(θ) a.e. (and hence also in measure).
We conclude that {LTmn,s(a, f)}n ∼σ am(x)f(θ) by Theorem 2.34.

3.2. Definition of multilevel block LT sequences. The notion of multilevel block LT
sequences is formalized in the next definition.

DEFINITION 3.10 (Multilevel block locally Toeplitz sequence). Let s ∈ Nd, let {An}n
be a d-level N(s)-block matrix-sequence, let a : [0, 1]d→C be Riemann-integrable and f ∈
L1([−π, π]d, N(s)). We say that {An}n is a (d-level s-block) locally Toeplitz (LT) sequence
with symbol a(x)f(θ), and we write {An}n ∼LT a(x)f(θ), if {LTmn,s(a, f)}n

a.c.s.−→ {An}n
asm→∞.

In what follows, unless specified otherwise, whenever we write a relation such as
{An}n ∼LT a(x)f(θ), it is understood that {An}n is a d-level s-block LT sequence as
in Definition 3.10, so in particular the function a : [0, 1]d → C is Riemann-integrable and
f ∈ L1([−π, π]d, N(s)).

3.3. Fundamental examples of multilevel block LT sequences. In this section we
provide three fundamental examples of multilevel block LT sequences: zero-distributed
sequences, sequences of multilevel block diagonal sampling matrices, and multilevel block
Toeplitz sequences. These may be regarded as the “building blocks” of the theory of multilevel
block GLT sequences because from them we can construct through algebraic operations a lot
of other matrix-sequences which will turn out to be multilevel block GLT sequences.
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3.3.1. Zero-distributed sequences. We show that any zero-distributed sequence is a
multilevel block LT sequence with symbol given by the zero matrix.

THEOREM 3.11. Let s ∈ Nd, and let {Zn}n be a d-level N(s)-block matrix-sequence.
The following statements are equivalent.
1. {Zn}n ∼σ 0.
2. {ON(sn)}n

a.c.s.−→ {Zn}n.
3. {Zn}n ∼LT ON(s).

Proof. (1 ⇐⇒ 2) By Theorem 2.32, we have {ON(sn)}n
a.c.s.−→ {Zn}n if and only if

da.c.s.({ON(sn)}n, {Zn}n) = 0 if and only if {Zn}n ∼σ 0.
(2 ⇐⇒ 3) This equivalence follows from Definition 3.10 and the observation that

LTmn,s(0, ON(s)) = ON(sn) and 0ON(s) = ON(s).

3.3.2. Sequences of multilevel block diagonal sampling matrices. We are going to
see in Theorem 3.14 that {ΓTn,sDn,s(a)Γn,s}n = {Dn(aIN(s))}n ∼LT a(x)IN(s) whenever
s ∈ Nd, a : [0, 1]d → C is Riemann-integrable and n = n(n) → ∞ as n → ∞. To prove
Theorem 3.14 we shall need the following lemmas; cf. [40, Lemma 5.6] and [41, Lemma 4.1].

LEMMA 3.12. Let C be an `× ` matrix and suppose that

‖C‖pp ≤ ε`′,

where p ∈ [1,∞), ε ≥ 0, and `′ ≥ 0. Then we can write C in the form

C = R+N, rank(R) ≤ ε
1

p+1 `′, ‖N‖ ≤ ε
1

p+1 .

LEMMA 3.13. LetM be any infinite subset of N. For every m ∈M, let {x(m,k)}k∈Nd

be a family of numbers such that x(m,k)→ x(m) as k→∞, where x(m)→ 0 as m→∞.
Then there exists a family {m(k)}k∈Nd ⊆M such that m(k)→∞ and x(m(k),k)→ 0 as
k→∞.

THEOREM 3.14. If a : [0, 1]d → C is Riemann-integrable, then it holds that
{ΓTn,sDn,s(a)Γn,s}n = {Dn(aIN(s))}n ∼LT a(x)IN(s) for every s ∈ Nd and every se-
quence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞.

Proof. The proof consists of two steps. We first show that the thesis holds if a is continuous.
Then, by using an approximation argument, we show that it holds for any Riemann-integrable
function a.
Step 1. We prove by induction on d that if a ∈ C([0, 1]d) and ωa(·) is the modulus of
continuity of a, then

(3.16)

ΓTn,sDn,s(a)Γn,s = LTmn,s(a, IN(s)) +Rn,m +Nn,m,

rank(Rn,m) ≤ N(sn)

d∑
i=1

mi

ni
, ‖Nn,m‖ ≤

d∑
i=1

ωa

( 1

mi
+
mi

ni

)
.

Since ωa(δ)→ 0 as δ → 0, the convergence {LTmn,s(a, IN(s))}n
a.c.s.−→ {ΓTn,sDn,s(a)Γn,s}n

(and hence the relation {ΓTn,sDn,s(a)Γn,s}n ∼LT a(x)IN(s)) follows immediately from
Definition 2.40 (take nm such that n ≥m2 for n ≥ nm, and take c(m) =

∑d
i=1 1/mi and

ω(m) =
∑d
i=1 ωa(2/mi)).

In the case d = 1, we have s = (s), m = (m), and n = n(n) = (dn) for some
sequence of numbers {dn}n such that dn →∞ as n→∞. Considering that Γdn,s = Idns,
equation (3.16) reduces to

Ddn,s(a) = LTmdn,s(a, Is) +Rdn,m +Ndn,m,

rank(Rdn,m) ≤ sm, ‖Ndn,m‖ ≤ ωa
( 1

m
+
m

dn

)
.
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This is nothing else than equation (3.15) from [8] with dn in place of n, and it was already
proved in [8]. In the case d > 1, we have

LTmn,s(a, IN(s)) = LTm1,...,md
n1,...,nd,s1,...,sd

(a, Is1 ⊗ · · · ⊗ Isd)

(3.17)

= ΓTn,s

[
diag

j1=1,...,m1

[
Is1bn1/m1c

⊗ Γn2,...,nd,s2,...,sdLT
m2,...,md
n2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
)
, Is2 ⊗ · · · ⊗ Isd

)
ΓTn2,...,nd,s2,...,sd

]
⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s,

= ΓTn,s

[
diag

j1=1,...,m1

[
diag

i1=(j1−1)s1bn1/m1c+1,...,j1s1bn1/m1c

Γn2,...,nd,s2,...,sdLT
m2,...,md
n2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
)
, Is2···sd

)
ΓTn2,...,nd,s2,...,sd

]
⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s,

where, for any x̂1 ∈ [0, 1], the function a(x̂1, ·) is defined as follows:

a(x̂1, ·) : [0, 1]d−1 → C, (x2, . . . , xd) 7→ a(x̂1, x2, . . . , xd).

Moreover, by (2.25),

ΓTn,sDn,s(a)Γn,s = ΓTn,s

[
diag

i1=1,...,n1s1

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))

]
Γn,s

(3.18)

= ΓTn,s

[
diag

j1=1,...,m1

[
diag

i1=(j1−1)s1bn1/m1c+1,...,j1s1bn1/m1c
Dn2,...,nd,s2,...,sd(a(x

(n1)
i1,s1

, ·))

]

⊕ diag
i1=m1s1bn1/m1c+1,...,n1s1

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))

]
Γn,s.

For j1 = 1, . . . ,m1 and i1 = (j1 − 1)s1bn1/m1c + 1, . . . , j1s1bn1/m1c, by the induction
hypothesis we have

ΓTn2,...,nd,s2,...,sd
Dn2,...,nd,s2,...,sd(a(x

(n1)
i1,s1

, ·))Γn2,...,nd,s2,...,sd(3.19)

− LTm2,...,md
n2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
)
, Is2···sd

)
= ΓTn2,...,nd,s2,...,sd

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))Γn2,...,nd,s2,...,sd

− ΓTn2,...,nd,s2,...,sd
Dn2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
))

Γn2,...,nd,s2,...,sd

+R[j1/m1]
n2,...,nd,m2,...,md

+N [j1/m1]
n2,...,nd,m2,...,md

,
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where

rank(R[j1/m1]
n2,...,nd,m2,...,md

) ≤ s2n2 · · · sdnd
d∑
k=2

mk

nk
,

‖N [j1/m1]
n2,...,nd,m2,...,md

‖ ≤
d∑
k=2

ωa(j1/m1,·)

( 1

mk
+
mk

nk

)
≤

d∑
k=2

ωa

( 1

mk
+
mk

nk

)
.

Moreover, since for j1 = 1, . . . ,m1 and i1 = (j1 − 1)s1bn1/m1c+ 1, . . . , j1s1bn1/m1c we
have

(j1 − 1)

⌊
n1

m1

⌋
+ 1 ≤

⌊
i1 − 1

s1

⌋
+ 1 ≤ j1

⌊
n1

m1

⌋
and ∣∣∣∣x(n1)

i1,s1
− j1
m1

∣∣∣∣ =

∣∣∣∣ 1

n1

(⌊ i1 − 1

s1

⌋
+ 1
)
− j1
m1

∣∣∣∣ ≤ j1
m1
− (j1 − 1)bn1/m1c

n1

≤ j1
m1
− (j1 − 1)(n1/m1 − 1)

n1
≤ 1

m1
+
m1

n1
,

we infer that∥∥∥∥Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))−Dn2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
))∥∥∥∥ ≤ ωa( 1

m1
+
m1

n1

)
.

Thus, recalling (3.19),

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))

− Γn2,...,nd,s2,...,sdLT
m2,...,md
n2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
)
, Is2···sd

)
ΓTn2,...,nd,s2,...,sd

= R̂[j1/m1]
n2,...,nd,m2,...,md

+ N̂ [j1/m1, i1/n1]
n,m ,

rank(R̂[j1/m1]
n2,...,nd,m2,...,md

) ≤ s2n2 · · · sdnd
d∑
k=2

mk

nk
,(3.20)

‖N̂ [j1/m1, i1/n1]
n,m ‖ ≤

d∑
k=1

ωa

( 1

mk
+
mk

nk

)
.

Hence, by (3.17) and (3.18),

ΓTn,sDn,s(a)Γn,s − LTmn,s(a, IN(s))

= ΓTn,s

[
diag

j1=1,...,m1

[
diag

i1=(j1−1)s1bn1/m1c+1,...,j1s1bn1/m1c[
Dn2,...,nd,s2,...,sd(a(x

(n1)
i1,s1

, ·))

− Γn2,...,nd,s2,...,sdLT
m2,...,md
n2,...,nd,s2,...,sd

(
a
( j1
m1

, ·
)
, Is2···sd

)
ΓTn2,...,nd,s2,...,sd

]]
⊕ diag

i1=m1s1bn1/m1c+1,...,n1s1

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))
]
Γn,s
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= ΓTn,s

[
diag

j1=1,...,m1

[
diag

i1=(j1−1)s1bn1/m1c+1,...,j1s1bn1/m1c(
R̂[j1/m1]
n2,...,nd,m2,...,md

+ N̂ [j1/m1, i1/n1]
n,m

)]
⊕ diag

i1=m1s1bn1/m1c+1,...,n1s1

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))
]
Γn,s

= Rn,m +Nn,m,

where

Rn,m = ΓTn,s

[
diag

j1=1,...,m1

[
diag

i1=(j1−1)s1bn1/m1c+1,...,j1s1bn1/m1c
R̂[j1/m1]
n2,...,nd,m2,...,md

]

⊕ diag
i1=m1s1bn1/m1c+1,...,n1s1

Dn2,...,nd,s2,...,sd(a(x
(n1)
i1,s1

, ·))
]
Γn,s,

Nn,m = ΓTn,s

[
diag

j1=1,...,m1

[
diag

i1=(j1−1)s1bn1/m1c+1,...,j1s1bn1/m1c
N̂ [j1/m1, i1/n1]
n,m

]

⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s.

By (3.20), (2.7), and (2.8), we have

rank(Rn,m) ≤ m1s1

⌊
n1

m1

⌋
s2n2 · · · sdnd

d∑
k=2

mk

nk
+ s1(n1 modm1)s2n2 · · · sdnd

≤ s1n1s2n2 · · · sdnd
d∑
k=2

mk

nk
+ s1m1s2n2 · · · sdnd = N(sn)

d∑
k=1

mk

nk
,

‖Nn,m‖ ≤
d∑
k=1

ωa

( 1

mk
+
mk

nk

)
,

and (3.16) is proved.
Step 2. Let a : [0, 1]d → C be any Riemann-integrable function. Take any sequence of
continuous functions am : [0, 1]d → C such that am → a in L1([0, 1]d). By Step 1, we have
{Dn(amIN(s))}n ∼LT am(x)IN(s). Hence, {LTkn,s(am, IN(s))}n

a.c.s.−→ {Dn(amIN(s))}n
as k→∞, i.e., for every m and every k ∈ Nd there is nm,k such that, for n ≥ nm,k,

Dn(amIN(s)) = LTkn,s(am, IN(s)) +Rn,m,k +Nn,m,k,

rank(Rn,m,k) ≤ c(m,k)N(n), ‖Nn,m,k‖ ≤ ω(m,k),

where limk→∞ c(m,k) = limk→∞ ω(m,k) = 0. Moreover, we have {Dn(amIN(s))}n
a.c.s.−→

{Dn(aIN(s))}n. Indeed,

‖Dn(aIN(s))−Dn(amIN(s))‖1 = N(s)

n∑
j=1

∣∣∣∣a( jn)− am( jn)
∣∣∣∣ = ε(m,n)N(n),

where

(3.21) ε(m,n) =
N(s)

N(n)

n∑
j=1

∣∣∣∣a( jn)− am( jn)
∣∣∣∣ .
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By the Riemann-integrability of |a− am| and the fact that am → a in L1([0, 1]d), the quantity
ε(m,n) satisfies

lim
m→∞

lim
n→∞

ε(m,n) =N(s) lim
m→∞

∫
[0,1]d

|a(x)− am(x)|dx= lim
m→∞

N(s)‖a− am‖L1 = 0.

By Theorem 2.39, this implies that {Dn(amIN(s))}n
a.c.s.−→ {Dn(aIN(s))}n. Thus, for every

m there exists nm such that, for n ≥ nm,

Dn(aIN(s)) = Dn(amIN(s)) +Rn,m +Nn,m,

rank(Rn,m) ≤ c(m)N(n), ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. It follows that, for every m, every k ∈ Nd, and
every n ≥ max(nm, nm,k),

Dn(aIN(s)) = LTkn,s(a, IN(s)) +
[
LTkn,s(am, IN(s))− LTkn,s(a, IN(s))

]
+ (Rn,m +Rn,m,k) + (Nn,m +Nn,m,k),

rank(Rn,m +Rn,m,k) ≤ (c(m) + c(m,k))N(n),

‖Nn,m +Nn,m,k‖ ≤ ω(m) + ω(m,k),

‖LTkn,s(am, IN(s))−LTkn,s(a, IN(s))‖1≤
N(sn)

N(k)

k∑
j=1

∣∣∣∣a( jk)−am( jk)
∣∣∣∣= ε(m,k)N(n),

where the last inequality follows from (3.7)–(3.9) and ε(m,k) is defined as in (3.21) with “n”
replaced by “k”. Let {m(k)}k∈Nd be a family of indices such that m(k) → ∞ as k → ∞
and

lim
k→∞

ε(m(k),k) = lim
k→∞

c(m(k),k) = lim
k→∞

ω(m(k),k) = 0.

Such a family exists by Lemma 3.13 (apply the lemma with x(m,k) = ε(m,k) + c(m,k) +
ω(m,k)). Then, for every k ∈ Nd and every n ≥ max(nm(k), nm(k),k),

Dn(aIN(s)) = LTkn,s(a, IN(s)) +
[
LTkn,s(am(k), IN(s))− LTkn,s(a, IN(s))

]
+ (Rn,m(k) +Rn,m(k),k) + (Nn,m(k) +Nn,m(k),k),

rank(Rn,m(k) +Rn,m(k),k) ≤ (c(m(k)) + c(m(k),k))N(n),

‖Nn,m(k) +Nn,m(k),k‖ ≤ ω(m(k)) + ω(m(k),k),

‖LTkn,s(am(k), IN(s))− LTkn,s(a, IN(s))‖1 ≤ ε(m(k),k)N(n).

By Lemma 3.12, we can decompose LTkn,s(am(k), IN(s)) − LTkn,s(a, IN(s)) as the sum
of a small-rank term R̂n,k, with rank bounded by

√
ε(m(k),k)N(n), plus a small-norm

term N̂n,k, with norm bounded by
√
ε(m(k),k). This shows that {LTkn,s(a, IN(s))}n

a.c.s.−→
{Dn(aIN(s))}n as k→∞, hence {Dn(aIN(s))}n ∼LT a(x)IN(s).

3.3.3. Multilevel block Toeplitz sequences.
THEOREM 3.15. If s ∈ Nd and f ∈ L1([−π, π]d, N(s)), then {Tn(f)}n ∼LT f(θ) for

every sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞.
Proof. The proof consists of three steps. We first show that the thesis holds if f is a

separable d-variate matrix-valued trigonometric polynomial. Then, by linearity, we show
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that it holds if f is an arbitrary d-variate matrix-valued trigonometric polynomial. Finally,
by using an approximation argument, we prove the theorem under the sole assumption that
f ∈ L1([−π, π]d, N(s)).
Step 1. We show by induction on d that if f is a separable d-variate matrix-valued trigonometric
polynomial of the form f = f1 ⊗ · · · ⊗ fd, with fj a univariate sj × sj matrix-valued
trigonometric polynomial of degree qj , then

(3.22) Tn(f) = LTmn,s(1, f) +Rn,m, rank(Rn,m) ≤ N(sn)

d∑
i=1

(2qi + 1)mi

ni
.

Once this is done, the convergence {LTmn,s(1, f)}n
a.c.s.−→ {Tn(f)}n (and hence the relation

{Tn(f)}n ∼LT f(θ)) follows immediately from Definition 2.40 (take nm such that n ≥m2,
for n ≥ nm, and take c(m) =

∑d
i=1(2qi + 1)/mi and ω(m) = 0).

In the case d = 1, we have s = (s),m = (m), and n = n(n) = (dn) for some sequence
of numbers {dn}n such that dn →∞ as n→∞. In this case, equation (3.22) reduces to

(3.23) Tdn(f) = LTmdn,s(1, f) +Rdn,m, rank(Rdn,m) ≤ s(2q + 1)m,

where q is the degree of f . This is nothing else than equation (3.17) from [8] with dn in
place of n, and it was already proved in [8]. In the case d > 1, let f = f1 ⊗ · · · ⊗ fd with
fj a univariate sj × sj matrix-valued trigonometric polynomial of degree qj . By induction
hypothesis,

LTm2,...,md
n2,...,nd,s2,...,sd

(1, f2 ⊗ · · · ⊗ fd) = Tn2,...,nd
(f2 ⊗ · · · ⊗ fd)−Rn2,...,nd,m2,...,md

,

rank(Rn2,...,nd,m2,...,md
) ≤ s2n2 · · · sdnd

d∑
i=2

(2qi + 1)mi

ni
.

From the definition of LTmn,s(1, f) and the properties of tensor products and direct sums, we
obtain

LTmn,s(1, f)

= ΓTn,s

[
diag

j1=1,...,m1

[
Tbn1/m1c(f1)

⊗ Γn2,...,nd,s2,...,sdLT
m2,...,md
n2,...,nd,s2,...,sd

(1, f2 ⊗ · · · ⊗ fd)ΓTn2,...,nd,s2,...,sd

]
⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s

= ΓTn,s

[[
diag

j1=1,...,m1

Tbn1/m1c(f1)

]
⊗ Γn2,...,nd,s2,...,sd

[
Tn2,...,nd

(f2 ⊗ · · · ⊗ fd)−Rn2,...,nd,m2,...,md

]
ΓTn2,...,nd,s2,...,sd

⊕ Os1(n1 modm1)s2n2···sdnd

]
Γn,s

= ΓTn,s

[[
diag

j1=1,...,m1

Tbn1/m1c(f1) ⊕ Os1(n1 modm1)

]

⊗ Γn2,...,nd,s2,...,sd

[
Tn2,...,nd

(f2 ⊗ · · · ⊗ fd)−Rn2,...,nd,m2,...,md

]
ΓTn2,...,nd,s2,...,sd

]
Γn,s

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

154 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

= ΓTn,s(In1s1 ⊗ Γn2,...,nd,s2,...,sd)

·
[
LTm1

n1,s1(1, f1)⊗
[
Tn2,...,nd

(f2 ⊗ · · · ⊗ fd)−Rn2,...,nd,m2,...,md

]]
· (In1s1 ⊗ Γn2,...,nd,s2,...,sd)TΓn,s

= ΓTn,s(In1s1 ⊗ Γn2,...,nd,s2,...,sd)

[
LTm1

n1,s1(1, f1)⊗ Tn2,...,nd
(f2 ⊗ · · · ⊗ fd)− R̃n,m

]
· (In1s1 ⊗ Γn2,...,nd,s2,...,sd)TΓn,s,

where R̃n,m = LTm1
n1,s1(1, f1)⊗Rn2,...,nd,m2,...,md

satisfies

rank(R̃n,m) ≤ N(ns)

d∑
i=2

(2qi + 1)mi

ni
.

Using (3.23) with dn = n1(n) = n1, we can decompose LTm1
n1,s1(1, f1) into the sum of

Tn1
(f1) plus a small-rank matrix −Rn1,m1

, whose rank is bounded by s1(2q1 + 1)m1. Invok-
ing Lemma 2.45, we obtain

LTmn,s(1, f)

= ΓTn,s(In1s1⊗Γn2,...,nd,s2,...,sd)

[
(Tn1

(f1)−Rn1,m1
)⊗Tn2,...,nd

(f2 ⊗ · · · ⊗ fd)− R̃n,m
]

· (In1s1 ⊗ Γn2,...,nd,s2,...,sd)TΓn,s

= ΓTn,s(In1s1 ⊗ Γn2,...,nd,s2,...,sd)

[
Tn1(f1)⊗ Tn2,...,nd

(f2 ⊗ · · · ⊗ fd)− R̂n,m
]

· (In1s1 ⊗ Γn2,...,nd,s2,...,sd)TΓn,s

= ΓTn,s

[
Tn1

(f1)⊗ Tn2
(f2)⊗ · · · ⊗ Tnd

(fd)− R̊n,m
]
Γn,s

= Tn(f1 ⊗ f2 ⊗ · · · ⊗ fd) +Rn,m,

where

Rn,m = ΓTn,s(In1s1 ⊗ Γn2,...,nd,s2,...,sd)
[
−Rn1,m1 ⊗ Tn2,...,nd

(f2 ⊗ · · · ⊗ fd)

− R̃n,m
]
(In1s1 ⊗ Γn2,...,nd,s2,...,sd)TΓn,s

satisfies

rank(Rn,m) ≤ s1(2q1 + 1)m1s2n2 · · · sdnd +N(ns)

d∑
i=2

(2qi + 1)mi

ni

= N(ns)

d∑
i=1

(2qi + 1)mi

ni
.

This completes the proof of (3.22).
Step 2. Let f be any d-variate N(s) × N(s) matrix-valued trigonometric polynomial. By
definition, f is a finite linear combination of the d-variate Fourier frequencies eij·θ, j ∈ Zd,
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and so we can write f(θ) =
∑q
j=−q fj e

ij·θ for some fj ∈ CN(s)×N(s). Hence,

f(θ) =

q∑
j=−q

fj e
ij·θ =

q∑
j=−q

s∑
`,k=1

eij·θ(fj)`kE
(s)
`k

=

q∑
j=−q

s∑
`,k=1

(fj)`k(eij1θ1E
(s1)
`1k1

)⊗ · · · ⊗ (eijdθdE
(sd)
`dkd

).

By linearity,

Tn(f) =

q∑
j=−q

s∑
`,k=1

(fj)`k Tn((eij1θ1E
(s1)
`1k1

)⊗ · · · ⊗ (eijdθdE
(sd)
`dkd

)),

LTmn,s(1, f) =

q∑
j=−q

s∑
`,k=1

(fj)`k LT
m
n,s(1, (e

ij1θ1E
(s1)
`1k1

)⊗ · · · ⊗ (eijdθdE
(sd)
`dkd

)).

The thesis now follows from Step 1 and Remark 2.42.
Step 3. Let f ∈ L1([−π, π]d, N(s)). Since the set of d-variate N(s) × N(s) matrix-
valued trigonometric polynomials is dense in L1([−π, π]d, N(s)) (see, e.g., [40, Lemma 2.2]),
there is a sequence of d-variate N(s) × N(s) matrix-valued trigonometric polynomials
fm : [−π, π]d → CN(s)×N(s) such that fm → f in L1([−π, π]d, N(s)). By Step 2,
{Tn(fm)}n ∼LT fm(θ). Hence, {LTkn,s(1, fm)}n

a.c.s.−→ {Tn(fm)}n as k → ∞, i.e., for
every m and every k ∈ Nd there is nm,k such that, for n ≥ nm,k,

Tn(fm) = LTkn,s(1, fm) +Rn,m,k +Nn,m,k,

rank(Rn,m,k) ≤ c(m,k)N(n), ‖Nn,m,k‖ ≤ ω(m,k),

where limk→∞ c(m,k) = limk→∞ ω(m,k) = 0. Moreover, by Theorem 2.44,

‖Tn(f)− Tn(fm)‖1 = ‖Tn(f − fm)‖1 ≤ N(n)‖f − fm‖L1 ,

and so {Tn(fm)}n
a.c.s.−→ {Tn(f)}n by Theorem 2.39. Thus, for every m there exists nm such

that, for n ≥ nm,

Tn(f) = Tn(fm) +Rn,m +Nn,m,

rank(Rn,m) ≤ c(m)N(n), ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. It follows that, for every m, every k ∈ Nd, and
every n ≥ max(nm, nm,k),

Tn(f) = LTkn,s(1, f) +
[
LTkn,s(1, fm)− LTkn,s(1, f)

]
+ (Rn,m +Rn,m,k) + (Nn,m +Nn,m,k),

rank(Rn,m +Rn,m,k) ≤ (c(m) + c(m,k))N(n),

‖Nn,m +Nn,m,k‖ ≤ ω(m) + ω(m,k),

‖LTkn,s(1, fm)− LTkn,s(1, f)‖1 = ‖LTkn,s(1, fm − f)‖1 ≤ N(n)‖fm − f‖L1 ,

where the last inequality follows from (3.9). Let {m(k)}k∈Nd be a family of indices such that
m(k)→∞ as k→∞ and

lim
k→∞

c(m(k),k) = lim
k→∞

ω(m(k),k) = 0.
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Such a family exists by Lemma 3.13 (apply the lemma with x(m,k) = c(m,k) + ω(m,k)).
Then, for every k ∈ Nd and every n ≥ max(nm(k), nm(k),k),

Tn(f) = LTkn,s(1, f) +
[
LTkn,s(1, fm(k))− LTkn,s(1, f)

]
+ (Rn,m(k) +Rn,m(k),k) + (Nn,m(k) +Nn,m(k),k),

rank(Rn,m(k) +Rn,m(k),k) ≤ (c(m(k)) + c(m(k),k))N(n),

‖Nn,m(k) +Nn,m(k),k‖ ≤ ω(m(k)) + ω(m(k),k),

‖LTkn,s(1, fm(k))− LTkn,s(1, f)‖1 ≤ N(n)‖fm(k) − f‖L1 .

By Lemma 3.12, we can decompose LTkn,s(1, fm(k))−LTkn,s(1, f) as the sum of a small-rank
term R̂n,k, with rank bounded by

√
‖fm(k) − f‖L1 N(n), plus a small-norm term N̂n,k,

with norm bounded by
√
‖fm(k) − f‖L1 . This shows that {LTkn,s(1, f)}n

a.c.s.−→ {Tn(f)}n as
k→∞, hence {Tn(f)}n ∼LT f(θ).

3.4. Singular value and spectral distribution of sums of products of multilevel block
LT sequences. The main results of this section are Theorems 3.17 and 3.18. In order to prove
them, we shall need the following lemma.

LEMMA 3.16. If {An}n ∼LT a(x)f(θ), then {An}n ∼σ a(x)f(θ) and {An}n is s.u.
Proof. We have:

• {LTmn,s(a, f)}n
a.c.s.−→ {An}n by definition of multilevel block LT sequences;

• {LTmn,s(a, f)}n ∼σ am(x)f(θ) with am(x) =
∑m
k=1 a( km )χ[k−1

m , k
m )(x) by Proposi-

tion 3.9;
• am(x)f(θ) → a(x)f(θ) a.e. (and hence also in measure) as m → ∞ by Lemma 2.10

because a(x) is Riemann-integrable.
We conclude that {An}n ∼σ a(x)f(θ) by Theorem 2.34 and Remark 2.41, and so {An}n is
s.u. by Proposition 2.22.

THEOREM 3.17. If {A(i,j)
n }n ∼LT a

(i,j)(x)f (i,j)(θ), for i = 1, . . . , p and j = 1, . . . , qi,
then { p∑

i=1

qi∏
j=1

A(i,j)
n

}
n

∼σ
p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ).

Proof. Let

An =

p∑
i=1

qi∏
j=1

A(i,j)
n , An,m =

p∑
i=1

qi∏
j=1

LTmn,s(a
(i,j), f (i,j)),

κ(x,θ) =

p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ), κm(x,θ) =

p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ),

where

a(i,j)
m (x) =

m∑
k=1

a(i,j)
( k
m

)
χ[k−1

m , k
m )(x).

Since {LTmn,s(a(i,j), f (i,j))}n
a.c.s.−→ {A(i,j)

n }n by definition of multilevel block LT sequences,
we have:
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• {An,m}n
a.c.s.−→ {An}n by Lemma 3.16, Proposition 2.21, and Remark 2.42;

• {An,m}n ∼σ κm(x,θ) by Theorem 3.7;
• κm(x,θ)→ κ(x,θ) a.e. (and hence also in measure) asm→∞ by Lemma 2.10 because

each a(i,j)(x) is Riemann-integrable.
We conclude that {An}n ∼σ κ(x,θ) by Theorem 2.34 and Remark 2.41.

THEOREM 3.18. If {A(i,j)
n }n ∼LT a

(i,j)(x)f (i,j)(θ), for i = 1, . . . , p and j = 1, . . . , qi,
then {

<
( p∑
i=1

qi∏
j=1

A(i,j)
n

)}
n

∼λ <
( p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ)

)
.

Proof. The proof is essentially the same as the proof of Theorem 3.17. Define the matrices
An, An,m and the functions κ(x,θ), κm(x,θ) as in the proof of Theorem 3.17. Since
{LTmn,s(a(i,j), f (i,j))}n

a.c.s.−→ {A(i,j)
n }n by definition of multilevel block LT sequences, we

have:
• {<(An,m)}n

a.c.s.−→ {<(An)}n by Lemma 3.16, Proposition 2.21, and Remark 2.42;
• {<(An,m)}n ∼λ <(κm(x,θ)) by Theorem 3.8;
• <(κm(x,θ))→ <(κ(x,θ)) a.e. (and hence also in measure) asm→∞ by Lemma 2.10

because each a(i,j)(x) is Riemann-integrable.
We conclude that {<(An)}n ∼λ <(κ(x,θ)) by Theorem 2.35 and Remark 2.41.

3.5. Algebraic properties of multilevel block LT sequences. Proposition 3.19 collects
the most elementary algebraic properties of multilevel block LT sequences, which follow
from Definition 3.10, the properties of the multilevel block LT operator (see (3.6)–(3.8)), and
Remark 2.42.

PROPOSITION 3.19. The following properties hold.
• If {An}n ∼LT a(x)f(θ), then {A∗n}n ∼LT a(x) f(θ)∗ = (a(x)f(θ))∗.
• If {An}n ∼LT a(x)f(θ), then {αAn}n ∼LT αa(x)f(θ) for all α ∈ C.
• If {A(i)

n }n ∼LT a(x)fi(θ), i = 1, . . . , r, then {
∑r
i=1A

(i)
n }n ∼LT a(x)

∑r
i=1 fi(θ).

• If {A(i)
n }n ∼LT ai(x)f(θ), i = 1, . . . , r, then {

∑r
i=1A

(i)
n }n ∼LT

∑r
i=1 ai(x)f(θ).

In Theorem 3.20, we show, under mild assumptions, that the product of multilevel block
LT sequences is again a multilevel block LT sequence with symbol given by the product of the
symbols.

THEOREM 3.20. Suppose that {An}n ∼LT a(x)f(θ) and {Ãn}n ∼LT ã(x)f̃(θ), where
f ∈ Lp([−π, π]d, N(s)), f̃ ∈ Lq([−π, π]d, N(s)), and 1 ≤ p, q ≤ ∞ are conjugate expo-
nents. Then

{AnÃn}n ∼LT a(x)ã(x)f(θ)f̃(θ).

Proof. By Lemma 3.16, every multilevel block LT sequence is s.u., so in particular {An}n
and {Ãn}n are s.u. Since, by definition of multilevel block LT sequences,

{LTmn,s(a, f)}n
a.c.s.−→ {An}n asm→∞,

{LTmn,s(ã, f̃)}n
a.c.s.−→ {Ãn}n asm→∞,

Remark 2.42 yields

{LTmn,s(a, f)LTmn,s(ã, f̃)}n
a.c.s.−→ {AnÃn}n asm→∞.

Using Proposition 3.6, especially (3.11), we obtain

{LTmn,s(aã, f f̃)}n
a.c.s.−→ {AnÃn}n asm→∞,
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hence {AnÃn}n ∼LT a(x)ã(x)f(θ)f̃(θ).
As a consequence of Theorems 3.14, 3.15, and 3.20, we immediately obtain the following

result.
THEOREM 3.21. If s ∈ Nd, a : [0, 1]d→C is Riemann-integrable, and f ∈ L1([−π, π]d,

N(s)), then we have {ΓTn,sDn,s(a)Γn,sTn(f)}n = {Dn(aIN(s))Tn(f)}n ∼LT a(x)f(θ)

for every sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞.

3.6. Characterizations and simplified definition of multilevel block LT sequences.
Theorem 3.21 shows that, for any a, f as in Definition 3.10, there always exists a d-level s-
block LT sequence {An}n ∼LT a(x)f(θ). Indeed, it suffices to takeAn =Dn(aIN(s))Tn(f).
Theorem 3.22 shows that the sequences of the form {Dn(aIN(s))Tn(f)}n play a central role
in the world of multilevel block LT sequences. Indeed,

{An}n ∼LT a(x)f(θ) ⇐⇒ da.c.s.({An}n, {Dn(aIN(s))Tn(f)}n) = 0.

THEOREM 3.22. Let {An}n be a d-levelN(s)-block matrix-sequence, let a : [0, 1]d → C
be a Riemann-integrable function, and let f ∈ L1([−π, π]d, N(s)). The following conditions
are equivalent.
1. {An}n ∼LT a(x)f(θ).
2. For all sequences {am}m, {fm}m, {{A(m)

n }n}m such that
• am : [0, 1]d → C is Riemann-integrable and fm ∈ L1([−π, π]d, N(s)),
• am(x)fm(θ)→ a(x)f(θ) in measure,
• {A(m)

n }n ∼LT am(x)fm(θ),
we have {A(m)

n }n
a.c.s.−→ {An}n.

3. There exist sequences {am}m, {fm}m such that
• am : [0, 1]d → C is continuous, ‖am‖∞ ≤ ‖a‖L∞ for all m, and am → a a.e.,
• fm : [−π, π]d → CN(s)×N(s) is a matrix-valued trigonometric polynomial with
‖(fm)αβ‖∞ ≤ ess sup[−π,π]d |fαβ | for all m and all α, β = 1, . . . , s, and fm → f

a.e. and in L1([−π, π]d, N(s)),
• {Dn(amIN(s))Tn(fm)}n

a.c.s.−→ {An}n.

4. There exist sequences {am}m, {fm}m, {{A(m)
n }n}m such that

• am : [0, 1]d → C is Riemann-integrable and fm ∈ L1([−π, π]d, N(s)),
• am(x)fm(θ)→ a(x)f(θ) in measure,
• {A(m)

n }n ∼LT am(x)fm(θ) and {A(m)
n }n

a.c.s.−→ {An}n.
5. {Dn(aIN(s))Tn(f)}n

a.c.s.−→ {An}n.
6. An = Dn(aIN(s))Tn(f) + Zn for every n, where {Zn}n is zero-distributed.

Proof. (1 =⇒ 2) Suppose that {An}n ∼LT a(x)f(θ), and let {am}m, {fm}m,
{{A(m)

n }n}m be sequences with the properties specified in item 2. By Theorems 2.33 and 3.17,
we have

da.c.s.({A(m)
n }n, {An}n) = pa.c.s.({A(m)

n −An}n)

= pmeasure(am(x)fm(θ)− a(x)f(θ))

= dmeasure(am(x)fm(θ), a(x)f(θ)),

which tends to 0 as m→∞ because am(x)fm(θ)→ a(x)f(θ) in measure.
(2 =⇒ 3) Since any Riemann-integrable function is bounded by definition, we have

a ∈ L∞([0, 1]d). Hence, by [40, Theorem 2.2], there exists a sequence of continuous
functions am : [0, 1]d → C such that ‖am‖∞ ≤ ‖a‖L∞ for all m and am → a a.e. The
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sequence {am}m satisfies the properties in item 3. Note also that am → a in L1([0, 1]d) by
the dominated convergence theorem.

Since f ∈ L1([−π, π]d, N(s)), by [41, Lemma 2.3] there exists a sequence of matrix-
valued trigonometric polynomials fm : [−π, π]d → CN(s)×N(s) which satisfy the estimate
‖(fm)αβ‖∞ ≤ ess sup[−π,π]d |fαβ | for all m and all α, β = 1, . . . , N(s), and fm → f a.e.
and in L1([−π, π]d, N(s)). The sequence {fm}m satisfies the properties in item 3.

Since am(x)fm(θ) → a(x)f(θ) in L1([0, 1]d × [−π, π]d, N(s)) (and hence also in
measure), item 2 and Theorem 3.21 imply that {Dn(amIN(s))Tn(fm)}n

a.c.s.−→ {An}n, and
the proof is complete.

(3 =⇒ 4) Simply note that, under the assumptions in item 3, am(x)fm(θ)→ a(x)f(θ)
in measure, and {Dn(amIN(s))Tn(fm)}n ∼LT am(x)fm(θ) by Theorem 3.21.

(4 =⇒ 1) Let {Bn}n ∼LT a(x)f(θ). We can take, e.g., Bn = Dn(aIN(s))Tn(f) thanks
to Theorem 3.21. By Theorems 2.33 and 3.17,

da.c.s.({A(m)
n }n, {Bn}n) = pa.c.s.({A(m)

n −Bn}n)

= pmeasure(am(x)fm(θ)− a(x)f(θ))

= dmeasure(am(x)fm(θ), a(x)f(θ)),

which tends to 0 as m → ∞ because am(x)fm(θ) → a(x)f(θ) in measure. Thus,
{A(m)

n }n
a.c.s.−→ {Bn}n, and since {A(m)

n }n
a.c.s.−→ {An}n by assumption, we conclude that

da.c.s.({An}n, {Bn}n) = 0. Considering that {LTmn,s(a, f)}n
a.c.s.−→ {Bn}n, we obtain

{LTmn,s(a, f)}n
a.c.s.−→ {An}n, i.e., {An}n ∼LT a(x)f(θ).

(5⇐⇒ 6) Item 5 is equivalent to da.c.s.({An}n, {Dn(aIN(s))Tn(f)}n) = 0, which, by
Theorem 2.32, is equivalent to {An −Dn(aIN(s))Tn(f)}n ∼σ 0.

(2 =⇒ 5) Obvious (take am = a, fm = f and A(m)
n = Dn(aIN(s))Tn(f)).

(5 =⇒ 4) Obvious (take am = a, fm = f and A(m)
n = Dn(aIN(s))Tn(f)).

REMARK 3.23. Suppose that r, s ∈ Nd are such that N(r) = N(s), and let {An}n be a
d-level s-block LT sequence with symbol a(x)f(θ). Then, {An}n is also a d-level r-block
LT sequence with symbol a(x)f(θ). Indeed, by Theorem 3.22, there exists a zero-distributed
sequence {Zn}n such that

An = Dn(aIN(s))Tn(f) + Zn = Dn(aIN(r))Tn(f) + Zn,

and so {An}n is a d-level r-block LT sequence with symbol a(x)f(θ). This remark shows
that the notion of d-level s-block LT sequences depends on N(s) but not on s. In other words,
the set of d-level s-block LT sequences coincides with the set of d-level r-block LT sequences
whenever N(s) = N(r). We can therefore give a simplified definition of multilevel block LT
sequences.

DEFINITION 3.24 (Multilevel block locally Toeplitz sequence). Let {An}n be a d-level
s-block matrix-sequence, let a : [0, 1]d → C be Riemann-integrable, and f ∈ L1([−π, π]d, s).
We say that {An}n is a d-level s-block locally Toeplitz (LT) sequence with symbol a(x)f(θ),
and we write {An}n ∼LT a(x)f(θ), if {An −Dn(aIs)Tn(f)}n is zero-distributed.

A d-level s-block LT sequence in the sense of Definition 3.10 is a d-level N(s)-block
LT sequence in the sense of Definition 3.24. Vice versa, a d-level s-block LT sequence in the
sense of Definition 3.24 is a d-level s-block LT sequence in the sense of Definition 3.10 for all
s ∈ Nd such that N(s) = s. From now on, unless specified otherwise, whenever we write a
relation such as {An}n ∼LT a(x)f(θ), it is understood that {An}n is a d-level s-block LT
sequence as in Definition 3.24, so in particular a : [0, 1]d → C is Riemann-integrable and
f ∈ L1([−π, π]d, s).
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4. Multilevel block generalized locally Toeplitz sequences. In this chapter we develop
the theory of multilevel block GLT sequences, by correcting/extending the results in [8, 46]
and [63, Section 3.3].

4.1. Equivalent definitions of multilevel block GLT sequences. Multilevel block GLT
sequences can be defined in several different ways. We begin with what we may call the
“classical definition”.

DEFINITION 4.1 (Multilevel block generalized locally Toeplitz sequences). Let {An}n
be a d-level s-block matrix-sequence, and let κ : [0, 1]d × [−π, π]d → Cs×s be measurable.
We say that {An}n is a (d-level s-block) generalized locally Toeplitz (GLT) sequence with
symbol κ, and we write {An}n ∼GLT κ, if the following condition is met.

For everym ∈ N there exists a finite number of d-level s-block LT sequences
{A(i,j)

n,m}n ∼LT a
(i,j)
m (x)f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i, such

that:
•
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)→ κ(x,θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.
In what follows, unless specified otherwise, whenever we write a relation such as

{An}n ∼GLT κ, it is understood that {An}n is a d-level s-block GLT sequence as in Defini-
tion 4.1, so in particular κ : [0, 1]d × [−π, π]d → Cs×s is measurable.

REMARK 4.2. It is clear that any sum of products of d-level s-block LT sequences is
a d-level s-block GLT sequence. More precisely, if {A(i,j)

n }n ∼LT a(i,j)(x)f (i,j)(θ), for
i = 1, . . . , p and j = 1, . . . , qi, then{ p∑

i=1

qi∏
j=1

A(i,j)
n

}
n

∼GLT

p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ).

REMARK 4.3. If a : [0, 1]d → Cs×s, then

Dn(a) =

s∑
i,j=1

Dn(aijE
(s)
ij ) =

s∑
i,j=1

Dn(aijIs)Tn(E
(s)
ij ).

Hence, by Remark 4.2 and Theorem 3.21 (applied with any s ∈ Nd such that N(s) = s), if a
is Riemann-integrable, then

{Dn(a)}n ∼GLT

s∑
i,j=1

aij(x)E
(s)
ij = a(x).

REMARK 4.4. Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ. Then, {A∗n}n ∼GLT κ∗ and
{αAn+βBn}n ∼GLT ακ+βξ for all α, β ∈ C. This follows immediately from Definition 4.1,
Proposition 3.19, and Theorem 2.37.

In the remainder of this section, we present another equivalent definition of multi-
level block GLT sequences, which is illuminating for many purposes. Fix a sequence
{n = n(n)}n ⊆ Nd such that n→∞ as n→∞, and set

E (s) = {{An}n : An ∈ CN(n)s×N(n)s},

M
(s)
d = {κ : [0, 1]d × [−π, π]d → Cs×s : κ is measurable},

E (s) ×M
(s)
d = {({An}n, κ) : {An}n ∈ E (s), κ ∈M

(s)
d }.

We make the following observations.
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• E (s) is a *-algebra with respect to the natural pointwise operations (i.e., {An}∗n = {A∗n}n,
α{An}n + β{Bn}n = {αAn + βBn}n, {An}n{Bn}n = {AnBn}n), and it is also a
pseudometric space with respect to the pseudometric da.c.s. inducing the a.c.s. topology
τa.c.s..

• M
(s)
d is a *-algebra with respect to the natural pointwise operations, and it is also a pseu-

dometric space with respect to the pseudometric dmeasure inducing the topology τmeasure of
convergence in measure.

• E (s) × M
(s)
d is a *-algebra with respect to the natural pointwise operations (that is,

({An}n, κ)∗ = ({A∗n}n, κ∗), α({An}n, κ)+β({Bn}n, ξ) = ({αAn+βBn}n, ακ+βξ),
({An}n, κ)({Bn}n, ξ) = ({AnBn}n, κξ)), and it is also a pseudometric space with re-
spect to the product pseudometric

(da.c.s. × dmeasure)(({An}n, κ), ({Bn}n, ξ)) = da.c.s.({An}n, {Bn}n) + dmeasure(κ, ξ)

inducing the product topology τa.c.s. × τmeasure.
LetA(s)

d be the *-subalgebra of E (s)×M
(s)
d generated by the set of “d-level s-block LT pairs”

L(s)
d = {({An}n, a(x)f(θ)) ∈ E (s) ×M

(s)
d : {An}n ∼LT a(x)f(θ)}.

Using Proposition 3.19, it is not difficult to see that

A(s)
d =

{( p∑
i=1

qi∏
j=1

A(i,j)
n ,

p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ)

)
:

p, q1, . . . , qp ∈ N, {A(i,j)
n }n ∼LT a

(i,j)(x)f (i,j)(θ) for all i, j
}
.

We can now reformulate Definition 4.1 as follows.
DEFINITION 4.5 (Multilevel block generalized locally Toeplitz sequence). Let {An}n

be a d-level s-block matrix-sequence, and let κ : [0, 1]d × [−π, π]d → Cs×s be measurable.
We say that {An}n is a (d-level s-block) generalized locally Toeplitz (GLT) sequence with
symbol κ, and we write {An}n ∼GLT κ if the pair ({An}n, κ) belongs to the closure of A(s)

d

in (E (s) ×M
(s)
d , da.c.s. × dmeasure). In other words, the set of “d-level s-block GLT pairs”

(4.1) G(s)
d = {({An}n, κ) ∈ E (s) ×M

(s)
d : {An}n ∼GLT κ}

is defined as the closure of A(s)
d in (E (s) ×M

(s)
d , da.c.s. × dmeasure).

In the light of this algebraic-topological definition of multilevel block GLT sequences, the
following theorem is obvious.

THEOREM 4.6. Let {An}n be a d-level s-block matrix-sequence, and let κ : [0, 1]d ×
[−π, π]d → Cs×s be measurable. Suppose that:
1. {Bn,m}n ∼GLT κm for every m;
2. {Bn,m}n

a.c.s.−→ {An}n;
3. κm → κ in measure.
Then {An}n ∼GLT κ.

4.2. Singular value and spectral distribution of multilevel block GLT sequences. In
this section we prove the main singular value and eigenvalue distribution results for multilevel
block GLT sequences.

THEOREM 4.7. If {An}n ∼GLT κ, then {An}n ∼σ κ.
Proof. By definition, for every m ∈ N there exist multilevel block LT sequences

{A(i,j)
n,m}n ∼LT a

(i,j)
m (x)f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i, such that
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•
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)→ κ(x,θ) in measure,

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.
Moreover, by Theorem 3.17,
•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n
∼σ

∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ).

We conclude that {An}n ∼σ κ by Theorem 2.34.
REMARK 4.8. Any multilevel block GLT sequence {An}n is s.u. This follows from

Theorem 4.7 and Proposition 2.22.
Using Theorem 4.7 we now show that the symbol of a multilevel block GLT sequence

is essentially unique and that the symbol of a multilevel block GLT sequence formed by
Hermitian matrices is Hermitian a.e.

PROPOSITION 4.9. If {An}n ∼GLT κ and {An}n ∼GLT ξ, then κ = ξ a.e.
Proof. By Remark 4.4 we have {ON(n)s}n = {An − An}n ∼GLT κ − ξ. Hence, by

Theorem 4.7, we also have {ON(n)s}n ∼σ κ− ξ, i.e.,

F (0) =
1

(2π)d

∫
[−π,π]d

∫
[0,1]d

∑N(s)
j=1 F (σj(κ(x,θ)− ξ(x,θ)))

N(s)
dxdθ, ∀F ∈ Cc(R).

We conclude that κ− ξ = Os a.e. by Remark 2.9.
PROPOSITION 4.10. If {An}n ∼GLT κ and the An are Hermitian, then κ is Hermitian

a.e.
Proof. Since the An are Hermitian, by Remark 4.4 we have {An}n ∼GLT κ and

{An}n ∼GLT κ
∗. Thus, by Proposition 4.9, κ = κ∗ a.e.

THEOREM 4.11. If {An}n ∼GLT κ and the An are Hermitian, then {An}n ∼λ κ.
Proof. By definition, for every m ∈ N there exist multilevel block LT sequences

{A(i,j)
n,m}n ∼LT a

(i,j)
m (x)f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i, such that

•
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)→ κ(x,θ) in measure,

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.
Thus:
•
{
<(
∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m)

}
n

a.c.s.−→ {<(An)}n by Theorem 2.37;

•
{
<(
∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m)

}
n
∼λ <(

∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)) by Theorem 3.18;

• <(
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ))→ <(κ(x,θ)) in measure.

We conclude that {<(An)}n ∼λ <(κ) by Theorem 2.35. Since the matricesAn are Hermitian,
we have <(An) = An and <(κ) = κ a.e. by Proposition 4.10. Hence, the spectral distribution
{<(An)}n ∼λ <(κ) yields {An}n ∼λ κ.

We end this section with a spectral distribution result for (compressions of) multilevel
block GLT sequences formed by perturbed Hermitian matrices.

THEOREM 4.12. Let {An}n ∼GLT κ and An = Xn + Yn. Assume that
1. every Xn is Hermitian,
2. ‖Yn‖2 = o(

√
N(n)).

Then {P ∗nAnPn}n ∼σ,λ κ for every sequence {Pn}n such that Pn ∈ CN(n)s×δn ,
P ∗nPn = Iδn , δn ≤ N(n)s, and δn/(N(n)s) → 1. In particular, {An}n ∼σ,λ κ
(take Pn = IN(n)s).

Proof. {Yn}n is zero-distributed by Theorem 2.18, so {Yn}n ∼GLT Os by Theorem 3.11
(applied with any s ∈ Nd such that N(s) = s). Since Xn = An − Yn and the matrices Xn
are Hermitian, we have {Xn}n ∼GLT κ by Remark 4.4 and {Xn}n ∼σ,λ κ by Theorems 4.7
and 4.11. Consider the decomposition

P ∗nAnPn = P ∗nXnPn + P ∗nYnPn.
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Let P̂n =
[
Pn |O

]
be the N(n)s×N(n)s matrix obtained from Pn by adding zeros, and

observe that P̂ ∗nBP̂n = P ∗nBPn ⊕ON(n)s−δn for all B ∈ CN(n)s×N(n)s. We have:
• {P ∗nXnPn}n ∼σ,λ κ by Theorem 2.30;
• ‖P ∗nYnPn‖2 = ‖P̂ ∗nYnP̂n‖2 ≤ ‖P̂ ∗n‖ ‖Yn‖2 ‖P̂n‖ = ‖Yn‖2 = o(

√
N(n)) = o(

√
δn),

where the inequality follows from (2.6), while the second equality follows from the fact
that the nonzero singular values of P̂n and P̂ ∗n are all equal to 1 due to the relation
P̂ ∗nP̂n = P ∗nPn ⊕ ON(n)s−δn = Iδn ⊕ ON(n)s−δn . In particular, {P ∗nYnPn}n is zero-
distributed by Theorem 2.18.

We conclude that da.c.s.({P ∗nXnPn}n, {P ∗nAnPn}n) = 0, the singular value distri-
bution {P ∗nAnPn}n ∼σ κ follows from Remark 2.36, and the spectral distribution
{P ∗nAnPn}n ∼λ κ follows from Theorem 2.28.

As shown in this section, the theory of multilevel block GLT sequences allows one to
compute the spectral distribution of a given multilevel block GLT sequence {An}n in the
case where An is either a Hermitian matrix or a (small) perturbation of a Hermitian matrix.
Similar results can be formulated in the case where An is either a normal matrix or a (small)
perturbation of a normal matrix. For the case of purely non-normal matrices, the main spectral
distribution results obtained so far are [30, Theorems 9 and 10], which are based on the
previous works [29, 32] and, especially, on Tilli’s pioneering paper [68].

4.3. Multilevel block GLT sequences and matrix-valued measurable functions. We
prove in this section that every s×smatrix-valued measurable function κ : [0, 1]d×[−π, π]d →
Cs×s is the symbol of a suitable d-level s-block GLT sequence {An}n. In combination with
results already proved before, this will allow us to show that the map associating with each
d-level s-block GLT sequence {An}n its symbol κ is an isometry with respect to da.c.s. on
the space G (s) of d-level s-block GLT sequences and dmeasure on the space M

(s)
d of s × s

matrix-valued measurable functions defined on [0, 1]d × [−π, π]d.
LEMMA 4.13. Let {n = n(n)}n ⊆ Nd be a sequence of d-indices such that n→∞ as

n→∞, and let κ : [0, 1]d × [−π, π]d → Cs×s be any measurable function. Then there exists
a sequence of d-level s-block GLT pairs ({An,m}n, κm) such that κm → κ in measure.

Proof. By [41, Lemma 2.4], for every α, β = 1, . . . , s there exists a sequence of measur-
able functions κm,αβ : [0, 1]d × [−π, π]d → C such that κm,αβ is of the form

κm,αβ(x,θ) =

Nm∑
j=−Nm

aj,m,αβ(x)eij·θ,

withNm ∈ Nd and aj,m,αβ : [0, 1]d → C belonging to C∞([0, 1]d), and κm,αβ → καβ a.e.
Take

κm(x,θ) = [κm,αβ(x,θ)]sα,β=1 =

s∑
α,β=1

κm,αβ(x,θ)E
(s)
αβ

=

s∑
α,β=1

Nm∑
j=−Nm

aj,m,αβ(x)eij·θE
(s)
αβ ,

An,m =

s∑
α,β=1

Nm∑
j=−Nm

Dn(aj,m,αβIs)Tn(eij·θE
(s)
αβ ).
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Clearly, κm → κ a.e. and hence also in measure. Moreover, {An,m}n ∼GLT κm by Theo-
rem 3.21 and Remark 4.4.

THEOREM 4.14. Let {n = n(n)}n ⊆ Nd be a sequence of d-indices such that n→∞
as n → ∞, and let κ : [0, 1]d × [−π, π]d → Cs×s be any measurable function. Then there
exists a d-level s-block GLT sequence {An}n ∼GLT κ.

Proof. By Lemma 4.13, there exist d-level s-block GLT sequences {An,m}n ∼GLT κm
such that κm → κ in measure. Since {κm}m converges in measure, it is a Cauchy sequence
with respect to the pseudometric dmeasure inducing the convergence in measure. It follows that
{{An,m}n}m is a Cauchy sequence with respect to the pseudometric da.c.s. inducing the a.c.s.
convergence because for each pair of indices m,m′, {An,m −An,m′}n ∼GLT κm − κm′ by
Remark 4.4, {An,m −An,m′}n ∼σ κm − κm′ by Theorem 4.7, and

da.c.s.({An,m}n, {An,m′}n) = pa.c.s.({An,m −An,m′}n)

= pmeasure(κm − κm′)
= dmeasure(κm, κm′)

by Theorem 2.33. Since da.c.s. is complete on the space E (s) of d-level s-block matrix-
sequences corresponding to the sequence of d-indices {n = n(n)}n ⊆ Nd (by Theorem 2.32),
we infer that {An,m}n

a.c.s.−→ {An}n for some d-level s-block matrix-sequence {An}n. We
conclude that {An}n ∼GLT κ by Theorem 4.6.

REMARK 4.15 (Isometry between d-level s-block GLT sequences and s × s matrix-
valued measurable functions). With the notation used in Definition 4.5, suppose we identify
two d-level s-block matrix-sequences {An}n, {Bn}n ∈ E (s) whenever their difference
{An −Bn}n is zero-distributed and two measurable functions κ, ξ ∈M

(s)
d whenever their

difference κ− ξ equals Os a.e. Let G (s) ⊂ E (s) be the subspace of E (s) consisting of d-level
s-block GLT sequences and consider the application J from G (s) to M

(s)
d that associates with

each {An}n ∈ G (s) its symbol κ ∈M
(s)
d . This application is well-defined by Proposition 4.9.

Moreover, if {An}n ∼GLT κ, then {Bn}n ∼GLT κ is equivalent to {An − Bn}n ∼σ 0 by
Remark 4.4 and Theorems 3.11 and 4.7. This means that, after identification of two d-level
s-block matrix-sequences {An}n, {Bn}n whenever {An −Bn}n ∼σ 0, the application J is
still well-defined and, moreover, it is injective. By Theorem 4.14, J is also surjective. Finally,
by Theorems 2.33 and 4.7, given any gauge function ϕ, if {An}n ∼GLT κ and {Bn}n ∼GLT ξ,
then

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n) = pϕmeasure(κ− ξ) = dϕmeasure(κ, ξ),

which means that J is an isometry with respect to dϕa.c.s. on G (s) and dϕmeasure on M
(s)
d .

4.4. The multilevel block GLT algebra. The next theorems are of fundamental impor-
tance. In particular, the first one shows that the set of d-level s-block GLT pairs G(s)

d defined
in (4.1) is a *-subalgebra of E (s) ×M

(s)
d .

THEOREM 4.16. Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ. Then
1. {A∗n}n ∼GLT κ

∗;
2. {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C;
3. {AnBn}n ∼GLT κξ.

Proof. The first two statements have already been settled before (see Remark 4.4). We
prove the third one. By Definition 4.5, there exist ({An,m}n, κm), ({Bn,m}n, ξm) ∈ A(s)

d

such that ({An,m}n, κm) → ({An}n, κ) and ({Bn,m}n, ξm) → ({Bn}n, ξ) in the space
(E (s) ×M

(s)
d , τa.c.s. × τmeasure), i.e.,
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• {An,m}n
a.c.s.−→ {An}n and {Bn,m}n

a.c.s.−→ {Bn}n,
• κm → κ in measure and ξm → ξ in measure.
Considering that every multilevel block GLT sequence is s.u. (see Remark 4.8), from Theo-
rem 2.37 and Lemma 2.7 we obtain
• {An,mBn,m}n

a.c.s.−→ {AnBn}n,
• κmξm → κξ in measure.
Since ({An,mBn,m}n, κmξm) ∈ A(s)

d , by definition we have {AnBn}n ∼GLT κξ.
THEOREM 4.17. If {An}n ∼GLT κ and κ is invertible a.e., then {A†n}n ∼GLT κ

−1.
Proof. Since κ is measurable and invertible a.e., its inverse κ−1 is a well-defined mea-

surable function. Thus, by Theorem 4.14, there exists a d-level s-block GLT sequence
{Bn}n ∼GLT κ

−1. By Theorem 4.16 we have {BnAn − IN(n)s}n ∼GLT κ
−1κ− Is, which

implies that {BnAn − IN(n)s}n ∼σ 0 by Theorem 4.7, since κ−1κ− Is = Os a.e. Hence,
{BnAn}n

a.c.s.−→ {IN(n)s}n. Since κ is invertible a.e., {An}n is s.v. by Theorem 4.7 and
Proposition 2.27. It follows that A†n is s.u. (see Remark 2.25), and so, by Theorem 2.37,
{BnAnA†n}n

a.c.s.−→ {A†n}n, i.e.,

(4.2) {BnAnA†n −A†n}n ∼σ 0.

Now we observe that, by definition of A†n,

AnA
†
n = IN(n)s + Sn, rank(Sn) = #{i ∈ {1, . . . , N(n)s} : σi(An) = 0}.

Considering that {An}n is s.v., we have

lim
n→∞

rank(Sn)

N(n)
= 0.

Hence, from (4.2) we obtain

{Bn + Zn −A†n}n ∼σ 0,

where Zn = BnSn is zero-distributed by Theorem 2.18. Thus, A†n = Bn + Zn, and it
follows from Theorems 3.11 and 4.16 that {A†n}n ∼GLT κ

−1.
THEOREM 4.18. If {An}n ∼GLTκ and eachAn is Hermitian, then {f(An)}n ∼GLT f(κ)

for any continuous function f : C→ C.
Proof. Since every An is Hermitian by assumption and κ is Hermitian a.e. by Proposi-

tion 4.10, it suffices to prove the theorem for real continuous functions f : R→ R. Indeed,
suppose that we have proved the theorem for this kind of functions, and let f : C→ C be any
continuous complex function. Denote by α, β : R → R the real and imaginary parts of the
restriction of f to R. Then, α, β are continuous functions such that f(x) = α(x) + iβ(x) for
all x ∈ R, and since the eigenvalues of An are real, we have f(An) = α(An) + iβ(An). In
view of the relations {α(An)}n ∼GLT α(κ) and {β(An)}n ∼GLT β(κ), Theorem 4.16 yields
{f(An)}n ∼GLT α(κ) + iβ(κ), and so {An}n ∼GLT f(κ) because α(κ) + iβ(κ) = f(κ) a.e.
as κ is Hermitian a.e.

Let f : R → R be a real continuous function. For each M > 0, let {pm,M}m be a
sequence of polynomials that converges uniformly to f over [−M,M ]:

lim
m→∞

‖f − pm,M‖∞,[−M,M ] = 0.

Note that such a sequence exists by the Weierstrass theorem; see, e.g., [58, Theorem 7.26].
By replacing pm,M with pm,M + f(0)− pm,M (0) if necessary, we may assume, without loss

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

166 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

of generality, that pm,M (0) = f(0). Since any multilevel block GLT sequence is s.u. (by
Remark 4.8), the sequence {An}n is s.u. Hence, by Remark 2.23, for all M > 0 there exists
nM such that, for n ≥ nM ,

(4.3) An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)N(n), ‖Ãn,M‖ ≤M,

where r(M) → 0 as M → ∞, the matrices Ân,M and Ãn,M are Hermitian, and for all
functions g : R→ R satisfying g(0) = 0 we have

g(Ân,M + Ãn,M ) = g(Ân,M ) + g(Ãn,M ).

Taking into account that (f − pm,M )(0) = 0, for every M > 0, every m and every n ≥ nM ,
we can write

f(An) = pm,M (An) + f(An)− pm,M (An)

= pm,M (An) + (f − pm,M )(Ân,M ) + (f − pm,M )(Ãn,M )

= pm,M (An) +Rn,m,M +Nn,m,M ,

where, in view of (4.3), Rn,m,M = (f − pm,M )(Ân,M ) and Nn,m,M =(f − pm,M )(Ãn,M )
satisfy

rank(Rn,m,M ) ≤ rank(Ân,M ) ≤ r(M)N(n),

‖Nn,m,M‖ ≤ ‖f − pm,M‖∞,[−M,M ].

Choose a sequence {Mm}m such that

(4.4) Mm →∞, ‖f − pm,Mm
‖∞,[−Mm,Mm] → 0.

Then, for every m and every n ≥ nMm
,

f(An) = pm,Mm
(An) +Rn,m,Mm

+Nn,m,Mm
,

rank(Rn,m,Mm
) ≤ r(Mm)N(n),

‖Nn,m,Mm
‖ ≤ ‖f − pm,Mm

‖∞,[−Mm,Mm],

which implies that

{pm,Mm
(An)}n

a.c.s.−→ {f(An)}n.

Moreover, by Theorem 4.16,

{pm,Mm(An)}n ∼GLT pm,Mm(κ).

Finally, by (4.4),

‖f(κ)− pm,Mm(κ)‖ = max
i=1,...,s

|(f − pm,Mm)(λi(κ))|

≤ ‖f − pm,Mm‖∞,[−‖κ‖,‖κ‖] → 0 a.e.,

which implies that

pm,Mm
(κ)→ f(κ) a.e.

All the hypotheses of Theorem 4.6 are then satisfied and {f(An)}n ∼GLT f(κ).
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4.5. Topological density results for multilevel block GLT sequences. Theorem 4.6
admits the following simple but important converse, which will allow us to prove the main
result of this section (Theorem 4.20).

THEOREM 4.19. Let {An}n ∼GLT κ and {Bn,m}n ∼GLT κm for every m. Then

{Bn,m}n
a.c.s.−→ {An}n ⇐⇒ κm → κ in measure.

Proof. By Remark 4.15,

da.c.s.({An}n, {Bn,m}n) = dmeasure(κ, κm),

and the proof is complete.
THEOREM 4.20. Let {An}n ∼GLT κ. Then, for all functions ai,m, fi,m, i = 1, . . . , Nm,

such that
• ai,m : [0, 1]d → Cs×s is Riemann-integrable and fi,m ∈ L1([−π, π]d, s),
•
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) in measure,
we have

{∑Nm

i=1Dn(ai,m)Tn(fi,m)
}
n

a.c.s.−→ {An}n. In particular, {An}n admits an a.c.s. of
the form

(4.5)

{{ s∑
α,β=1

Nm∑
j=−Nm

Dn(a
(m)
αβ,jIs)Tn(eij·θE

(s)
αβ )

}
n

}
m

=

{{ Nm∑
j=−Nm

Dn(a
(m)
j )Tn(eij·θIs)

}
n

}
m

,

whereNm ∈ Nd, a(m)
αβ,j : [0, 1]d → C belongs to C∞([0, 1]d),

a
(m)
j =

s∑
α,β=1

a
(m)
αβ,jE

(s)
αβ = [a

(m)
αβ,j ]

s
α,β=1,

and
s∑

α,β=1

Nm∑
j=−Nm

a
(m)
αβ,j(x) eij·θE

(s)
αβ =

Nm∑
j=−Nm

a
(m)
j (x) eij·θ → κ(x,θ) a.e.

Proof. Let ai,m, fi,m, i = 1, . . . , Nm, be functions with the properties specified in the
statement of the theorem. Then{ Nm∑

i=1

Dn(ai,m)Tn(fi,m)

}
n

∼GLT

Nm∑
i=1

ai,m(x)fi,m(θ)

by Remark 4.3, Theorem 3.15 (applied with any s ∈ Nd such that N(s) = s), and Theo-
rem 4.16. Therefore, the convergence{Nm∑

i=1

Dn(ai,m)Tn(fi,m)

}
n

a.c.s.−→ {An}n

follows from Theorem 4.19 applied with

Bn,m =

Nm∑
i=1

Dn(ai,m)Tn(fi,m), κm(x,θ) =

Nm∑
i=1

ai,m(x)fi,m(θ).
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To obtain for {An}n an a.c.s. of the form (4.5), we use the result of this theorem in com-
bination with [41, Lemma 2.4]. The details are as follows. By [41, Lemma 2.4], for every
α, β = 1, . . . , s there exists a sequence of measurable functions κm,αβ : [0, 1]d×[−π, π]d→C
such that κm,αβ is of the form

κm,αβ(x,θ) =

Nm∑
j=−Nm

a
(m)
αβ,j(x)eij·θ,

with Nm ∈ Nd and a(m)
αβ,j : [0, 1]d → C belonging to C∞([0, 1]d), and κm,αβ → καβ a.e.

Then,
∑s
α,β=1 κm,αβE

(s)
αβ →

∑s
α,β=1 καβE

(s)
αβ = κ a.e., and so, by the result of this theorem,

{ s∑
α,β=1

Nm∑
j=−Nm

Dn(a
(m)
αβ,jIs)Tn(eij·θE

(s)
αβ )

}
n

a.c.s.−→ {An}n.

REMARK 4.21 (Topological density in the space of multilevel block GLT sequences).
With the notation introduced in Section 4.1, we recall that the set of d-level s-block GLT pairs

G(s)
d =

{
({An}n, κ) ∈ E (s) ×M

(s)
d : {An}n ∼GLT κ

}
is closed in (E (s) ×M

(s)
d , τa.c.s. × τmeasure) by Definition 4.5. Consider the subset of G(s)

d

consisting of the d-level s-block GLT pairs of the form( N∑
i=1

Dn(aiIs)Tn(fi),

N∑
i=1

ai(x)fi(θ)

)
,

where ai : [0, 1]d → C belongs to C∞([0, 1]d), fi is a trigonometric monomial in {eij·θE
(s)
αβ :

j ∈ Zd, 1 ≤ α, β ≤ s} for all i = 1, . . . , N , and N ∈ N. Then, according to Theorem 4.20,
this subset is dense in G(s)

d , i.e., its closure in (E (s)×M(s)
d , τa.c.s.×τmeasure) coincides precisely

with G(s)
d .

4.6. Characterizations of multilevel block GLT sequences. The next result is a char-
acterization theorem for multilevel block GLT sequences. All the provided characterizations
have already been proved before, but it is anyway useful to collect them in a single statement.

THEOREM 4.22. Let {An}n be a d-level s-block matrix-sequence, and let κ : [0, 1]d ×
[−π, π]d → Cs×s be a measurable function. The following conditions are equivalent:
1. {An}n ∼GLT κ.
2. For all sequences {κm}m, {{Bn,m}n}m such that
• {Bn,m}n ∼GLT κm for every m,
• κm → κ in measure,
we have {Bn,m}n

a.c.s.−→ {An}n.
3. There exist functions ai,m, fi,m, i = 1, . . . , Nm, such that
• ai,m : [0, 1]d → C belongs to C∞([0, 1]d) and fi,m is a trigonometric monomial

belonging to {eij·θE
(s)
αβ : j ∈ Zd, 1 ≤ α, β ≤ s},

•
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) a.e.,
•
{∑Nm

i=1Dn(ai,mIs)Tn(fi,m)
}
n

a.c.s.−→ {An}n.
4. There exist sequences {κm}m, {{Bn,m}n}m such that
• {Bn,m}n ∼GLT κm for every m,
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• κm → κ in measure,
• {Bn,m}n

a.c.s.−→ {An}n.
Proof. The implication 1 =⇒ 2 follows from Theorem 4.19. The implication 2 =⇒ 3 fol-

lows from the observation that we can find functions ai,m, fi,m, i = 1, . . . , Nm, with the first
two properties specified in item 3 (by [41, Lemma 2.4], as we have already seen in the proof of
Theorem 4.20), and, moreover, {

∑Nm

i=1Dn(ai,mIs)Tn(fi,m)}n ∼GLT
∑Nm

i=1 ai,m(x)fi,m(θ)
(by Theorems 3.21 and 4.16). The implication 3 =⇒ 4 is obvious (it suffices to take
Bn,m =

∑Nm

i=1Dn(ai,mIs)Tn(fi,m) and κm(x,θ) =
∑Nm

i=1 ai,m(x)fi,m(θ)). Finally, the
implication 4 =⇒ 1 is Theorem 4.6.

4.7. Sequences of multilevel block diagonal sampling matrices. We have encountered
in Section 3.3 and Remark 4.3 the three most important examples of multilevel block GLT
sequences, i.e., zero-distributed sequences, multilevel block Toeplitz sequences, and sequences
of multilevel block diagonal sampling matrices. Concerning the latter kind of sequences, we
have proved that {Dn(a)}n ∼GLT a(x) whenever a : [0, 1]d → Cs×s is Riemann-integrable.
From a mathematical point of view, however, the GLT relation {Dn(a)}n ∼GLT a(x) makes
sense for all measurable functions a : [0, 1]d → Cs×s, and it is therefore natural to ask whether
we can drop the Riemann-integrability assumption. In Theorem 4.23 we show that the relation
{Dn(a)}n ∼GLT a(x) holds for all functions a : [0, 1]d → Cs×s that are continuous a.e. in
[0, 1]d. Since a function a : [0, 1]d → Cs×s is Riemann-integrable if and only if a is bounded
and continuous a.e. (see Section 2.3.5), Theorem 4.23 is an extension of both Theorem 3.14 and
Remark 4.3. More precisely, in Theorem 4.23 we are dropping the boundedness assumption.

THEOREM 4.23. If a : [0, 1]d → Cs×s is continuous a.e., then {Dn(a)}n ∼GLT a(x).
Proof. By looking at the decomposition of Dn(a) considered in Remark 4.3, it is

immediately clear that, in order to prove the theorem, it is enough to show that

{Dn(aIs)}n ∼GLT a(x)Is

whenever a : [0, 1]d → C is a scalar a.e. continuous function. Moreover, for an arbitrary
a.e. continuous function a : [0, 1]d → C, we can write a = α+ − α− + iβ+ − iβ−, where
α±, β± : [0, 1]d → R are nonnegative a.e. continuous functions; simply take

α+ = max(<(a), 0), α− = −min(<(a), 0),

β+ = max(=(a), 0), β− = −min(=(a), 0).

Hence, by Theorem 4.16 and the linearity of Dn(aIs) with respect to its argument a, it
suffices to prove the relation {Dn(aIs)}n ∼GLT a(x) in the case where a : [0, 1]d → R is a
nonnegative a.e. continuous function.

Let a : [0, 1]d → [0,∞) be a nonnegative a.e. continuous function. Denote by am the
truncation of a at level m, i.e.,

am(x) =

{
a(x), if a(x) ≤ m,
m, if a(x) > m.

Since am is bounded and continuous a.e., am is Riemann-integrable, hence

{Dn(amIs)}n ∼GLT am(x)Is

by Theorem 3.14. Moreover, it is clear that am → a pointwise, so

am → a in measure.
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We show that

{Dn(amIs)}n
a.c.s.−→ {Dn(aIs)}n,

after which the application of Theorem 4.6 concludes the proof. In order to show that
{Dn(amIs)}n

a.c.s.−→ {Dn(aIs)}n, we observe that Dn(amIs) = Dn(am) ⊗ Is and that
Dn(aIs) = Dn(a) ⊗ Is. Therefore, since the convergence {Dn(am)}n

a.c.s.−→ {Dn(a)}n
was proved in [41, pp. 101–102], it is immediately clear from the definition of a.c.s. and the
properties of tensor products that {Dn(amIs)}n

a.c.s.−→ {Dn(aIs)}n.

4.8. Sequences of block matrices with multilevel block GLT blocks. This section is
devoted to proving the following theorem, which says that, up to a suitable permutation
transformation, a sequence of block matrices with multilevel block GLT blocks is a multilevel
block GLT sequence whose symbol is obtained by “putting together” the symbols of each
multilevel block GLT block. Recall that Πn,s,r denotes the special permutation matrix (2.3).

THEOREM 4.24. For i, j = 1, . . . , s, let {An,ij}n be a d-level r-block GLT sequence
with symbol κij : [0, 1]d × [−π, π]d → Cr×r. Set An = [An,ij ]

s
i,j=1 and κ = [κij ]

s
i,j=1.

Then {Πn,s,rAnΠT
n,s,r}n is a d-level rs-block GLT sequence with symbol κ.

Proof. The proof consists of the following two steps.
Step 1. We first prove the theorem under the additional assumption that An,ij is of the form

(4.6) An,ij =

Lij∑
`=1

Dn(a`,ij)Tn(f`,ij),

where Lij ∈ N, a`,ij : [0, 1]d → Cr×r is continuous a.e., and f`,ij : [−π, π]d → Cr×r
belongs to L1([−π, π]d, r). Note that the symbol of {An,ij}n is

κij(x,θ) =

Lij∑
`=1

a`,ij(x)f`,ij(θ).

By setting L = maxi,j=1,...,s Lij and adding zero matrices of the form Dn(Or)Tn(Or) in
the summation (4.6) whenever Lij < L, we can assume, without loss of generality, that

An,ij =

L∑
`=1

Dn(a`,ij)Tn(f`,ij), κij(x,θ) =

L∑
`=1

a`,ij(x)f`,ij(θ),

with L independent of i, j. Then,

Πn,s,rAnΠT
n,s,r =

L∑
`=1

Πn,s,r [Dn(a`,ij)Tn(f`,ij)]
s
i,j=1 ΠT

n,s,r

=

L∑
`=1

Πn,s,r

 s∑
i,j=1

E
(s)
ij ⊗Dn(a`,ij)Tn(f`,ij)

ΠT
n,s,r

=

L∑
`=1

Πn,s,r

 s∑
i,j=1

(E
(s)
ij ⊗Dn(a`,ij))(Is ⊗ Tn(f`,ij))

ΠT
n,s,r

=

L∑
`=1

s∑
i,j=1

Πn,s,r(E
(s)
ij ⊗Dn(a`,ij))Π

T
n,s,rΠn,s,r(Is ⊗ Tn(f`,ij))Π

T
n,s,r.
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By Theorems 2.47 and 2.48,

Πn,s,r(E
(s)
ij ⊗Dn(a`,ij))Π

T
n,s,r = Dn(E

(s)
ij ⊗ a`,ij),

Πn,s,r(Is ⊗ Tn(f`,ij))Π
T
n,s,r = Tn(Is ⊗ f`,ij).

It follows that

Πn,s,rAnΠT
n,s,r =

L∑
`=1

s∑
i,j=1

Dn(E
(s)
ij ⊗ a`,ij)Tn(Is ⊗ f`,ij).

Considering thatE(s)
ij ⊗a`,ij and Is⊗f`,ij are rs×rsmatrix-valued functions, Theorems 3.15,

4.16, and 4.23 imply that {Πn,s,rAnΠT
n,s,r}n is a d-level rs-block GLT sequence with symbol

κ(x,θ) =

L∑
`=1

s∑
i,j=1

E
(s)
ij ⊗ a`,ij(x)f`,ij(θ) = [κij(x,θ)]si,j=1.

Step 2. We now prove the theorem in its full generality. Since {An,ij}n is a d-level r-
block GLT sequence with symbol κij , by Theorem 4.20, there exist functions a(m)

`,ij , f (m)
`,ij ,

` = 1, . . . , L
(m)
ij , such that

• a(m)
`,ij : [0, 1]d → Cr×r belongs to C∞([0, 1]d) and f (m)

`,ij : [−π, π]d → Cr×r is a trigono-
metric polynomial,

• κ(m)
ij (x,θ) =

∑L
(m)
ij

`=1 a
(m)
`,ij (x)f

(m)
`,ij (θ)→ κij(x,θ) a.e.,

•
{
A

(m)
n,ij =

∑L
(m)
ij

`=1 Dn(a
(m)
`,ij )Tn(f

(m)
`,ij )

}
n

a.c.s.−→ {An,ij}n.

Set A(m)
n = [A

(m)
n,ij ]

s
i,j=1 and κ(m) = [κ

(m)
ij ]si,j=1. We have

• {Πn,s,rA(m)
n ΠT

n,s,r}n ∼GLT κ
(m) by Step 1;

• κ(m) → κ a.e. (and hence also in measure);
• {Πn,s,rA(m)

n ΠT
n,s,r}n

a.c.s.−→ {Πn,s,rAnΠT
n,s,r}n because {A(m)

n }n
a.c.s.−→ {An}n by Theo-

rem 2.38.
We conclude that {Πn,s,rAnΠT

n,s,r}n ∼GLT κ by Theorem 4.6.

4.9. Further possible definitions of multilevel block GLT sequences. In this section,
we discuss a couple of possible alternative definitions of multilevel block GLT sequences. We
will use the same notation as in Definition 4.5.

Fix a sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞. By Definition 4.5 and
Theorem 4.16, the set of d-level s-block GLT pairs

G(s)
d =

{
({An}n, κ) : {An}n ∼GLT κ

}
⊆ E (s) ×M

(s)
d

is a closed *-subalgebra of E (s) ×M
(s)
d . By Theorems 3.11, 3.15, and 4.23, G(s)

d contains the
set

B(s)
d =

{
({Tn(f)}n, κ(x,θ) = f(θ)) : f ∈ L1([−π, π]d, s)

}
∪
{

({Dn(a)}n, κ(x,θ) = a(x)) : a : [0, 1]d → Cs×s is continuous a.e.
}

∪
{

({Zn}n, κ(x,θ) = Os) : {Zn}n ∼σ 0
}
.

By the results in Section 4.5, the algebra generated by B(s)
d is dense in G(s)

d . In conclusion,
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the set of d-level s-block GLT pairs G(s)
d is the closed *-subalgebra of E (s) ×M

(s)
d

generated by B(s)
d , i.e., the smallest closed *-subalgebra of E (s) ×M

(s)
d containing B(s)

d .

Looking more carefully at the results in Section 4.5, we also note that if we let

C(s)
d =

{
({Dn(aIs)}n, κ(x,θ) = a(x)Is) : a : [0, 1]d → C belongs to C∞([0, 1]d)

}
∪
{

({Tn(eij·θE
(s)
αβ )}n, κ(x,θ) = eij·θE

(s)
αβ ) : j ∈ Zd, 1 ≤ α, β ≤ s

}
,

then

the set of d-level s-block GLT pairs G(s)
d is the closure of the subalgebra of E (s) ×M

(s)
d

generated by C(s)
d .

5. Summary of the theory. We conclude the theory of multilevel block GLT sequences
by providing a self-contained summary, which contains everything one needs to know in order
to understand the applications presented in the next chapter. It is assumed that anyone who
reads this summary is aware of the notation and terminology used throughout this work, which
will be only partially repeated here for the sake of brevity. The reader can find most of the
notation and terminology in Section 2.1.

Multi-index notation. A multi-index i of size d, also called a d-index, is a (row) vector in
Zd; its components are denoted by i1, . . . , id. 0, 1, 2, . . . are the vectors of all zeros, all
ones, all twos, . . . (their size will be clear from the context). For any d-index m, we set
N(m) =

∏d
j=1mj , and we write m → ∞ to indicate that min(m) → ∞. The notation

N(α) =
∏d
j=1 αj will be used for any vector α with d components and not only for d-

indices. If h,k are d-indices, then h ≤ k means that hr ≤ kr for all r = 1, . . . , d. If h,k
are d-indices such that h ≤ k, then the multi-index (or d-index) range h, . . . ,k is the set
{j ∈ Zd : h ≤ j ≤ k}. We assume for this set the standard lexicographic ordering:[

. . .
[

[ (j1, . . . , jd) ]jd=hd,...,kd

]
jd−1=hd−1,...,kd−1

. . .

]
j1=h1,...,k1

.

For instance, in the case d = 2 the ordering is

(h1, h2), (h1, h2 + 1), . . . , (h1, k2), (h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2),

. . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).

When a multi-index j varies over a multi-index range h, . . . ,k (this is often written as
j = h, . . . ,k), it is understood that j varies from h to k following the lexicographic ordering.
For instance, if m ∈ Nd and we write x = [xi]

m
i=1, then x is a vector of size N(m) whose

components xi, i = 1, . . . ,m, are ordered in accordance with the lexicographic ordering:
the first component is x1 = x(1,...,1,1), the second component is x(1,...,1,2), and so on until
the last component, which is xm = x(m1,...,md). Similarly, if X = [xij ]

m
i,j=1, then X is

an N(m) ×N(m) matrix whose components are indexed by a pair of d-indices i, j, both
varying from 1 tom according to the lexicographic ordering. If h,k are d-indices such that
h ≤ k, then the notation

∑k
j=h indicates the summation over all j in h, . . . ,k. If i, j are

d-indices, then i � j means that i precedes (or equals) j in the lexicographic ordering (which
is a total ordering on Zd). Moreover, we define

i ∧ j =

{
i, if i � j,
j, if i � j.
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Note that i ∧ j is the minimum among i and j with respect to the lexicographic order-
ing. Operations involving d-indices that have no meaning in the vector space Zd must
always be interpreted in the componentwise sense. For instance, ij = (i1j1, . . . , idjd),
αi/j = (αi1/j1, . . . , αid/jd) for all α ∈ C, etc.

Matrix norms. Here is a list of important inequalities involving p-norms and Schatten
p-norms of matrices.
N 1. ‖X‖ ≤

√
|X|1|X|∞ ≤ max(|X|1, |X|∞) for all X ∈ Cm×m.

N 2. ‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖ for all X ∈ Cm×m.
N 3. ‖X‖1 ≤

∑m
i,j=1 |xij | for all X ∈ Cm×m.

N 4. ‖X‖2 ≤
√
‖X‖ ‖X‖1 for all X ∈ Cm×m.

N 5. ‖AXB‖p ≤ ‖A‖ ‖X‖p‖B‖ for all A,X,B ∈ Cm×m.

Tensor products. If X ∈ Cm1×m2 and Y ∈ C`1×`2 , the tensor (Kronecker) product of X
and Y is the m1`1 ×m2`2 matrix defined by

X ⊗ Y =
[
xijY

]
i=1,...,m1
j=1,...,m2

=

 x11Y · · · x1m2Y
...

...
xm11Y · · · xm1m2

Y

 .
Here is a list of important properties satisfied by tensor products.

P 1. Associativity: (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) for all matrices X , Y , Z.
P 2. Bilinearity: (αX+βY )⊗ (γW +ηZ) = αγ(X⊗W ) +αη(X⊗Z) +βγ(Y ⊗W ) +

βη(Y ⊗ Z) for all α, β, γ, η ∈ C and for all matrices X , Y , W , Z such that X , Y are
summable and W , Z are summable.

P 3. (X ⊗ Y )∗ = X∗ ⊗ Y ∗ and (X ⊗ Y )T = XT ⊗ Y T for all matrices X , Y .
P 4. (X ⊗ Y )(W ⊗Z) = (XW )⊗ (Y Z) for all matrices X , Y , W , Z such that X , W are

multipliable and Y , Z are multipliable.
P 5. ‖X ⊗ Y ‖p = ‖X‖p‖Y ‖p for all square matrices X , Y and all p ∈ [1,∞].
P 6. rank(X ⊗ Y ) = rank(X)rank(Y ) for all matrices X , Y .
P 7. If X ∈ Cm×m and Y ∈ C`×`, the eigenvalues (resp., singular values) of X ⊗ Y are

given by {λi(X)λj(Y ) : i = 1, . . . ,m, j = 1, . . . , `} (resp., {σi(X)σj(Y ) : i =
1, . . . ,m, j = 1, . . . , `}).

P 8. If Xi ∈ Cmi×`i for i = 1, . . . , d and we setm = (m1, . . . ,md) and ` = (`1, . . . , `d),
then

(X1 ⊗ · · · ⊗Xd)ij = (X1)i1j1 · · · (Xd)idjd , i = 1, . . . ,m, j = 1, . . . , `.

P 9. If Xi, Yi ∈ Cmi×mi for i = 1, . . . , d andm = (m1, . . . ,md), then

rank(X1 ⊗ · · · ⊗Xd − Y1 ⊗ · · · ⊗ Yd) ≤ N(m)

d∑
i=1

rank(Xi − Yi)
mi

.

P 10. Given m ∈ Nd and a permutation σ of {1, . . . , d}, there exists a unique permutation
matrix Πm;σ such that

Xσ(1) ⊗ · · · ⊗Xσ(d) = Πm;σ(X1 ⊗ · · · ⊗Xd)Π
T
m;σ

for all X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md .
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Special permutation matrices. For every s ∈ N and n ∈ Nd, we denote by Πn,s the
N(n)s×N(n)s permutation matrix given by

Πn,s =


Is ⊗ eT1

Is ⊗ eT2
...

Is ⊗ eTn

 =

n∑
k=1

ek ⊗ Is ⊗ eTk ,

where ei, i = 1, . . . ,n, are the vectors of the canonical basis of CN(n), which, for conve-
nience, are indexed by a d-index i = 1, . . . ,n. For every s, r ∈ N and n ∈ Nd, we define the
permutation matrix

Πn,s,r = Πn,s ⊗ Ir.

With reference to P 10, if m, s ∈ Nd, and σ is the permutation of {1, . . . , 2d} given by
σ = [1, d+ 1, 2, d+ 2, . . . , d, 2d], we define Γm,s = Π(m,s);σ. In other words, Γm,s is the
unique permutation matrix such that

X1 ⊗Xd+1 ⊗X2 ⊗Xd+2 ⊗ · · · ⊗Xd ⊗X2d = Γm,s(X1 ⊗ · · · ⊗X2d)Γ
T
m,s

for all X1 ∈ Cm1×m1 , . . . , Xd ∈ Cmd×md , Xd+1 ∈ Cs1×s1 , . . . , X2d ∈ Csd×sd .

Sequences of matrices and multilevel block matrix-sequences. A sequence of matrices is
a sequence of the form {An}n, where An is a square matrix of size dn such that dn → ∞
as n → ∞. If {An}n is a sequence of matrices with An of size dn, we say that {An}n is
sparsely unbounded (s.u.) if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

= 0,

and we say that {An}n is sparsely vanishing (s.v.) if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) < 1/M}
dn

= 0.

A d-level r-block matrix-sequence is a sequence of matrices {An}n, where
• n varies in some infinite subset of N;
• n = n(n) ∈ Nd and n→∞ (i.e., min(n)→∞) as n→∞;
• An is a square matrix of size N(n)r.

Singular value and eigenvalue distribution of a sequence of matrices. Let {An}n be a
sequence of matrices with An of size dn, and let f : D ⊂ Rk → Cr×r be a measurable
function defined on a set D with 0 < µk(D) <∞.
• We say that {An}n has a singular value distribution described by f , and we write {An}n ∼σ
f , if

lim
n→∞

1

dn

dn∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx, ∀F ∈ Cc(R).

In this case, f is called the singular value symbol of {An}n.
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• We say that {An}n has a spectral (or eigenvalue) distribution described by f , and we write
{An}n ∼λ f , if

lim
n→∞

1

dn

dn∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

In this case, f is called the spectral (or eigenvalue) symbol of {An}n.
When we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood that {An}n
is a sequence of matrices and f is a measurable function defined on a subset D of some Rk
with 0 < µk(D) <∞ and taking values in Cr×r for some r ≥ 1. In what follows, “iff” is an
abbreviation of “if and only if”.
S 1. If {An}n ∼σ f , then {An}n is s.u.
S 2. If {An}n ∼σ f , then {An}n is s.v. iff f is invertible a.e.
S 3. If {An}n ∼λ f and Λ(An) ⊆ S for all n, then Λ(f) ⊆ S a.e.
S 4. If An = Xn + Yn ∈ Cdn×dn and
• each Xn is Hermitian and {Xn}n ∼λ f ,
• lim
n→∞

(dn)−1/2‖Yn‖2 = 0,

then {An}n ∼λ f .
S 5. Let Xn ∈ Cdn×dn and Pn ∈ Cdn×δn , where P ∗nPn = Iδn , δn ≤ dn, δn/dn → 1.
• {Xn}n ∼σ f iff {P ∗nXnPn}n ∼σ f .
• If the matrices Xn are Hermitian, then {Xn}n ∼λ f iff {P ∗nXnPn}n ∼λ f .

Informal meaning. Assuming that f : D ⊂ Rk → Cr×r possesses r a.e. continuous
eigenvalue functions λi(f(x)), i = 1, . . . , r, the spectral distribution {An}n ∼λ f has the
following informal meaning: all the eigenvalues of An, except possibly for o(dn) outliers
(with dn being the size of An), can be subdivided into r different subsets of approximately the
same cardinality and the eigenvalues belonging to the ith subset are approximately equal to
the samples of the ith eigenvalue function λi(f(x)) over a uniform grid in the domain D (for
n large enough). For instance, if k = 1, dn = nr, and D = [a, b], then, assuming we have no
outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a+ j

b− a
n

))
, j = 1, . . . , n, i = 1, . . . , r,

for n large enough. Similarly, if k = 2, dn = n2r, and D = [a1, b1]× [a2, b2], then, assuming
we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a1 + j1

b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , r,

for n large enough. A completely analogous meaning can also be given for the singular value
distribution {An}n ∼σ f .

Rearrangement. Assuming that D = [a1, b1]× · · · × [ak, bk] is a hyperrectangle in Rk and
f : D → Cr×r is a measurable function possessing r real-valued a.e. continuous eigenvalue
functions λi(f(x)), i = 1, . . . , r, compute, for each ρ ∈ N, the uniform samples

λi

(
f
(
a1+j1

b1 − a1

ρ
, . . . , ak+jk

bk − ak
ρ

))
, j1, . . . , jk = 1, . . . , ρ, i = 1, . . . , r,

sort them in non-decreasing order, and put them into a vector (ς1, ς2, . . . , ςrρk). Let
φρ : [0, 1]→ R be the piecewise linear non-decreasing function that interpolates the samples
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(ς0 = ς1, ς1, ς2, . . . , ςrρk) over the nodes (0, 1
rρk

, 2
rρk

, . . . , 1), i.e.,
φρ

( i

rρk

)
= ςi, i = 0, . . . , rρk,

φρ linear on
[
i

rρk
,
i+ 1

rρk

]
, i = 0, . . . , rρk − 1.

When ρ → ∞, the function φρ converges a.e. to a function φ, which is non-decreasing on
(0, 1) and satisfies∫ 1

0

F (φ(t))dt =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

The function φ is referred to as the canonical rearranged version of f . What is interesting
about φ is that if {An}n ∼λ f , then {An}n ∼λ φ. In particular, if we have {An}n ∼λ f (and
hence also {An}n ∼λ φ), then, for n large enough, the eigenvalues of An, with the possible
exception of o(dn) outliers (dn = size(An)), are approximately equal to the samples of φ
over a uniform grid in [0, 1].

Clustering and attraction. In what follows, if f : D ⊆ Rk → Cr×r is a measurable
matrix-valued function, its essential range is denoted by ER(f) and is defined as

ER(f) = {z ∈ C : µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} > 0 for all ε > 0}.

• Let {An}n be a sequence of matrices with An of size dn, and let S be a nonempty subset
of C. We say that {An}n is weakly clustered at S if

lim
n→∞

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)}
dn

= 0, ∀ ε > 0.

• Let {An}n be a sequence of matrices with An of size dn, and let z ∈ C. We say that
z strongly attracts the spectrum Λ(An) with infinite order if, once we have ordered the
eigenvalues of An according to their distance from z,

|λ1(An)− z| ≤ |λ2(An)− z| ≤ . . . ≤ |λdn(An)− z|,

the following limit relation holds for each fixed j ≥ 1 :

lim
n→∞

|λj(An)− z| = 0.

CA 1. If {An}n ∼λ f , then {An}n is weakly clustered at ER(f) and each z ∈ ER(f)
strongly attracts Λ(An) with infinite order.

Zero-distributed sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is
referred to as a zero-distributed sequence. In other words, {Zn}n is zero-distributed iff

lim
n→∞

1

dn

dn∑
i=1

F (σi(Zn)) = F (0), ∀F ∈ Cc(R),

where dn is the size of Zn. Given a sequence of matrices {Zn}n with Zn of size dn, the
following properties hold. In what follows, we use the natural convention C/∞ = 0 for all
numbers C.
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Z 1. {Zn}n ∼σ 0 iff Zn = Rn +Nn with lim
n→∞

(dn)−1rank(Rn) = lim
n→∞

‖Nn‖ = 0.

Z 2. {Zn}n ∼σ 0 if there exists a p ∈ [1,∞] such that lim
n→∞

(dn)−1/p‖Zn‖p = 0.

Sequences of multilevel block diagonal sampling matrices. If n ∈ Nd and a : [0, 1]d →
Cs×s, then the nth multilevel block (or d-level s-block) diagonal sampling matrix generated
by a is the N(n)s×N(n)s block diagonal matrix given by

Dn(a) = diag
i=1,...,n

a
( i
n

)
.

Each d-level s-block matrix-sequence of the form {Dn(a)}n withn = n(n)→∞ as n→∞
is referred to as a sequence of multilevel block (or d-level s-block) diagonal sampling matrices
generated by a. If n, s ∈ N, we denote by {x(n)

i,s }nsi=1 = {x(n)
1,s , . . . , x

(n)
ns,s} the sequence of

points

{x(n)
1,s , . . . , x

(n)
ns,s} =

{
1

n
, . . . ,

1

n︸ ︷︷ ︸
s

,
2

n
, . . . ,

2

n︸ ︷︷ ︸
s

, . . . ,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
s

}
,

i.e.,

x
(n)
i,s =

(⌊ i− 1

s

⌋
+ 1
) 1

n
, i = 1, . . . , ns.

If n, s ∈ Nd and a : [0, 1]d → C, we denote by Dn,s(a) the d-level diagonal sampling matrix
given by

Dn,s(a) = diag
i=1,...,ns

a(x
(n)
i,s ),

where {x(n)
i,s }nsi=1 = {x(n)

1,s , . . . ,x
(n)
ns,s} is the sequence of points

x
(n)
i,s = (x

(n1)
i1,s1

, . . . , x
(nd)
id,sd

), i = 1, . . . ,ns.

In what follows, we denote by E[0,1]d the space of all functions from [0, 1]d to the set E.
D 1. For every n ∈ Nd the map Dn(·) : (Cs×s)[0,1]d → CsN(n)×sN(n)

• is linear: Dn(αa+ βb) = αDn(a) + βDn(b),
• satisfies Dn(a)∗ = Dn(a∗).

D 2. If n ∈ Nd, aij : [0, 1]d → Cr×r, for i, j = 1, . . . , s, a = [aij ]
s
i,j=1, and Dn =

[Dn(aij)]
s
i,j=1, then we have Πn,s,rDnΠT

n,s,r = Dn(a).
D 3. If n, s ∈ Nd and a : [0, 1]d → C, then Dn,s(a) = Γn,sDn(aIN(s))Γ

T
n,s.

Multilevel block Toeplitz sequences. If n ∈ Nd and f : [−π, π]d → Cs×s is a function
in L1([−π, π]d, s), then the nth (d-level s-block) Toeplitz matrix generated by f is the
sN(n)× sN(n) matrix given by

Tn(f) = [fi−j ]
n
i,j=1,

where the s× s blocks fk are the Fourier coefficients of f ,

fk =
1

(2π)d

∫
[−π,π]d

f(θ) e−ik·θdθ ∈ Cs×s, k ∈ Zd,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

178 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

and the integrals in the previous formula are computed componentwise. {Tn(f)}n is the
(d-level s-block) Toeplitz sequence generated by f . In what follows, for any function f in
Lp([−π, π]d, s), we define

‖f‖Lp =

{ (∫
D
‖f(x)‖ppdx

)1/p
, if 1 ≤ p <∞,

ess supx∈D‖f(x)‖, if p =∞.

T 1. For every n ∈ Nd the map Tn(·) : L1([−π, π]d, s)→ CsN(n)×sN(n)

• is linear: Tn(αf + βg) = αTn(f) + βTn(g),
• satisfies Tn(f)∗ = Tn(f∗).

T 2. If f is Hermitian a.e., then Tn(f) is Hermitian for all n ∈ Nd.

T 3. If 1 ≤ p ≤ ∞ and f ∈ Lp([−π, π]d, s), then ‖Tn(f)‖p ≤ N(n)1/p

(2π)d/p
‖f‖Lp .

T 4. If f ∈ L1([−π, π]d, s) and {n = n(n)}n ⊆ Nd is such that n → ∞ as n → ∞, then
{Tn(f)}n ∼σ f . If in addition f is Hermitian a.e., then {Tn(f)}n ∼λ f .

T 5. If f1, . . . , fq ∈ L∞([−π, π]d, s), then N(n)−1‖
∏q
i=1 Tn(fi) − Tn(

∏q
i=1 fi)‖1 → 0

as n→∞.
T 6. If n ∈ Nd, fij ∈ L1([−π, π]d, r), for i, j = 1, . . . , s, f = [fij ]

s
i,j=1, and Tn =

[Tn(fij)]
s
i,j=1, then we have Πn,s,rTnΠT

n,s,r = Tn(f).
T 7. If n, s ∈ Nd, then

Tn(f1 ⊗ · · · ⊗ fd) = ΓTn,s(Tn1
(f1)⊗ · · · ⊗ Tnd

(fd))Γn,s

for all f1 ∈ L1([−π, π], s1), . . . , fd ∈ L1([−π, π], sd).

Approximating classes of sequences. Let {An}n a sequence of matrices and {{Bn,m}n}m
a sequence of sequences of matrices with An and Bn,m of size dn. We say that {{Bn,m}n}m
is an approximating class of sequences (a.c.s.) for {An}n if the following condition is met:
for every m there exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

We use the abbreviation “a.c.s.” for both the singular “approximating class of sequences” and
the plural “approximating classes of sequences”. It turns out that, for each fixed sequence of
positive integers dn such that dn →∞, the notion of a.c.s. is a notion of convergence in the
space E = {{An}n : An ∈ Cdn×dn for every n}. More precisely, for every gauge function
ϕ and every A ∈ C`×`, let

pϕ(A) =
1

`

∑̀
i=1

ϕ(σi(A))

and define

pϕa.c.s.({An}n) = lim sup
n→∞

p(An), {An}n ∈ E ,

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n), {An}n, {Bn}n ∈ E .

Then, dϕa.c.s. is a distance on E such that dϕa.c.s.({An}n, {Bn}n) = 0 iff {An −Bn}n is zero-
distributed. Moreover, dϕa.c.s. turns E into a complete pseudometric space (E , dϕa.c.s.), where
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the statement “{{Bn,m}n}m converges to {An}n” is equivalent to “{{Bn,m}n}m is an a.c.s.
for {An}n”. In particular, we can reformulate the definition of a.c.s. in the following way: a
sequence of sequences of matrices {{Bn,m}n}m is said to be an a.c.s. for {An}n if {Bn,m}n
converges to {An}n in (E , dϕa.c.s.) as m → ∞, i.e., if dϕa.c.s.({Bn,m}n, {An}n) → 0 as
m→∞. The theory of a.c.s. may then be interpreted as an approximation theory for sequences
of matrices, and for this reason we will use the convergence notation {Bn,m}n

a.c.s.−→ {An}n to
indicate that {{Bn,m}n}m is an a.c.s. for {An}n. In view of what follows, let D ⊂ Rk be a
measurable set such that 0 < µk(D) <∞ and, for every gauge function ϕ, define

pϕmeasure(f) =
1

µk(D)

∫
D

∑r
i=1 ϕ(σi(f(x)))

r
dx, f ∈M

(r)
D ,

dϕmeasure(f, g) = pϕmeasure(f − g), f, g ∈M
(r)
D .

Then, dϕmeasure is a distance on M
(r)
D such that dϕmeasure(f, g) = 0 iff f = g a.e. Moreover,

dϕmeasure turns M(r)
D into a complete pseudometric space (M

(r)
D , dϕmeasure) where the statement

“fm converges to f” is equivalent to “fm converges to f in measure”.
ACS 1. If {An}n ∼σ f , then pϕa.c.s.({An}n) = pϕmeasure(f) for all gauge functions ϕ.
ACS 2. {An}n ∼σ f iff there exist sequences of matrices {Bn,m}n ∼σ fm such that

{Bn,m}n
a.c.s.−→ {An}n and fm → f in measure.

ACS 3. Suppose each An is Hermitian. Then, {An}n ∼λ f iff there exist sequences of
Hermitian matrices {Bn,m}n ∼λ fm such that {Bn,m}n

a.c.s.−→ {An}n and fm → f
in measure.

ACS 4. If {Bn,m}n
a.c.s.−→ {An}n and {B′n,m}n

a.c.s.−→ {A′n}n with An and A′n of the same size
dn, then
• {B∗n,m}n

a.c.s.−→ {A∗n}n,
• {αBn,m + βB′n,m}n

a.c.s.−→ {αAn + βA′n}n for all α, β ∈ C,
• {Bn,mB′n,m}n

a.c.s.−→ {AnA′n}n whenever {An}n, {A′n}n are s.u.,
• {Bn,mCn}n

a.c.s.−→ {AnCn}n whenever {Cn}n is s.u.
ACS 5. If An = [An,ij ]

s
i,j=1, B(m)

n = [B
(m)
n,ij ]

s
i,j=1 and {B(m)

n,ij}n
a.c.s.−→ {A(m)

n,ij}n for i, j =

1, . . . , s, then {B(m)
n }n

a.c.s.−→ {An}n.
ACS 6. Let p ∈ [1,∞] and assume that for each m there is nm such that, for n ≥ nm,

‖An − Bn,m‖p ≤ ε(m,n)(dn)1/p, where limm→∞ lim supn→∞ ε(m,n) = 0 and
dn is the size of both An and Bn,m. Then {Bn,m}n

a.c.s.−→ {An}n.

Multilevel block generalized locally Toeplitz sequences. A d-level s-block generalized
locally Toeplitz (GLT) sequence {An}n is a special d-level s-block matrix-sequence equipped
with a measurable function κ : [0, 1]d × [−π, π]d → Cs×s, the so-called symbol (or kernel).
Unless specified otherwise, the notation {An}n ∼GLT κmeans that {An}n is a d-level s-block
GLT sequence with symbol κ. The symbol of a d-level s-block GLT sequence is unique in
the sense that if {An}n ∼GLT κ and {An}n ∼GLT ξ, then κ = ξ a.e. in [0, 1]d × [−π, π]d.
Conversely, if {An}n ∼GLT κ and κ = ξ a.e. in [0, 1]d × [−π, π]d, then {An}n ∼GLT ξ.
In addition, any measurable function κ : [0, 1]d × [−π, π]d → Cs×s is the symbol of some
d-level s-block GLT sequence {An}n.
GLT 1. If {An}n ∼GLT κ, then {An}n ∼σ κ. If {An}n ∼GLT κ and the matrices An are

Hermitian, then κ is Hermitian a.e. and {An}n ∼λ κ.
GLT 2. If {An}n ∼GLT κ with An = Xn + Yn, and

• every Xn is Hermitian,
• N(n)−1/2‖Yn‖2 → 0,
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then {P ∗nAnPn}n ∼σ,λ κ for every sequence {Pn}n such that Pn ∈ CN(n)s×δn ,
P ∗nPn = Iδn , δn ≤ N(n)s, and δn/(N(n)s)→ 1.

GLT 3. We have
• {Tn(f)}n ∼GLT κ(x,θ) = f(θ) if f ∈ L1([−π, π]d, s),
• {Dn(a)}n ∼GLT κ(x,θ) = a(x) if a : [0, 1]d → Cs×s is continuous a.e.,
• {Zn}n ∼GLT κ(x,θ) = Os iff {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then
• {A∗n}n ∼GLT κ

∗,
• {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ,
• {A†n}n ∼GLT κ

−1 if κ is invertible a.e.
GLT 5. If {An}n ∼GLT κ and each An is Hermitian, then {f(An)}n ∼GLT f(κ) for every

continuous function f : C→ C.
GLT 6. If {An,ij}n is a d-level r-block GLT sequence with symbol κij , for i, j = 1, . . . , s,

andAn = [An,ij ]
s
i,j=1, then {Πn,s,rAnΠT

n,s,r}n is a d-level rs-block GLT sequence
with symbol κ = [κij ]

s
i,j=1.

GLT 7. {An}n ∼GLT κ iff there exist d-level s-block GLT sequences {Bn,m}n ∼GLT κm
such that {Bn,m}n

a.c.s.−→ {An}n and κm → κ in measure.
GLT 8. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then dϕa.c.s.({An}n, {Bn}n) = dϕmeasure(κ, ξ)

for any gauge function ϕ.
GLT 9. If {An}n ∼GLT κ, then there exist functions ai,m, fi,m, i = 1, . . . , Nm, such that

• ai,m : [0, 1]d → C belongs to C∞([0, 1]d) and fi,m is a trigonometric monomial
in {eij·θE

(s)
αβ : j ∈ Zd, 1 ≤ α, β ≤ s},

•
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) a.e.,

•
{∑Nm

i=1Dn(ai,mIs)Tn(fi,m)
}
n

a.c.s.−→ {An}n.

6. Applications. In this chapter we present several emblematic applications of the theory
of multilevel block GLT sequences for the computation of the singular value and eigenvalue
distribution of sequences of matrices arising from the numerical discretization of PDEs. In
order to understand the content of this chapter, it is enough that the reader knows the summary
of Chapter 5 and possesses the necessary prerequisites, most of which have been addressed in
Chapter 2. Indeed, our derivations here will never refer to Chapters 1–4, i.e., they will only
rely on the summary of Chapter 5.

6.1. FD discretization of systems of PDEs. Consider the following system of PDEs:

(6.1)


−∇ ·A∇u+ b · ∇v = f, in (0, 1)d,

c · ∇u+ ρv = g, in (0, 1)d,

u = v = 0, on ∂((0, 1)d),

⇐⇒



−
d∑

`,k=1

∂

∂x`

(
a`k

∂u

∂xk

)
+

d∑
k=1

bk
∂v

∂xk
= f, in (0, 1)d,

d∑
k=1

ck
∂u

∂xk
+ ρv = g, in (0, 1)d,

u = v = 0, on ∂((0, 1)d),

where a`k, bk, ck, ρ, f , g are given functions, A = [a`k]d`,k=1, b = [bk]dk=1 and c = [ck]dk=1.
In this section we consider the classical central FD discretization of (6.1). Through the theory
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of multilevel block GLT sequences we show that, under suitable assumptions on the PDE
coefficients, the corresponding sequence of (normalized) FD discretization matrices enjoys a
spectral distribution described by a 2×2 matrix-valued function. We remark that the number 2,
which identifies the matrix space C2×2 where the spectral symbol takes values, coincides with
the number of equations that compose the system (6.1).

FD discretization. Problem (6.1) can be reformulated as follows:

−
d∑

`,k=1

a`k
∂2u

∂x`∂xk
+

d∑
k=1

sk
∂u

∂xk
+

d∑
k=1

bk
∂v

∂xk
= f, in (0, 1)d,

d∑
k=1

ck
∂u

∂xk
+ ρv = g, in (0, 1)d,

u = v = 0, on ∂((0, 1)d),

where s = [sk]dk=1 is given by

sk = −
d∑
`=1

∂a`k
∂x`

, k = 1, . . . , d.

Let n ∈ Nd, set h = 1
n+1 and xj = jh, for j = 0, . . . ,n+ 1.1 Let ek be the kth vector of

the canonical basis of Rd. For j = 1, . . . ,n, we have

akk
∂2u

∂x2
k

∣∣∣∣
x=xj

≈ akk(xj)
u(xj + hkek)− 2u(xj) + u(xj − hkek)

h2
k

= akk(xj)
u(xj+ek

)− 2u(xj) + u(xj−ek
)

h2
k

,

for k = 1, . . . , d,

a`k
∂2u

∂x`∂xk

∣∣∣∣
x=xj

≈ a`k(xj)

∂u

∂x`
(xj + hkek)− ∂u

∂x`
(xj − hkek)

2hk

≈ a`k(xj)
1

2hk

[
u(xj + hkek + h`e`)− u(xj + hkek − h`e`)

2h`

−u(xj − hkek + h`e`)− u(xj − hkek − h`e`)
2h`

]
= a`k(xj)

u(xj+ek+e`
)− u(xj+ek−e`

)− u(xj−ek+e`
) + u(xj−ek−e`

)

4h`hk
,

for `, k = 1, . . . , d with ` 6= k,

sk
∂u

∂xk

∣∣∣∣
x=xj

≈ sk(xj)
u(xj + hkek)− u(xj − hkek)

2hk
= sk(xj)

u(xj+ek
)− u(xj−ek

)

2hk
,

1Recall that operations involving d-indices that have no meaning in Zd must be interpreted in the component-
wise sense. In the present case, given n = (n1, . . . , nd) and j = (j1, . . . , jd), the vector of discretization
steps h = 1

n+1
and the grid point xj = jh are given by h = ( 1

n1+1
, . . . , 1

nd+1
) = (h1, . . . , hd) and

xj = (j1h1, . . . , jdhd).
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for k = 1, . . . , d,

bk
∂v

∂xk

∣∣∣∣
x=xj

≈ bk(xj)
v(xj+ek

)− v(xj−ek
)

2hk
,

for k = 1, . . . , d,

ck
∂u

∂xk

∣∣∣∣
x=xj

≈ ck(xj)
u(xj+ek

)− u(xj−ek
)

2hk
,

for k = 1, . . . , d,

ρv|x=xj
= ρ(xj)v(xj).(6.2)

Thus, for every j = 0, . . . ,n+ 1, we approximate the evaluations u(xj) and v(xj) by the
values uj and vj , where uj = vj = 0 if j 6∈ {1, . . . ,n} and the vectors u = (u1, . . . , un)T

and v = (v1, . . . , vn)T solve the linear system

−
d∑
k=1

akk(xj)
uj+ek

− 2uj + uj−ek

h2
k

−
d∑

`,k=1
` 6=k

a`k(xj)
uj+ek+e`

− uj+ek−e`
− uj−ek+e`

+ uj−ek−e`

4h`hk

+

d∑
k=1

sk(xj)
uj+ek

− uj−ek

2hk
+

d∑
k=1

bk(xj)
vj+ek

− vj−ek

2hk
= f(xj),

d∑
k=1

ck(xj)
uj+ek

− uj−ek

2hk
+ ρ(xj)vj = g(xj),

for j = 1, . . . ,n. This linear system can be written in matrix form as follows:

(6.3) An

[
u
v

]
=

[
f
g

]
,

where f = [f(xj)]
n
j=1, g = [g(xj)]

n
j=1,

An =

[
Bn Cn
Dn En

]
,

Bn =

d∑
`,k=1

Kn,`k(a`k) +

d∑
k=1

Hn,k(sk),

Cn =

d∑
k=1

Hn,k(bk),

Dn =

d∑
k=1

Hn,k(ck),

En = In(ρ),
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and the matrices Kn,`k(α), Hn,k(α), In(α) are defined for all functions α : [0, 1]d → C by

Kn,`k(α) =
1

h`hk

(
diag

j=1,...,n
α(xj)

)
Kn,`k, `, k = 1, . . . , d,

Hn,k(α) =
1

hk

(
diag

j=1,...,n
α(xj)

)
Hn,k, k = 1, . . . , d,

In(α) =

(
diag

j=1,...,n
α(xj)

)
In,

with Kn,`k, Hn,k, In being defined by their actions on a generic vector w ∈ RN(n) as
follows:

(6.4) (Kn,kkw)j = −wj−ek
+ 2wj − wj+ek

, j = 1, . . . ,n,

for k = 1, . . . , d,

(6.5) (Kn,`kw)j = −1

4
(wj−e`−ek

−wj−e`+ek
−wj+e`−ek

+wj+e`+ek
), j = 1, . . . ,n,

for `, k = 1, . . . , d with ` 6= k,

(6.6) (Hn,kw)j =
1

2
(−wj−ek

+ wj+ek
), j = 1, . . . ,n,

for k = 1, . . . , d,

(6.7) (Inw)j = wj , j = 1, . . . ,n.

In (6.4)–(6.7), it is assumed that wi = 0 whenever i /∈ {1, . . . ,n}. It is clear that In = IN(n).
For the matrices Kn,`k, Hn,k we have the following result [41, Remark 7.4].

LEMMA 6.1. For every n ∈ Nd, we have

Kn,kk = Tn(2− 2 cos θk), k = 1, . . . , d,

Kn,`k = Tn(sin θ` sin θk), `, k = 1, . . . , d, ` 6= k,

Hn,k = −iTn(sin θk), k = 1, . . . , d.

In particular,

Kn,`k = Tn(H`k), `, k = 1, . . . , d,

where H(θ) is the d× d symmetric matrix defined as follows:

H`k(θ) =

{
2− 2 cos θk, if ` = k,

sin θ` sin θk, if ` 6= k.

GLT analysis of the FD discretization matrices. In what follows, we assume that
n + 1 = γn, where γ ∈ Qd is a fixed vector with positive components and n varies in
the infinite subset of N such that n + 1 = γn ∈ Nd. This assumption essentially says that
each stepsize hi = 1

ni+1 tends to 0 with the same asymptotic speed as the others. The linear
system (6.3) is equivalent to[
n−1IN(n) O

O IN(n)

]
An

[
n−1IN(n) O

O IN(n)

] [
nu
v

]
=

[
n−1f
g

]
⇐⇒ Ân

[
nu
v

]
=

[
n−1f
g

]
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where

(6.8) Ân =

[
n−2Bn n−1Cn
n−1Dn En

]
.

In the main result of this section (Theorem 6.3), we show that {Πn,2ÂnΠT
n,2}n is a d-level

2-block GLT sequence whose symbol κ(x,θ) is a 2× 2 matrix-valued function obtained by
replacing the d-level (1-block) GLT sequences {n−2Bn}n, {n−1Cn}n, {n−1Dn}n, {En}n
appearing in (6.8) with the corresponding symbols.2 To prove Theorem 6.3, we need the
following lemma; see [41, statement and proof of Theorem 7.2]. Recall that Sn(a) denotes
the nth (d-level) arrow-shaped sampling matrix generated by a, as defined at the end of
Section 2.7.

LEMMA 6.2. Let a : [0, 1]d → C be continuous, and let f(θ) =
∑r
j=−r fj e

ij·θ be a
d-variate trigonometric polynomial. Then,

|Sn(a) ◦ Tn(f)−Dn(a)Tn(f)|1, |Sn(a) ◦ Tn(f)−Dn(a)Tn(f)|∞

≤ (2|r|∞ + 1)d‖f‖∞ ωa

( |r|∞
min(n)

)
for every n ∈ Nd, and

{Sn(a) ◦ Tn(f)}n ∼GLT a(x)f(θ)

for every sequence {n = n(n)}n ⊆ Nd such that n→∞ as n→∞.
THEOREM 6.3. Suppose that the following conditions on the PDE coefficients are

satisfied:
• for every `, k = 1, . . . , d, the function a`k : [0, 1]d → R belongs to C([0, 1]d) and its

partial derivatives ∂a`k/∂x1, . . . , ∂a`k/∂xd : [0, 1]d → R are bounded,
• for every k = 1, . . . , d, the functions bk, ck, ρ : [0, 1]d → R belong to C([0, 1]d).
Let γ ∈ Qd be a vector with positive components and assume thatn+1 = γn (it is understood
that n varies in the infinite subset of N such that n+ 1 = γn ∈ Nd). Then,

{Πn,2ÂnΠT
n,2}n ∼GLT κ

(γ)(x,θ) =

[
κ

(γ)
11 (x,θ) κ

(γ)
12 (x,θ)

κ
(γ)
21 (x,θ) ρ(x)

]
,(6.9)

where

κ
(γ)
11 (x,θ) =

d∑
`,k=1

γ`γka`k(x)H`k(θ),

κ
(γ)
12 (x,θ) = −i

d∑
k=1

γkbk(x) sin θk,

κ
(γ)
21 (x,θ) = −i

d∑
k=1

γkck(x) sin θk,

and H(θ) is defined in Lemma 6.1. Moreover, we have

(6.10) {Ân}n ∼σ κ(γ)(x,θ).

2We shall see in the proof of Theorem 6.3 that {n−2Bn}n, {n−1Cn}n, {n−1Dn}n, {En}n are indeed
d-level GLT sequences.
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If in addition ck = −bk for every k = 1, . . . , d, then we also have

(6.11) {Ân}n ∼λ κ(γ)(x,θ).

Proof. The proof consists of the following steps.
Step 1. Consider the sequences {n−2Bn}n, {n−1Cn}n, {n−1Dn}n, {En}n, which “com-
pose” the sequence {Ân}n. In Step 2, we show that these sequences are d-level GLT sequences,
and precisely that

{n−2Bn}n ∼GLT κ
(γ)
11 (x,θ),(6.12)

{n−1Cn}n ∼GLT κ
(γ)
12 (x,θ),(6.13)

{n−1Dn}n ∼GLT κ
(γ)
21 (x,θ),(6.14)

{En}n ∼GLT ρ(x).(6.15)

Once this is done, the GLT relation (6.9) follows immediately from GLT 6, and the singular
value distribution (6.10) follows from (6.9) and GLT 1. We then prove in Step 3 the eigenvalue
distribution (6.11) under the additional assumption that bk = −ck, for all k = 1, . . . , d.
Step 2. To prove the GLT relations (6.12)–(6.15) it suffices to prove the following:

{n−2Kn,`k(α)}n ∼GLT γ`γkα(x)H`k(θ), `, k = 1, . . . , d, α ∈ C([0, 1]d),(6.16)

{n−1Hn,k(α)}n ∼GLT −iγkα(x) sin θk, k = 1, . . . , d, α ∈ C([0, 1]d),(6.17)

{In(α)}n ∼GLT α(x), α ∈ C([0, 1]d).(6.18)

Actually, we only prove (6.17) because the proofs of (6.16) and (6.18) are completely analo-
gous. By T 3, the definition of Hn,k(α), and Lemma 6.1,

‖n−1Hn,k(α) + iγkDn(α)Tn(sin θk)‖ ≤ γk
∥∥∥∥ diag
j=1,...,n

α(xj)−Dn(α)

∥∥∥∥ ‖Tn(sin θk)‖

≤ γk max
j=1,...,n

∣∣∣α(xj)− α
( j
n

)∣∣∣
≤ γkωα

( 1

min(n)

)
.

As ωα(1/min(n)) → 0 for n → ∞, we have {n−1Hn,k(α)+iγkDn(α)Tn(sin θk)}n∼σ 0
by Z 1, and so GLT 3 and GLT 4 immediately yield (6.17).
Step 3. We prove the eigenvalue distribution (6.11) in the case where ck = −bk for all
k = 1, . . . , d. In this case, we have Dn = −Cn and

Ân =

[
n−2Bn n−1Cn
−n−1Cn En

]
.

Consider the symmetric approximation of Ân given by

Ãn =

[
n−2B̃n n−1C̃n

−n−1C̃n En

]
,

where

B̃n =

d∑
`,k=1

K̃n,`k(a`k), C̃n =

d∑
k=1

H̃n,k(bk),
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and the matrices K̃n,`k(α), H̃n,k(α) are defined for all α : [0, 1]d → C as follows:

K̃n,`k(α) =
1

h`hk
Sn(α) ◦Kn,`k =

1

h`hk
Sn(α) ◦ Tn(H`k), `, k = 1, . . . , d,

H̃n,k(α) =
1

hk
Sn(α) ◦Hn,k = −i

1

hk
Sn(α) ◦ Tn(sin θk), k = 1, . . . , d.

Using T 3, Lemmas 6.1, 6.2, and the assumptions on the PDE coefficients, it can be shown that
both |Ân− Ãn|1 and |Ân− Ãn|∞ tend to 0 as n→∞, and, consequently, ‖Ân − Ãn‖ → 0
as n → ∞ by N 1. Thus, setting Â′n = Πn,2ÂnΠT

n,2 and Ã′n = Πn,2ÃnΠT
n,2, we have

‖Â′n − Ã′n‖ = ‖Ân − Ãn‖ → 0 as n → ∞. Therefore, we finally obtain the estimate
‖Â′n − Ã′n‖2 ≤

√
2N(n)‖Â′n − Ã′n‖ = o(

√
N(n)) as n → ∞. By GLT 2 applied to the

decomposition Â′n = Ã′n + (Â′n − Ã′n), taking into account the symmetry of Ã′n, and
the fact that {Â′n}n ∼GLT κ

(γ)(x,θ) by (6.9), we infer that {Â′n}n ∼λ κ(γ)(x,θ), which
immediately implies (6.11).

6.2. Higher-order FE discretization of diffusion equations. Consider the diffusion
problem {

−∇ ·A∇u = f, in (0, 1)d,

u = 0, on ∂((0, 1)d),

⇐⇒


−

d∑
`,q=1

∂

∂x`

(
a`q

∂u

∂xq

)
= f, in (0, 1)d,

u = 0, on ∂((0, 1)d),

(6.19)

where a`q, f are given functions and A = [a`q]
d
`,q=1. In this section we consider the higher-

order FE discretization of (6.19). Through the theory of multilevel block GLT sequences we
show that the corresponding sequence of (normalized) FE discretization matrices enjoys a
spectral distribution described by aN(p−k)×N(p−k) matrix-valued function, where pi and
ki represent, respectively, the degree and the smoothness in the ith direction of the piecewise
polynomial functions involved in the FE approximation. Note that this result essentially proves
[44, Conjecture 2].

FE discretization. The weak form of (6.19) reads as follows [21, Chapter 9]: find u ∈
H1

0 ((0, 1)d) such that

a(u,w) = f(w), ∀w ∈ H1
0 ((0, 1)d),

where

a(u,w) =

∫
(0,1)d

(∇w)TA∇u, f(w) =

∫
(0,1)d

fw.

In the FE method [54], we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 ((0, 1)d) and

we look for an approximation of the exact solution in the spaceW = span(ϕ1, . . . , ϕN ) by
solving the following discrete problem: find uW ∈ W such that

a(uW , w) = f(w), ∀w ∈ W.

Since {ϕ1, . . . , ϕN} is a basis of W , we can write uW =
∑N
j=1 ujϕj for a unique vector

u = (u1, . . . , uN )T . By linearity, the computation of uW (i.e., of u) reduces to solving the
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linear system

Astiffu = f ,

where f =
(
f(ϕ1), . . . , f(ϕN )

)T
and Astiff is the stiffness matrix,

Astiff = [a(ϕj , ϕi)]
N
i,j=1 =

[∫
(0,1)d

(∇ϕi)TA∇ϕj

]N
i,j=1

.(6.20)

Tensor-product p-degree Ck B-spline basis functions. Following the higher-order FE
approach, the basis functions ϕ1, . . . , ϕN will be chosen as piecewise polynomials of degree
pi ≥ 1 in the ith direction, i = 1, . . . , d. More precisely, for p, n ≥ 1 and 0 ≤ k ≤ p − 1,
let B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] : R→ R be the B-splines of degree p and smoothness Ck

defined on the knot sequence

{τ1, . . . , τn(p−k)+p+k+2}(6.21)

=

{
0, . . . , 0︸ ︷︷ ︸
p+1

,
1

n
, . . . ,

1

n︸ ︷︷ ︸
p−k

,
2

n
, . . . ,

2

n︸ ︷︷ ︸
p−k

, . . . ,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p+1

}
.

We collect here a few properties of B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] that we shall need later on.
For the formal definition of B-splines as well as for the proof of the properties listed below,
see [24, 60].
• The support of the ith B-spline is given by

(6.22) supp(Bi,[p,k]) = [τi, τi+p+1], i = 1, . . . , n(p− k) + k + 1.

In particular, for the measure of the support we have

(6.23) µ1(supp(Bi,[p,k])) ≤
p+ 1

n
, i = 1, . . . , n(p− k) + k + 1.

• Except for the first and the last ones, all the other B-splines vanish on the boundary of [0, 1],
i.e.,

(6.24) Bi,[p,k](0) = Bi,[p,k](1) = 0, i = 2, . . . , n(p− k) + k.

• {B1,[p,k], . . . , Bn(p−k)+k+1,[p,k]} is a basis for the space of piecewise polynomial functions
of degree p and smoothness Ck, that is,

Vn,[p,k] =
{
v ∈ Ck([0, 1]) : v|[ i

n ,
i+1
n ] ∈ Pp for i = 0, . . . , n− 1

}
,

where Pp is the space of polynomials of degree less than or equal to p. Moreover,
{B2,[p,k], . . . , Bn(p−k)+k,[p,k]} is a basis for the space

Wn,[p,k] = {w ∈ Vn,[p,k] : w(0) = w(1) = 0}.

• The B-splines form a non-negative partition of unity over [0, 1]:

Bi,[p,k] ≥ 0 over R, i = 1, . . . , n(p− k) + k + 1,(6.25)
n(p−k)+k+1∑

i=1

Bi,[p,k] = 1 over [0, 1].(6.26)
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• The derivatives of the B-splines satisfy

(6.27)
n(p−k)+k+1∑

i=1

|B′i,[p,k]| ≤ Cpn over R,

where Cp is a constant depending only on p. Note that the derivatives B′i,[p,k] may not be
defined at some of the grid points 0, 1

n ,
2
n , . . . ,

n−1
n , 1 in the case of C0 smoothness (k = 0).

In (6.27) it is assumed that the undefined values are excluded from the summation.
• For every y = (y1, . . . , yn(p−k)+k+1) ∈ Rn(p−k)+k+1, we have

(6.28)

∥∥∥∥∥∥
n(p−k)+k+1∑

i=1

yiBi,[p,k]

∥∥∥∥∥∥
2

L2([0,1])

=

∫ 1

0

( n(p−k)+k+1∑
i=1

yiBi,[p,k]

)2

≥ cp
n
‖y‖2,

where cp is a constant depending only on p.
• All the B-splines, except for the first k + 1 and the last k + 1, are uniformly shifted-scaled

versions of p− k fixed reference functions β1,[p,k], . . . , βp−k,[p,k], namely the first p− k
B-splines defined on the reference knot sequence

0, . . . , 0︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p−k

, . . . , η, . . . , η︸ ︷︷ ︸
p−k

, η =

⌈
p+ 1

p− k

⌉
.

The precise formula we shall need later on is the following: setting

(6.29) ν =

⌈
k + 1

p− k

⌉
,

then, for the B-splines Bk+2,[p,k], . . . , Bk+1+(n−ν)(p−k),[p,k], we have

Bk+1+(p−k)(r−1)+q,[p,k](x) = βq,[p,k](nx− r + 1),

r = 1, . . . , n− ν, q = 1, . . . , p− k.

We point out that the supports of the reference B-splines βq,[p,k] satisfy

(6.30) supp(β1,[p,k]) ⊆ supp(β2,[p,k]) ⊆ . . . ⊆ supp(βp−k,[p,k]) = [0, η].

Figures 6.1 and 6.2 display the graphs of the B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for
the degree p = 3 and the smoothness k = 1 and the graphs of the associated reference
B-splines β1,[p,k], β2,[p,k].

Now, for p,n ≥ 1 and 0 ≤ k ≤ p− 1, define the tensor-product p-degree Ck B-splines

Bi,[p,k] = Bi1,[p1,k1] ⊗ · · · ⊗Bid,[pd,kd], i = 1, . . . ,n(p− k) + k + 1,

where Bij ,[pj ,kj ], ij = 1, . . . , nj(pj − kj) + kj + 1, are the B-splines Bi,[p,k], i = 1, . . . ,
n(p− k) + k + 1, corresponding to n = nj , p = pj , k = kj . Let

τ i = (τi1 , . . . , τid), i = 1, . . . ,n(p− k) + p+ k + 2,

where {τij : ij = 1, . . . , nj(pj − kj) + pj + kj + 2} is the knot sequence {τi : i = 1, . . . ,
n(p− k) + p+ k+ 2} in (6.21) corresponding to n = nj , p = pj , k = kj . As a consequence
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FIG. 6.1. B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for p = 3 and k = 1, with n = 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

FIG. 6.2. Reference B-splines β1,[p,k], β2,[p,k] for p = 3 and k = 1.

of (6.22)–(6.27), we have

supp(Bi,[p,k]) = [τ i, τ i+p+1], i = 1, . . . ,n(p− k) + k + 1,(6.31)

µd(supp(Bi,[p,k])) ≤ N
(p+ 1

n

)
, i = 1, . . . ,n(p− k) + k + 1,(6.32)

Bi,[p,k] = 0 over ∂([0, 1]d), i = 2, . . . ,n(p− k) + k,(6.33)

Bi,[p,k] ≥ 0 over Rd, i = 1, . . . ,n(p− k) + k + 1,(6.34)
n(p−k)+k+1∑

i=1

Bi,[p,k] = 1 over [0, 1]d,(6.35)

n(p−k)+k+1∑
i=1

∣∣∣∂Bi,[p,k]

∂x`

∣∣∣ ≤ Cp`n` over Rd,(6.36)

where Cp` is a constant depending only on p`. Note that the derivatives ∂Bi,[p,k]/∂x` may
not be defined at some of the grid points j/n, j = 0, . . . ,n, in the case of C0 smoothness in
the `th direction (k` = 0). In (6.36) it is assumed that the undefined values are excluded from
the summation. The basis functions {ϕ1, . . . , ϕN} = {ϕ1, . . . , ϕn(p−k)+k−1} are defined as
follows:

ϕi = Bi+1,[p,k], i = 1, . . . ,n(p− k) + k − 1.(6.37)

In particular, we have N = N(n(p− k) + k − 1).

Higher-order FE discretization matrices. The stiffness matrix (6.20) resulting from the
choice of the basis functions as in (6.37) will be denoted by An,[p,k](A):
(6.38)

An,[p,k](A) =

[∫
(0,1)d

(∇Bi+1,[p,k])
TA∇Bj+1,[p,k]

]n(p−k)+k−1

i,j=1

=

d∑
`,q=1

An,[p,k],`q(a`q),
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where the matrix An,[p,k],`q(α) is defined for all functions α ∈ L1((0, 1)d) as follows:

(6.39) An,[p,k],`q(α) =

[∫
(0,1)d

α
∂Bi+1,[p,k]

∂x`

∂Bj+1,[p,k]

∂xq

]n(p−k)+k−1

i,j=1

.

In the next lemmas, we investigate the structure of the matrix An,[p,k],`q(α) for α = 1
identically. This is necessary for the GLT analysis that we tackle below. In view of what
follows, for p, n ≥ 1 and 0 ≤ k ≤ p− 1, we define the (p− k)× (p− k) blocks

K
[`]
[p,k] =

[∫
R
β′j,[p,k](t)β

′
i,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

H
[`]
[p,k] =

[∫
R
β′j,[p,k](t)βi,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

M
[`]
[p,k] =

[∫
R
βj,[p,k](t)βi,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

and the matrix-valued functions κ[p,k], ξ[p,k], µ[p,k] : [−π, π]→ C(p−k)×(p−k),

κ[p,k](θ) =
∑
`∈Z

K
[`]
[p,k]e

i`θ = K
[0]
[p,k] +

∑
`>0

(
K

[`]
[p,k]e

i`θ + (K
[`]
[p,k])

T e−i`θ
)
,(6.40)

ξ[p,k](θ) =
∑
`∈Z

H
[`]
[p,k]e

i`θ = H
[0]
[p,k] +

∑
`>0

(
H

[`]
[p,k]e

i`θ − (H
[`]
[p,k])

T e−i`θ
)
,(6.41)

µ[p,k](θ) =
∑
`∈Z

M
[`]
[p,k]e

i`θ = M
[0]
[p,k] +

∑
`>0

(
M

[`]
[p,k]e

i`θ + (M
[`]
[p,k])

T e−i`θ
)
.(6.42)

Due to the compact support of the reference B-splines β1,[p,k], . . . , βp−k,[p,k] (see (6.30)),
there are only a finite number of nonzero blocks K [`]

[p,k], H
[`]
[p,k], M

[`]
[p,k]. Consequently, the

series in (6.40)–(6.42) are actually finite sums.
NOTATION 6.4. From now on, we will use the following notation:

• If p, n ≥ 1, 0 ≤ k ≤ p − 1, and X is a matrix of size n(p − k) + k − 1, we de-
note by X̃ the principal submatrix of X corresponding to the row and column indices
i, j = k + 1, . . . , k + (n− ν)(p− k), where ν = d(k + 1)/(p− k)e as in (6.29).
• If p, n ≥ 1, 0 ≤ k ≤ p− 1, and X is a matrix of size n(p− k) + k − 1, we denote by X̂

any block diagonal matrix of the form

X̂ =

Dk(p−k)−k
X

δ

 = Dk(p−k)−k ⊕X ⊕ [δ],

where Dk(p−k)−k is any real diagonal matrix, δ ∈ R, and it is understood that the block
Dk(p−k)−k is not present if k(p − k) − k = 0 (i.e., if k = 0 or k = p − 1). Note that X̂
has the following key properties:
– Its size (n + k)(p − k) is a multiple of p − k and is such that the difference

(n + k)(p − k) − (n(p − k) + k − 1) = k(p − k) − k + 1 > 0 is independent of
n;

– It contains X as a principal submatrix in such a way that X̃ is the principal submatrix
of X̂ corresponding to the row and column indices i, j = k(p− k) + 1, . . . , k(p− k) +
(n− ν)(p− k);
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– It satisfies the matrix identity X = P ∗n,[p,k]X̂Pn,[p,k], where Pn,[p,k] is the
(n+ k)(p− k)× (n(p− k) + k − 1) matrix given by

Pn,[p,k] =

 O

In(p−k)+k−1

0T

 ;

– Its eigenvalues (resp., singular values) are given by the eigenvalues (resp., singular
values) of X plus further k(p− k)− k + 1 eigenvalues (resp., singular values) that are
equal to δ1, . . . , δk(p−k)−k, δ (resp., |δ1|, . . . , |δk(p−k)−k|, |δ|), where δ1, . . . , δk(p−k)−k
are the diagonal entries of Dk(p−k)−k.

Throughout this work, whenever we formulate a statement regarding X̂ without further
specifications, it is understood that the statement holds for any X̂ , whatever Dk(p−k)−k
and δ.

• If p, n ≥ 1, 0 ≤ k ≤ p−1, andX is a matrix of size n(p−k)+k−1, we denote by X̂0 (resp.,
X̂1) the matrix X̂ corresponding to the choice Dk(p−k)−k = Ok(p−k)−k and δ = 0 (resp.,
Dk(p−k)−k = Ik(p−k)−k and δ = 1). The matrix X̂0 satisfies not only the matrix identity
X = P ∗n,[p,k]X̂

0Pn,[p,k], but also the inverse matrix identity X̂0 = Pn,[p,k]XP
∗
n,[p,k].

• If p,n ≥ 1, 0 ≤ k ≤ p− 1, and X is a matrix of size N(n(p− k) + k − 1), we define
the matrix X̂0 of size N((n+ k)(p− k)) as follows:

X̂0 = Pn,[p,k]XP
∗
n,[p,k],

where Pn,[p,k] = Pn1,[p1,k1] ⊗ · · · ⊗ Pnd,[pd,kd] and Pni,[pi,ki] is the matrix Pn,[p,k] with
n, p, k replaced by ni, pi, ki. Using P 8, it can be shown that Pn,[p,k] is a matrix of 0 and
1, in which every row possesses at most one 1 and every column possesses exactly one 1.
Moreover, by P 4,

(6.43) P ∗n,[p,k]Pn,[p,k] = IN(n(p−k)+k−1).

The matrix X̂0 has the following key properties:
– X is the principal submatrix of X̂0 corresponding to the indices k(p−k)−k+1, . . . ,
k(p− k) + n(p− k)− 1. Indeed, for all i, j = 1, . . . ,n(p− k) + k − 1, by P 8
we have

(X̂0)k(p−k)−k+i,k(p−k)−k+j = (Pn,[p,k]XP
∗
n,[p,k])k(p−k)−k+i,k(p−k)−k+j

=

n(p−k)+k−1∑
a,b=1

Xab(Pn,[p,k])k(p−k)−k+i,a(P ∗n,[p,k])b,k(p−k)−k+j

=

n(p−k)+k−1∑
a,b=1

Xab(Pn,[p,k])k(p−k)−k+i,a(Pn,[p,k])k(p−k)−k+j,b

=

n(p−k)+k−1∑
a,b=1

Xab

d∏
r=1

(Pnr,[pr,kr])kr(pr−kr)−kr+ir,ar (Pnr,[pr,kr])kr(pr−kr)−kr+jr,br

= Xij .
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– If X = X1 ⊗ · · · ⊗Xd with Xi of size ni(pi − ki) + ki − 1, then, by P 4,

X̂0 = Pn,[p,k]XP
∗
n,[p,k] = Pn,[p,k](X1 ⊗ · · · ⊗Xd)P

∗
n,[p,k] = X̂0

1 ⊗ · · · ⊗ X̂0
d ,

X = X1 ⊗ · · · ⊗Xd = P ∗n1,[p1,k1]X̂
0
1Pn1,[p1,k1] ⊗ · · · ⊗ P ∗nd,[pd,kd]X̂

0
dPnd,[pd,kd]

= P ∗n,[p,k]X̂
0Pn,[p,k].

Since any matrixX of sizeN(n(p−k)+k−1) can be written as a linear combination
of tensor products of the form X1 ⊗ · · · ⊗Xd with Xi of size ni(pi − ki) + ki − 1,
we infer that the equalities

X̂0 = Pn,[p,k]XP
∗
n,[p,k],

X = P ∗n,[p,k]X̂
0Pn,[p,k],

actually hold for all matrices X of size N(n(p− k) + k − 1).
– If i ∈ {1, . . . , (n+k)(p−k)} is an index such that the ith row of Pn,[p,k] is zero, then

the ith row and column of X̂0 are zero. This can be verified by direct computation.
• If p,n ≥ 1, 0 ≤ k ≤ p− 1, and X is a matrix of size N(n(p− k) + k − 1), we define

X̂1 = X̂0 +R0
n,[p,k],

where R0
n,[p,k] is the N((n+ k)(p− k))×N((n+ k)(p− k)) diagonal matrix of 0 and

1 such that (R0
n,[p,k])ii = 1 if and only if the ith row of Pn,[p,k] is zero. Note that

rank(R0
n,[p,k]) = N((n+ k)(p− k))−N(n(p− k) + k − 1),

R0
n,[p,k]Pn,[p,k] = O = P ∗n,[p,k]R

0
n,[p,k],(6.44)

(R0
n,[p,k])

2 = R0
n,[p,k],(6.45)

Pn,[p,k]P
∗
n,[p,k] +R0

n,[p,k] = IN((n+k)(p−k)).(6.46)

The matrix X̂1 has the following properties:
– The eigenvalues (resp., singular values) of X̂1 coincide with the eigenvalues (resp.,

singular values) of X plus further N((n + k)(p − k)) − N(n(p − k) + k − 1)
eigenvalues (resp., singular values) that are equal to 1. Indeed, if P̃n,[p,k] is the
square matrix of size N(n(p− k) + k − 1) obtained from Pn,[p,k] by deleting the
zero rows, then P̃n,[p,k] is a permutation matrix and, by (6.46), and the definition of
R0
n,[p,k], we have

det(X̂1 − λI) = det(Pn,[p,k]XP
∗
n,[p,k] +R0

n,[p,k] − λI)

= det(Pn,[p,k]XP
∗
n,[p,k] +R0

n,[p,k] − λPn,[p,k]P
∗
n,[p,k] − λR

0
n,[p,k])

= det(Pn,[p,k](X − λI)P ∗n,[p,k] + (1− λ)R0
n,[p,k])

= (1− λ)N((n+k)(p−k))−N(n(p−k)+k−1)det(P̃n,[p,k](X − λI)P̃ ∗n,[p,k])

= (1− λ)N((n+k)(p−k))−N(n(p−k)+k−1)det(X − λI),

and, similarly,

det((X̂1)∗X̂1 − λI) = (1− λ)N((n+k)(p−k))−N(n(p−k)+k−1)det(X∗X − λI).
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– If X is invertible then X̂1 is invertible as well and

(X̂1)−1 = Pn,[p,k]X
−1P ∗n,[p,k] +R0

n,[p,k] = (̂X−1)
1
.

Indeed, by (6.43), (6.44), and (6.45), we have

X̂1(̂X−1)
1

= (X̂0 +R0
n,[p,k])((̂X

−1)
0

+R0
n,[p,k])

= (Pn,[p,k]XP
∗
n,[p,k] +R0

n,[p,k])(Pn,[p,k]X
−1P ∗n,[p,k] +R0

n,[p,k])

= Pn,[p,k]XP
∗
n,[p,k]Pn,[p,k]X

−1P ∗n,[p,k] + Pn,[p,k]XP
∗
n,[p,k]R

0
n,[p,k]

+R0
n,[p,k]Pn,[p,k]X

−1P ∗n,[p,k] + (R0
n,[p,k])

2

= Pn,[p,k]P
∗
n,[p,k] +R0

n,[p,k] = I.

LEMMA 6.5. Let p,n ≥ 1 and 0 ≤ k ≤ p− 1. Then,

(6.47) An,[p,k],qq(1) =

( q−1⊗
r=1

Mnr,[pr,kr]

)
⊗Knq,[pq,kq ] ⊗

( d⊗
r=q+1

Mnr,[pr,kr]

)
,

for q = 1, . . . , d, and

An,[p,k],q`(1) = An,[p,k],`q(1)(6.48)

= −
(`−1⊗
r=1

Mnr,[pr,kr]

)
⊗Hn`,[p`,k`] ⊗

( q−1⊗
r=`+1

Mnr,[pr,kr]

)

⊗Hnq,[pq,kq ] ⊗
( d⊗
r=q+1

Mnr,[pr,kr]

)
,

for 1 ≤ ` < q ≤ d, where the matrices Kn,[p,k], Hn,[p,k], Mn,[p,k] are defined in terms of the
B-splines B2,[p,k], . . . , Bn(p−k)+k,[p,k] as follows:

Kn,[p,k] =

[∫ 1

0

B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

,(6.49)

Hn,[p,k] =

[∫ 1

0

B′j+1,[p,k](x)Bi+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

(6.50)

=

[
−
∫ 1

0

Bj+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

,

Mn,[p,k] =

[∫ 1

0

Bj+1,[p,k](x)Bi+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

.(6.51)

Proof. We only prove (6.48) because (6.47) is proved in the same way. For convenience,
throughout this proof we write Bi+1 instead of Bi+1,[p,k] and Bir+1 instead of Bir+1,[pr,kr].
In view of (6.39), for 1 ≤ ` < q ≤ d and i, j = 1, . . . ,n(p− k) + k − 1, we have

(An,[p,k],q`(1))ij =

∫
(0,1)d

∂Bi+1

∂x`
(x)

∂Bj+1

∂xq
(x)dx
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=

∫
(0,1)d

B′i`+1(x`)Bj`+1(x`)Biq+1(xq)B
′
jq+1(xq)

d∏
r=1
r 6=`,q

Bir+1(xr)Bjr+1(xr)dx

=

∫ 1

0

B′i`+1(x`)Bj`+1(x`)dx`

∫ 1

0

Biq+1(xq)B
′
jq+1(xq)dxq

×
d∏
r=1
r 6=`,q

∫ 1

0

Bir+1(xr)Bjr+1(xr)dxr

= −(Hn`,[p`,k`])i`j`(Hnq,[pq,kq ])iqjq

d∏
r=1
r 6=`,q

(Mnr,[pr,kr])irjr

= −
(( `−1⊗

r=1

Mnr,[pr,kr]

)
⊗Hn`,[p`,k`] ⊗

( q−1⊗
r=`+1

Mnr,[pr,kr]

)

⊗Hnq,[pq,kq ] ⊗
( d⊗
r=q+1

Mnr,[pr,kr]

))
ij

,

where the last equality follows from P 8.
LEMMA 6.6. Let p, n ≥ 1 and 0 ≤ k ≤ p − 1. Then, for the matrices in (6.49)–(6.51)

we have

K̃n,[p,k] = nTn−ν(κ[p,k]),(6.52)

H̃n,[p,k] = Tn−ν(ξ[p,k]),(6.53)

M̃n,[p,k] = n−1Tn−ν(µ[p,k]),(6.54)

and

K̂n,[p,k] = nTn+k(κ[p,k]) +Rn,[p,k], rank(Rn,[p,k]) ≤ 2(p− k)(k + ν),(6.55)

Ĥn,[p,k] = Tn+k(ξ[p,k]) + Sn,[p,k], rank(Sn,[p,k]) ≤ 2(p− k)(k + ν),(6.56)

M̂n,[p,k] = n−1Tn+k(µ[p,k]) +Qn,[p,k], rank(Qn,[p,k]) ≤ 2(p− k)(k + ν).(6.57)

Proof. For the proof of (6.52)–(6.54), see [8, Lemma 6.10]. To prove (6.55), simply use
(6.52) and note that, in view of our Notation 6.4, K̃n,[p,k] is the principal submatrix of K̂n,[p,k]

corresponding to the row and column indices i, j = k(p−k)+1, . . . , k(p−k)+(n−ν)(p−k).
The proof of (6.56) and (6.57) is the same as the proof of (6.55).

LEMMA 6.7. Let p,n ≥ 1 and 0 ≤ k ≤ p− 1. In view of Lemma 6.5, we define

Ân,[p,k],qq(1) =

( q−1⊗
r=1

M̂nr,[pr,kr]

)
⊗ K̂nq,[pq,kq ] ⊗

( d⊗
r=q+1

M̂nr,[pr,kr]

)
,

for q = 1, . . . , d, and

Ân,[p,k],q`(1) = Ân,[p,k],`q(1)

= −
( `−1⊗
r=1

M̂nr,[pr,kr]

)
⊗ Ĥn`,[p`,k`] ⊗

( q−1⊗
r=`+1

M̂nr,[pr,kr]

)

⊗ Ĥnq,[pq,kq ] ⊗
( d⊗
r=q+1

M̂nr,[pr,kr]

)
,
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for 1 ≤ ` < q ≤ d. Then, for every `, q = 1, . . . , d,

Ân,[p,k],`q(1) =
n`nq
N(n)

Γn+k,p−kTn+k((H[p,k])`q)Γ
T
n+k,p−k + En,[p,k],

rank(En,[p,k]) ≤ N((n+ k)(p− k))

d∑
i=1

2(ki + νi)

ni + ki
,

where ν = (ν1, . . . , νd), each νi is defined as in (6.29) with pi, ki in place of p, k, the matrix
Γn+k,p−k is defined as in Remark 2.3 with n+ k,p− k in place ofm, s, and

(H[p,k])`q =(6.58) 
(⊗`−1

r=1 µ[pr,kr]

)
⊗κ[p`,k`]⊗

(⊗d
r=`+1 µ[pr,kr]

)
, ` = q,

−
(⊗`−1

r=1 µ[pr,kr]

)
⊗ξ[p`,k`]⊗

(⊗q−1
r=`+1 µ[pr,kr]

)
⊗ξ[pq,kq ]⊗

(⊗d
r=q+1 µ[pr,kr]

)
, ` < q,

−
(⊗q−1

r=1 µ[pr,kr]

)
⊗ξ[pq,kq ]⊗

(⊗`−1
r=q+1 µ[pr,kr]

)
⊗ξ[p`,k`]⊗

(⊗d
r=`+1 µ[pr,kr]

)
, ` > q.

Proof. The result follows from (6.55)–(6.57) and the properties P 9 and T 7.

GLT analysis of the higher-order FE discretization matrices. In what follows, we assume
that n = γn, where γ ∈ Qd is a fixed vector with positive components and n varies in the
infinite subset of N such that n = γn ∈ Nd. This assumption essentially says that each
stepsize hi = 1

ni
tends to 0 with the same asymptotic speed as the others. The main result of

this section is Theorem 6.8, which gives the spectral distribution of the normalized sequence
{nd−2An,[p,k](A)}n.

THEOREM 6.8. Suppose that a`q ∈ L1((0, 1)d), for every `, q = 1, . . . , d, and that
the matrix A(x) = [a`q(x)]d`,q=1 is symmetric for every x ∈ (0, 1)d. Let p ≥ 1 and
0 ≤ k ≤ p− 1, let γ ∈ Qd be a vector with positive components, and assume that n = γn
(it is understood that n varies in the infinite subset of N such that n = γn ∈ Nd). Then

{nd−2An,[p,k](A)}n ∼σ,λ κ(γ)
[p,k](x,θ) =

1

N(γ)

d∑
`,q=1

γ`γqa`q(x)(H[p,k])`q(θ),

where H[p,k] is defined in (6.58).
Proof. The proof consists of the following steps. Throughout this proof, the letter C

denotes a generic constant independent of n.
Step 1. Let L1((0, 1)d,Rd×d) be the space of functions L : (0, 1)d → Rd×d such that
Lij ∈ L1((0, 1)d) for all i, j = 1, . . . , d. Consider the linear operator

An,[p,k](·) : L1((0, 1)d,Rd×d)→ RN(n(p−k)+k−1)×N(n(p−k)+k−1),

An,[p,k](L) =

[∫
(0,1)d

(∇Bi+1,[p,k])
TL∇Bj+1,[p,k]

]n(p−k)+k−1

i,j=1

.

The next steps are devoted to showing that
(6.59)

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](L)Γn+k,p−k}n ∼GLT

1

N(γ)

d∑
`,q=1

γ`γqL`q(x)(H[p,k])`q(θ),

where, according to our Notation 6.4, Â0
n,[p,k](L) = Pn,[p,k]An,[p,k](L)P ∗n,[p,k]. Once this

is done, the theorem is proved. Indeed, since A(x) = [a`q(x)]d`,q=1 is symmetric for all
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x ∈ (0, 1)d by assumption, the matrix Â0
n,[p,k](A) is symmetric as well. Hence, it follows

from (6.59) and GLT 1 that

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](A)Γn+k,p−k}n ∼σ,λ

1

N(γ)

d∑
`,q=1

γ`γqa`q(x)(H[p,k])`q(θ)

= κ
(γ)
[p,k](x,θ),

which implies

{nd−2Â0
n,[p,k](A)}n ∼σ,λ κ(γ)

[p,k](x,θ),

which implies

{nd−2An,[p,k](A)}n ∼σ,λ κ(γ)
[p,k](x,θ)

by S 5 (taking into account that An,[p,k](A) = P ∗n,[p,k]Â
0
n,[p,k](A)Pn,[p,k]; see Notation 6.4).

Step 2. We first prove (6.59) in the constant-coefficient case where L(x) = E
(d)
`q identically.

In this case, we have An,[p,k](E
(d)
`q ) = An,[p,k],`q(1). By Lemma 6.7,

nd−2ΓTn+k,p−kÂ
0
n,[p,k](E

(d)
`q )Γn+k,p−k = nd−2ΓTn+k,p−kÂ

0
n,[p,k],`q(1)Γn+k,p−k

=
γ`γq
N(γ)

Tn+k((H[p,k])`q) + Fn,[p,k],

where rank(Fn,[p,k]) ≤ Cnd−1. It follows from GLT 3 and GLT 4 that

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](E

(d)
`q )Γn+k,p−k}n ∼GLT

γ`γq
N(γ)

(H[p,k])`q(θ),

which is (6.59) for L(x) = E
(d)
`q .

Step 3. Now we prove (6.59) in the case where L(x) = a(x)E
(d)
`q with a ∈ C([0, 1]d). Let

Zn,[p,k] = nd−2Â0
n,[p,k](aE

(d)
`q )− nd−2Dn+k,p−k(a)Â0

n,[p,k](E
(d)
`q ).

Let ν = (ν1, . . . , νd), with νi defined as in (6.29) with pi, ki replaced by p, k. Taking
into account Notation 6.4 and the properties (6.31)–(6.36), for r,R = 1, . . . ,n − ν and
s,S = 1, . . . ,p− k, we have

|(n2−dZn,[p,k])k(p−k)+(p−k)(r−1)+s,k(p−k)+(p−k)(R−1)+S |

=
∣∣∣(An,[p,k](aE

(d)
`q ))k+(p−k)(r−1)+s,k+(p−k)(R−1)+S

− (Dn+k,p−k(a))k(p−k)+(p−k)(r−1)+s,k(p−k)+(p−k)(r−1)+s

× (An,[p,k](E
(d)
`q ))k+(p−k)(r−1)+s,k+(p−k)(R−1)+S

∣∣∣
=

∣∣∣∣∫
(0,1)d

[
a(x)− a

( k + r

n+ k

)]∂Bk+1+(p−k)(r−1)+s,[p,k]

∂x`
(x)

×
∂Bk+1+(p−k)(R−1)+S,[p,k]

∂xq
(x) dx

∣∣∣∣
≤ Cp`n`Cpqnq

∫
[τk+1+(p−k)(r−1)+s,τk+1+(p−k)(r−1)+s+p+1]

∣∣∣a(x)− a
( k + r

n+ k

)∣∣∣dx
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≤ Cp`Cpqn`nq
∫

[(r−1)/n,(r+p)/n]

∣∣∣a(x)− a
( k + r

n+ k

)∣∣∣dx
≤ Cp`Cpqn`nqωa

(2 max(p)

min(n)

) d∏
i=1

pi + 1

ni
,

where ωa(·) is the modulus of continuity of a and the last inequality is justified by the fact
that the maximum distance (in the∞-norm) of a point x in the hyperrectangle [(r − 1)/n,
(r+p)/n] from the point (k+r)/(n+k) is not larger than max(2p/n)≤2 max(p)/min(n).
It follows that, if we denote by Zn the principal submatrix of Zn,[p,k] corresponding to the
indices k(p − k) + 1, . . . ,k(p − k) + (n − ν)(p − k), each entry of Zn is bounded in
modulus by Cωa(1/min(n)). Moreover, the number of nonzero entries in each row and
column of Zn is bounded by a constant C independent of n. This follows from the following
more general property:

for every L ∈ L1((0, 1)d,Rd×d), the number of nonzero entries in each
row and column of An,[p,k](L) is bounded by (2|p|∞ + 1)d because
(An,[p,k](L))ij = 0 whenever |i − j|∞ > |p|∞; this is due to the fact
that, for |i− j|∞> |p|∞, the intersection of the supports of Bi+1,[p,k] and
Bj+1,[p,k] has zero measure by the local support property (6.31).

Thus, by N 1, ‖Zn‖ ≤ Cωa(1/min(n))→ 0 as n→∞. Recalling that Zn is the principal
submatrix ofZn,[p,k] corresponding to the indices k(p−k)+1, . . . ,k(p−k)+(n−ν)(p−k),
we arrive at

Zn,[p,k] = Nn,[p,k] +Rn,[p,k],

where ‖Nn,[p,k]‖ = ‖Zn‖ → 0 as n→∞ and rank(Rn,[p,k]) ≤ Cnd−1. It follows from Z 1
that {Zn,[p,k]}n is zero-distributed. Since

nd−2Â0
n,[p,k](aE

(d)
`q ) = nd−2Dn+k,p−k(a)Â0

n,[p,k](E
(d)
`q ) + Zn,[p,k],

we infer from D 3 that

nd−2ΓTn+k,p−kÂ
0
n,[p,k](aE

(d)
`q )Γn+k,p−k

= nd−2Dn+k(aIN(p−k))Γ
T
n+k,p−kÂ

0
n,[p,k](E

(d)
`q )Γn+k,p−k

+ ΓTn+k,p−kZn,[p,k]Γn+k,p−k,

and we conclude that

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](aE

(d)
`q )Γn+k,p−k}n ∼GLT

γ`γq
N(γ)

a(x)(H[p,k])`q(θ)

by Step 2, GLT 3, and GLT 4. The previous relation is (6.59) for L(x) = a(x)E
(d)
`q .

Step 4. Now we prove (6.59) in the case where L(x) = a(x)E
(d)
`q with a ∈ L1((0, 1)d).

By the density of C([0, 1]d) in L1((0, 1)d), there exist functions am ∈ C([0, 1]d) such that
am → a in L1((0, 1)d). By Step 3,

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](amE

(d)
`q )Γn+k,p−k}n ∼GLT

γ`γq
N(γ)

am(x)(H[p,k])`q(θ).

Moreover,
γ`γq
N(γ)

am(x)(H[p,k])`q(θ)→ γ`γq
N(γ)

a(x)(H[p,k])`q(θ) in measure.
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We show that

(6.60)
{nd−2ΓTn+k,p−kÂ

0
n,[p,k](amE

(d)
`q )Γn+k,p−k}n

a.c.s.−→ {nd−2ΓTn+k,p−kÂ
0
n,[p,k](aE

(d)
`q )Γn+k,p−k}n.

Once this is done, the thesis (6.59) follows immediately from GLT 7. To prove (6.60), let
P̂n,[p,k] = [Pn,[p,k]|O] be the square matrix of sizeN((n+k)(p−k)) obtained from Pn,[p,k]

by padding with zeros. Taking into account that ‖P̂n,[p,k]‖ = 1, by N 3, N 5, and (6.36), we
have

‖Â0
n,[p,k](aE

(d)
`q )− Â0

n,[p,k](amE
(d)
`q )‖1 = ‖Â0

n,[p,k]((a− am)E
(d)
`q )‖1

= ‖Pn,[p,k]An,[p,k]((a− am)E
(d)
`q )P ∗n,[p,k]‖1

= ‖P̂n,[p,k][An,[p,k]((a− am)E
(d)
`q )⊕O]P̂ ∗n,[p,k]‖1

≤ ‖An,[p,k]((a− am)E
(d)
`q )‖1

≤
n(p−k)+k−1∑

i,j=1

∣∣∣∣∣
∫

(0,1)d

[
a(x)− am(x)

]∂Bi+1,[p,k]

∂x`
(x)

∂Bj+1,[p,k]

∂xq
(x)dx

∣∣∣∣∣
≤
∫

(0,1)d

∣∣a(x)− am(x)
∣∣n(p−k)+k−1∑

i,j=1

∣∣∣∂Bi+1,[p,k]

∂x`
(x)
∣∣∣ ∣∣∣∂Bj+1,[p,k]

∂xq
(x)
∣∣∣dx

≤ Cp`Cpqn`nq‖a− am‖L1 .

Thus, the a.c.s. convergence (6.60) follows from ACS 6.
Step 5. Finally, we prove (6.59) for an arbitrary L ∈ L1((0, 1)d,Rd×d). Write

L(x) =

d∑
`,q=1

L`q(x)E
(d)
`q ,

and note that, by linearity,

Â0
n,[p,k](L) =

d∑
`,q=1

Â0
n,[p,k](L`qE

(d)
`q ).

Hence, by Step 4 and GLT 4,

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](L)Γn+k,p−k}n ∼GLT

1

N(γ)

d∑
`,q=1

γ`γqL`q(x)(H[p,k])`q(θ),

which concludes the proof.
REMARK 6.9 (Space-time higher-order FE-DG discretization of time-dependent diffusion

equations). Consider the time-dependent diffusion equation

(6.61)


∂tu(t,x)−∇ ·A(x)∇u(t,x) = f(t,x), (t,x) ∈ (0, T )× (0, 1)d,

u(t,x) = 0, (t,x) ∈ (0, T )× ∂((0, 1)d),

u(t,x) = 0, (t,x) ∈ {0} × (0, 1)d.

If we discretize (6.61) by the space-time higher-order FE-DG approximation technique con-
sidered in [12], the resulting (normalized) FE-DG discretization matrices enjoy an asymptotic
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spectral distribution described by a (q + 1)N(p − k) × (q + 1)N(p − k) matrix-valued
function. This result was (only partially) proved in [12, Theorem 5.2] by a direct (complicated
and cumbersome) approach. By following step by step the proof of Theorem 6.8, we can give
an alternative (much more lucid and simpler) proof of [12, Theorem 5.2] based on the theory
of multilevel block GLT sequences.

REMARK 6.10 (Formal structure of the symbol). From a formal point of view (i.e.,
disregarding the regularity of A and u), problem (6.19) can be rewritten in the form

−
d∑

`,q=1

a`q
∂2u

∂x`∂xq
−

d∑
`,q=1

∂a`q
∂x`

∂u

∂xq
= f, in (0, 1)d,

u = 0, on ∂((0, 1)d).

The formal structure of the (singular value and spectral) symbol

κ
(γ)
[p,k](x,θ) =

d∑
`,q=1

γ`γq
N(γ)

a`q(x)(H[p,k])`q(θ)

is deeply connected with the structure of the higher-order differential operator

−
d∑

`,q=1

a`q(x)
∂2u

∂x`∂xq
(x)

associated with problem (6.19), whereas the lower-order differential operator

−
d∑

`,q=1

∂a`q
∂x`

(x)
∂u

∂xq
(x)

does not enter the expression of the symbol. For more insights into this topic, we refer the
reader to [41, Section 7.2]; see also [41, Remarks 7.4, 7.6, 7.9, 7.12].

6.3. Higher-order FE discretization of convection-diffusion-reaction equations. Sup-
pose we add to the diffusion equation (6.19) a convection and a reaction term. In this way, we
obtain the following convection-diffusion-reaction problem:{

−∇ ·A∇u+ b · ∇u+ cu = f, in (0, 1)d,

u = 0, on ∂((0, 1)d),

⇐⇒


−

d∑
`,q=1

∂

∂x`

(
a`q

∂u

∂xq

)
+

d∑
q=1

bq
∂u

∂xq
+ cu = f, in (0, 1)d,

u = 0, on ∂((0, 1)d),

(6.62)

Based on Remark 6.10 and the discussion in [41, Section 7.2], we expect the term b ·∇u+ cu,
which only involves lower-order derivatives of u, not to enter the expression of the symbol. In
other words, if we consider for problem (6.62) the same higher-order FE discretization as in
Section 6.2, the symbol of the resulting sequence of (normalized) FE discretization matrices
should be again κ(γ)

[p,k](x,θ) as per Theorem 6.8. We are going to show that this is in fact the
case.
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FE discretization. The weak form of (6.62) reads as follows [21, Chapter 9]: find u ∈
H1

0 ((0, 1)d) such that

a(u,w) = f(w), ∀w ∈ H1
0 ((0, 1)d),

where

a(u,w) =

∫
(0,1)d

((∇w)TA∇u+ (∇u)Tbw + cuw),

f(w) =

∫
(0,1)d

fw.

In the FE method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 ((0, 1)d), and we look

for an approximation of the exact solution in the spaceW = span(ϕ1, . . . , ϕN ) by solving
the following discrete problem: find uW ∈ W such that

a(uW , w) = f(w), ∀w ∈ W.

Since {ϕ1, . . . , ϕN} is a basis forW , we can write uW =
∑N
j=1 ujϕj for a unique vector

u = (u1, . . . , uN )T . By linearity, the computation of uW (i.e., of u) reduces to solving the
linear system

Sstiffu = f ,

where f = (f(ϕ1), . . . , f(ϕN ))T and S is the stiffness matrix,

Sstiff = [a(ϕj , ϕi)]
N
i,j=1.

Note that S admits the following decomposition:

(6.63) Sstiff = Astiff + Zstiff,

where

Astiff =

[∫
(0,1)d

(∇ϕi)TA∇ϕj

]N
i,j=1

is the diffusion matrix and

Zstiff =

[∫
(0,1)d

(∇ϕj)Tbϕi +

∫
(0,1)d

cϕjϕi

]N
i,j=1

is the sum of the convection and reaction matrices.

GLT analysis of the higher-order FE discretization matrices. Following the higher-order
FE approach as in Section 6.2, the basis functions ϕ1, . . . , ϕN are chosen as in (6.37). The
stiffness matrix resulting from this choice will be denoted by Sn,[p,k](A,b, c). According to
(6.63), it can be decomposed as follows:

Sn,[p,k](A,b, c) = An,[p,k](A) + Zn,[p,k](b, c),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: MULTIDIMENSIONAL CASE 201

where

An,[p,k](A) =

[∫
(0,1)d

(∇Bi+1,[p,k])
TA∇Bj+1,[p,k]

]n(p−k)+k−1

i,j=1

,

Zn,[p,k](b, c) =

[∫
(0,1)d

(∇Bj+1,[p,k])
TbBi+1,[p,k]

+

∫
(0,1)d

cBj+1,[p,k]Bi+1,[p,k]

]n(p−k)+k−1

i,j=1

.

Note thatAn,[p,k](A) is the same as in (6.38) and Theorem 6.8. The main result of this section
is Theorem 6.11, which shows that Theorem 6.8 holds unchanged with Sn,[p,k](A,b, c) in
place of An,[p,k](A). This highlights a general aspect: lower-order terms such as b · ∇u+ cu
do not enter the expression of the symbol and do not affect in any way the asymptotic singular
value and eigenvalue distribution of PDE discretization matrices.

THEOREM 6.11. Suppose that a`q ∈ L1((0, 1)d), for `, q = 1, . . . , d, that bq, c ∈
L∞((0, 1)d), for q = 1, . . . , d, and that the matrix A(x) = [a`q(x)]d`,q=1 is symmetric for
every x ∈ (0, 1)d. Let p ≥ 1 and 0 ≤ k ≤ p − 1, let γ ∈ Qd be a vector with positive
components, and assume that n = γn (it is understood that n varies in the infinite subset of
N such that n = γn ∈ Nd). Then
(6.64)

{nd−2Sn,[p,k](A,b, c)}n ∼σ,λ κ
(γ)
[p,k](x,θ) =

1

N(γ)

d∑
`,q=1

γ`γqa`q(x)(H[p,k])`q(θ),

where H[p,k] is defined in (6.58).
Proof. Throughout this proof, we make use of Notation 6.4, and we use the letter C to

denote a generic constant independent of n. We are going to show that

(6.65) ‖Zn,[p,k](b, c)‖ ≤ Cn1−d.

Once this is done, the thesis is proved. Indeed, it follows from (6.65) that

‖nd−2Zn,[p,k](b, c)‖ ≤ Cn−1,(6.66)

‖nd−2Zn,[p,k](b, c)‖2 ≤ Cnd/2−1 = o(nd/2).

Thus:
• the singular value distribution in (6.64) follows from Theorem 6.8 and ACS 2, taking into

account that, in view of (6.66) and the decomposition

(6.67) nd−2Sn,[p,k](A,b, c) = nd−2An,[p,k](A) + nd−2Zn,[p,k](b, c),

we have {nd−2An,[p,k](A)}n
a.c.s.−→ {nd−2Sn,[p,k](A,b, c)}n,

• the eigenvalue distribution in (6.64) follows from S 4 applied to the decomposition (6.67),
taking into account Theorem 6.8.

It only remains to prove (6.65). We first note that the number of nonzero entries in each
row and column of Zn,[p,k](b, c) is bounded by (2|p|∞ + 1)d because (Zn,[p,k](b, c))ij = 0
whenever |i− j|∞ > |p|∞. Indeed, for |i− j|∞ > |p|∞, the intersection of the supports of
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Bi+1,[p,k] and Bj+1,[p,k] has zero measure by the local support property (6.31). Moreover,
by (6.31)–(6.36), for every i, j = 1, . . . ,n(p− k) + k − 1, we have

|(Zn,[p,k](b, c))ij | =

∣∣∣∣∣
∫

(0,1)d
(∇Bj+1,[p,k])

TbBi+1,[p,k] +

∫
(0,1)d

cBj+1,[p,k]Bi+1,[p,k]

∣∣∣∣∣
≤
∫

supp(Bi+1,[p,k])

d∑
q=1

|bq|
∣∣∣∂Bj+1,[p,k]

∂xq

∣∣∣ |Bi+1,[p,k]|

+

∫
supp(Bi+1,[p,k])

|c| |Bj+1,[p,k]| |Bi+1,[p,k]|

≤
∫

supp(Bi+1,[p,k])

max
`=1,...,d

‖b`‖L∞
d∑
q=1

Cpqnq +

∫
supp(Bi+1,[p,k])

‖c‖L∞

≤ max
`=1,...,d

‖b`‖L∞
d∑
q=1

CpqnqN
(p+ 1

n

)
+ ‖c‖L∞N

(p+ 1

n

)
≤ Cn1−d,

and (6.65) is proved.

6.4. Higher-order FE discretization of systems of PDEs. Consider again the same
system of PDEs as in Section 6.1, i.e.,

(6.68)


−∇ ·A∇u+ b · ∇v = f, in (0, 1)d,

c · ∇u+ ρv = g, in (0, 1)d,

u = v = 0, on ∂((0, 1)d),

⇐⇒



−
d∑

`,q=1

∂

∂x`

(
a`q

∂u

∂xq

)
+

d∑
q=1

bq
∂v

∂xq
= f, in (0, 1)d,

d∑
q=1

cq
∂u

∂xq
+ ρv = g, in (0, 1)d,

u = v = 0, on ∂((0, 1)d),

where a`q, bq, cq, ρ, f , g are given functions, A = [a`q]
d
`,q=1, b = [bq]

d
q=1, and c = [cq]

d
q=1.

In this section we consider the higher-order FE discretization of (6.68). Through the theory
of multilevel block GLT sequences we show that, under suitable assumptions on the PDE
coefficients, the corresponding sequence of (normalized) FE discretization matrices enjoys a
spectral distribution described by a 2N(p− k)× 2N(p− k) matrix-valued function, where
pi and ki are, respectively, the degree and the smoothness in the ith direction of the piecewise
polynomial functions involved in the FE approximation, while the number 2 in front of
N(p− k) coincides with the number of equations that compose the system (6.68).

FE discretization. The weak form of (6.68) reads as follows: find u, v ∈ H1
0 ((0, 1)d) such

that, for all w ∈ H1
0 ((0, 1)d),
∫

(0,1)d
(∇w)TA∇u+

∫
(0,1)d

(∇v)Tbw =

∫
(0,1)d

fw,∫
(0,1)d

(∇u)T cw +

∫
(0,1)d

ρvw =

∫
(0,1)d

gw.
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In the FE method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 ((0, 1)d), and we look

for approximations uW , vW of the exact solutions u, v in the spaceW = span(ϕ1, . . . , ϕN )
by solving the following discrete problem: find uW , vW ∈ W such that, for all w ∈ W ,

∫
(0,1)d

(∇w)TA∇uW +

∫
(0,1)d

(∇vW)Tbw =

∫
(0,1)d

fw,∫
(0,1)d

(∇uW)T cw +

∫
(0,1)d

ρvWw =

∫
(0,1)d

gw.

Since {ϕ1, . . . , ϕN} is a basis ofW , we can write uW =
∑N
j=1 ujϕj and vW =

∑N
j=1 vjϕj

for unique vectors u = (u1, . . . , uN )T and v = (v1, . . . , vN )T . By linearity, the computation
of uW , vW (i.e., of u, v) reduces to solving the linear system

(6.69) Sstiff
[
u
v

]
=

[
f
g

]
,

where f =
[∫

(0,1)d
fϕi

]N
i=1

, g =
[∫

(0,1)d
gϕi
]N
i=1

, and Sstiff is the stiffness matrix, which has
the following block structure:

(6.70) Sstiff =

[
Astiff(A) Hstiff(b)
Hstiff(c) M stiff(ρ)

]
,

where, for any W = [w`q]
d
`,q=1, w = [wq]

d
q=1, w with w`q, wq, w ∈ L1((0, 1)d),

Astiff(W ) =

[∫
(0,1)d

(∇ϕi)TW∇ϕj

]N
i,j=1

,(6.71)

Hstiff(w) =

[∫
(0,1)d

(∇ϕj)Twϕi

]N
i,j=1

,(6.72)

M stiff(w) =

[∫
(0,1)d

wϕjϕi

]N
i,j=1

.(6.73)

Note that for any r, s 6= 0, the system (6.69) is equivalent to

B(r,s)

[
u

r−1v

]
= s

[
r−1f
g

]
,

where

B(r,s) = s(r−1IN ⊕ IN )Sstiff (IN ⊕ rIN )

= s

[
r−1IN ON
ON IN

] [
Astiff(A) Hstiff(b)
Hstiff(c) M stiff(ρ)

] [
IN ON
ON rIN

]
=

[
r−1sAstiff(A) sHstiff(b)
sHstiff(c) rsM stiff(ρ)

]
.(6.74)

Higher-order FE discretization matrices. Following the higher-order FE approach as in
Sections 6.2 and 6.3, the basis functions ϕ1, . . . , ϕN are chosen as in (6.37). The stiffness
matrix Sstiff resulting from this choice and its normalized version B(r,s) will be denoted
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by Sn,[p,k](A,b, c, ρ) and B(r,s)
n,[p,k](A,b, c, ρ), respectively. According to (6.70)–(6.73) and

(6.74), we have

Sn,[p,k](A,b, c, ρ) =

[
An,[p,k](A) Hn,[p,k](b)
Hn,[p,k](c) Mn,[p,k](ρ)

]
,

B
(r,s)
n,[p,k](A,b, c, ρ) =

[
r−1sAn,[p,k](A) sHn,[p,k](b)
sHn,[p,k](c) rsMn,[p,k](ρ)

]
,(6.75)

where, for any W = [w`q]
d
`,q=1, w = [wq]

d
q=1, w with w`q, wq, w ∈ L1((0, 1)d),

An,[p,k](W ) =

[∫
(0,1)d

(∇Bi+1,[p,k])
TW∇Bj+1,[p,k]

]n(p−k)+k−1

i,j=1

,

Hn,[p,k](w) =

[∫
(0,1)d

(∇Bj+1,[p,k])
TwBi+1,[p,k]

]n(p−k)+k−1

i,j=1

,

Mn,[p,k](w) =

[∫
(0,1)d

wBj+1,[p,k]Bi+1,[p,k]

]n(p−k)+k−1

i,j=1

.

Note that An,[p,k](W ) is the same as in (6.38) and Theorem 6.8 with the only difference that
A is replaced by W . For the matrix Hn,[p,k](w), we have the following decomposition:

Hn,[p,k](w) =

d∑
q=1

Hn,[p,k],q(wi),

where Hn,[p,k],q(w) is defined for all functions w ∈ L1((0, 1)d) as follows:

(6.76) Hn,[p,k],q(w) =

[∫
(0,1)d

w
∂Bj+1,[p,k]

∂xq
Bi+1,[p,k]

]n(p−k)+k−1

i,j=1

.

In the next lemmas, we investigate the structure of the matrices Hn,[p,k],q(w) andMn,[p,k](w)
for w = 1. This is necessary for the GLT analysis that we tackle below. In what follows, we
use Notation 6.4.

LEMMA 6.12. Let p,n ≥ 1 and 0 ≤ k ≤ p− 1. Then,

(6.77) Hn,[p,k],q(1) =

( q−1⊗
r=1

Mnr,[pr,kr]

)
⊗Hnq,[pq,kq ] ⊗

( d⊗
r=q+1

Mnr,[pr,kr]

)
,

for q = 1, . . . , d, and

(6.78) Mn,[p,k](1) =

d⊗
r=1

Mnr,[pr,kr],

where the matrices Hn,[p,k] and Mn,[p,k] are defined in (6.50) and (6.51).
Proof. We only prove (6.77) because (6.78) is proved in the same way. For convenience,

throughout this proof we write Bi+1 instead of Bi+1,[p,k] and Bir+1 instead of Bir+1,[pr,kr].
For q = 1, . . . , d and i, j = 1, . . . ,n(p− k) + k − 1,

(Hn,[p,k],q(1))ij =

∫
(0,1)d

∂Bj+1

∂xq
(x)Bi+1(x)dx
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=

∫
(0,1)d

B′jq+1(xq)Biq+1(xq)

d∏
r=1
r 6=q

Bjr+1(xr)Bir+1(xr)dx

=

∫ 1

0

B′jq+1(xq)Biq+1(xq)dxq

d∏
r=1
r 6=q

∫ 1

0

Bjr+1(xr)Bir+1(xr)dxr

= (Hnq,[pq,kq ])iqjq

d∏
r=1
r 6=q

(Mnr,[pr,kr])irjr

=

(( q−1⊗
r=1

Mnr,[pr,kr]

)
⊗Hnq,[pq,kq ] ⊗

( d⊗
r=q+1

Mnr,[pr,kr]

))
ij

,

where the last equality follows from P 8.
LEMMA 6.13. Let p,n ≥ 1 and 0 ≤ k ≤ p− 1. In view of Lemma 6.12, we define

Ĥn,[p,k],q(1) =

( q−1⊗
r=1

M̂nr,[pr,kr]

)
⊗ Ĥnq,[pq,kq ] ⊗

( d⊗
r=q+1

M̂nr,[pr,kr]

)
,

M̂n,[p,k](1) =

d⊗
r=1

M̂nr,[pr,kr].

Then, for every q = 1, . . . , d,

Ĥn,[p,k],q(1) =
nq

N(n)
Γn+k,p−kTn+k(ξ[p,k],q)Γ

T
n+k,p−k + Fn,[p,k],

rank(Fn,[p,k]) ≤ N((n+ k)(p− k))

d∑
i=1

2(ki + νi)

ni + ki
,

and

M̂n,[p,k](1) =
1

N(n)
Γn+k,p−kTn+k(µ[p,k])Γ

T
n+k,p−k +Gn,[p,k],

rank(Gn,[p,k]) ≤ N((n+ k)(p− k))

d∑
i=1

2(ki + νi)

ni + ki
,

where ν = (ν1, . . . , νd), each νi is defined as in (6.29) with pi, ki in place of p, k, the matrix
Γn+k,p−k is defined as in Remark 2.3 with n+ k,p− k in place ofm, s, and

ξ[p,k],q =

(q−1⊗
r=1

µ[pr,kr]

)
⊗ ξ[pq,kq ] ⊗

( d⊗
r=q+1

µ[pr,kr]

)
,(6.79)

µ[p,k] =

d⊗
r=1

µ[pr,kr],(6.80)

with ξ[p,k] and µ[p,k] being defined in (6.41) and (6.42).
Proof. The result follows from (6.56)–(6.57) and properties P 9 and T 7.
LEMMA 6.14. Let p ≥ 1 and 0 ≤ k ≤ p− 1. Suppose that n = γn, where γ ∈ Qd is a

fixed vector with positive components and n varies in the infinite subset of N such that n =
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γn ∈ Nd. Then, for any W = [w`q]
d
`,q=1, w = [wq]

d
q=1, w with w`q, wq, w ∈ L1((0, 1)d),

{nd−2ΓTn+k,p−kÂ
0
n,[p,k](W )Γn+k,p−k}n ∼GLT

1

N(γ)

d∑
`,q=1

γ`γqw`q(x)(H[p,k])`q(θ),

(6.81)

{nd−1ΓTn+k,p−kĤ
0
n,[p,k](w)Γn+k,p−k}n ∼GLT

1

N(γ)

d∑
q=1

γqwq(x)ξ[p,k],q(θ),

(6.82)

{ndΓTn+k,p−kM̂
0
n,[p,k](w)Γn+k,p−k}n ∼GLT

1

N(γ)
w(x)µ[p,k](θ).

(6.83)

Proof. Except for the fact that W is replaced by A, relation (6.81) is nothing else than
(6.59), which has been proved in the proof of Theorem 6.8. The proofs of (6.82) and (6.83)
are analogous to the proof of (6.81); they are left to the reader.

The last lemma shows that Hn,[p,k],q(w) is “almost” skew-symmetric as long as the
function w is continuous. In this regard, we note that Hn,[p,k],q(1) is skew-symmetric, as it is
clear from Lemma 6.12 and P 3.

LEMMA 6.15. Let p,n ≥ 1 and 0 ≤ k ≤ p−1. For i = 1, . . . ,n(p−k)+k−1, let xi
be any point in the support of the B-spline Bi+1,[p,k]. Then, for all functions w ∈ C([0, 1]d)
and for q = 1, . . . , d,

‖Hn,[p,k],q(w)−∆n,[p,k](w)Hn,[p,k],q(1)‖ ≤ C nq
N(n)

ωw

( 1

min(n)

)
,(6.84)

‖Hn,[p,k],q(w)−Hn,[p,k],q(1)∆n,[p,k](w)‖ ≤ C nq
N(n)

ωw

( 1

min(n)

)
,(6.85)

where C is a constant independent of n and ∆n,[p,k](w) = diagi=1,...,n(p−k)+k−1 w(xi).
Proof. Throughout this proof, the letter C denotes a generic constant independent of

n. Let Z = Hn,[p,k],q(w) −∆n,[p,k](w)Hn,[p,k],q(1). By (6.31)–(6.36), for i, j = 1, . . . ,
n(p− k) + k − 1, we have

|Zij | =

∣∣∣∣∣
∫

supp(Bi+1,[p,k])

(w(x)− w(xi))
∂Bj+1,[p,k]

∂xq
(x)Bi+1,[p,k](x)dx

∣∣∣∣∣
=

∫
supp(Bi+1,[p,k])

|w(x)− w(xi)|
∣∣∣∂Bj+1,[p,k]

∂xq
(x)
∣∣∣ |Bi+1,[p,k](x)|dx

≤ max
x∈supp(Bi+1,[p,k])

|w(x)− w(xi)|Cpqnq µd(supp(Bi+1,[p,k]))

≤ Cpqnqωw
(max(p+ 1)

min(n)

)
N
(p+ 1

n

)
≤ C nq

N(n)
ωw

( 1

min(n)

)
.

The number of nonzero entries in each row and column of Z is bounded by (2|p|∞ + 1)d

because Zij = 0 whenever |i− j|∞ > |p|∞. Indeed, for |i− j|∞ > |p|∞, the intersection
of the supports of Bi+1,[p,k] and Bj+1,[p,k] has zero measure by the local support property
(6.31). Thus, by N 1,

‖Z‖ ≤ C nq
N(n)

ωw

( 1

min(n)

)
,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: MULTIDIMENSIONAL CASE 207

which proves (6.84). The proof of (6.85) is completely analogous (simply repeat the above
steps using w(xj) in place of w(xi) and supp(Bj+1,[p,k]) in place of supp(Bi+1,[p,k])).

GLT analysis of the higher-order FE discretization matrices. In what follows, we assume
that n = γn, where γ ∈ Qd is a fixed vector with positive components and n varies in the
infinite subset of N such that n = γn ∈ Nd. This assumption essentially says that each
stepsize hi = 1

ni
tends to 0 with the same asymptotic speed as the others. The main result of

this section is Theorem 6.16, which gives the spectral distribution of the normalized sequence
{Bn,[p,k](A,b, c, ρ)}n, where

Bn,[p,k](A,b, c, ρ) = B
(n,nd−1)
n,[p,k] (A,b, c, ρ) =

[
nd−2An,[p,k](A) nd−1Hn,[p,k](b)
nd−1Hn,[p,k](c) ndMn,[p,k](ρ)

]
is the normalized version of Sn,[p,k](A,b, c, ρ) defined by (6.75) for r = n and s = nd−1.

THEOREM 6.16. Suppose that a`q, bq, cq, ρ ∈ L1((0, 1)d), for every `, q = 1, . . . , d, and
that the matrix A(x) = [a`q(x)]d`,q=1 is symmetric for every x ∈ (0, 1)d. Let p ≥ 1 and
0 ≤ k ≤ p− 1, let γ ∈ Qd be a vector with positive components, and assume that n = γn
(it is understood that n varies in the infinite subset of N such that n = γn ∈ Nd). Then

{Bn,[p,k](A,b, c, ρ)}n ∼σ η(γ)
[p,k](x,θ) =

[
κ

(γ)
[p,k](x,θ) ς

(γ)
[p,k](x,θ)

ζ
(γ)
[p,k](x,θ) ω

(γ)
[p,k](x,θ)

]
,

where

κ
(γ)
[p,k](x,θ) =

1

N(γ)

d∑
`,q=1

γ`γqa`q(x)(H[p,k])`q(θ),

ς
(γ)
[p,k](x,θ) =

1

N(γ)

d∑
q=1

γqbq(x)ξ[p,k],q(θ),

ζ
(γ)
[p,k](x,θ) =

1

N(γ)

d∑
q=1

γqcq(x)ξ[p,k],q(θ),

ω
(γ)
[p,k](x,θ) =

1

N(γ)
ρ(x)µ[p,k](θ),

and (H[p,k])`q(θ), ξ[p,k],q(θ), µ[p,k](θ) are defined in (6.58), (6.79), (6.80), respectively. If
moreover cq = −bq ∈ C([0, 1]d), for all q = 1, . . . , d, then we also have

(6.86) {Bn,[p,k](A,b, c, ρ)}n ∼λ η(γ)
[p,k](x,θ).

Proof. Keeping in mind Notation 6.4, define

B̂0
n,[p,k](A,b, c, ρ) =

[
nd−2Â0

n,[p,k](A) nd−1Ĥ0
n,[p,k](b)

nd−1Ĥ0
n,[p,k](c) ndM̂0

n,[p,k](ρ)

]
.

Since

An,[p,k](A) = P ∗n,[p,k]Â
0
n,[p,k](A)Pn,[p,k],

Hn,[p,k](b) = P ∗n,[p,k]Ĥ
0
n,[p,k](b)Pn,[p,k],

Hn,[p,k](c) = P ∗n,[p,k]Ĥ
0
n,[p,k](c)Pn,[p,k],

Mn,[p,k](ρ) = P ∗n,[p,k]M̂
0
n,[p,k](ρ)Pn,[p,k],
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we have
(6.87)

Bn,[p,k](A,b, c, ρ) =

[
P ∗n,[p,k] O

O P ∗n,[p,k]

]
B̂0
n,[p,k](A,b, c, ρ)

[
Pn,[p,k] O
O Pn,[p,k]

]
.

By Lemma 6.14 and GLT 6,

(6.88)
{ΠnB̂

0
n,[p,k](A,b, c, ρ)ΠT

n}n ∼GLT η
(γ)
[p,k](x,θ),

Πn = Πn+k,2,N(p−k)

[
ΓTn+k,p−k O

O ΓTn+k,p−k

]
.

Hence we obtain {B̂0
n,[p,k](A,b, c, ρ)}n ∼σ η(γ)

[p,k](x,θ) by GLT 1, and thus it follows that

{Bn,[p,k](A,b, c, ρ)}n∼σ η(γ)
[p,k](x,θ) by S 5. It remains to prove that {Bn,[p,k](A,b, c, ρ)}n

∼λ η(γ)
[p,k](x,θ) under the assumption cq = −bq ∈ C([0, 1]d) for all q = 1, . . . , d. This as-

sumption ensures that ΠnB̂
0
n,[p,k](A,b, c, ρ)ΠT

n is “almost” Hermitian. More precisely, if xi
is any point in the support of the B-spline Bi+1,[p,k], by Lemma 6.15 we have

(6.89) ΠnB̂
0
n,[p,k](A,b, c, ρ)ΠT

n = ΠnCnΠT
n + ΠnZnΠT

n ,

where

Cn =

 nd−2Â0
n,[p,k](A,b, c, ρ) nd−1

∑d
q=1 ∆̂0

n,[p,k](bq)Ĥ
0
n,[p,k],q(1)

nd−1
∑d
q=1 Ĥ

0
n,[p,k],q(1)∆̂0

n,[p,k](cq) ndM̂0
n,[p,k](ρ)


is symmetric (thanks to the relation Ĥ0

n,[p,k],q(1) = Pn,[p,k]Hn,[p,k],q(1)P ∗n,[p,k], the skew-
symmetry of Hn,[p,k],q(1), and the hypothesis cq = −bq for q = 1, . . . , d) and Zn is defined
by

Zn =

[
O Yn
Wn O

]
,

with

Yn = nd−1
d∑
q=1

(
Ĥ0
n,[p,k],q(bq)− ∆̂0

n,[p,k](bq)Ĥ
0
n,[p,k],q(1)

)

= Pn,[p,k]

(
nd−1

d∑
q=1

(
Hn,[p,k],q(bq)−∆n,[p,k](bq)Hn,[p,k],q(1)

))
P ∗n,[p,k],

Wn = nd−1
d∑
q=1

(
Ĥ0
n,[p,k],q(cq)− Ĥ

0
n,[p,k],q(1)∆̂0

n,[p,k](cq)
)

= Pn,[p,k]

(
nd−1

d∑
q=1

(
Hn,[p,k],q(cq)−Hn,[p,k],q(1)∆n,[p,k](cq)

))
P ∗n,[p,k].

By Lemma 6.15, N 5, and the continuity of cq = −bq ,

‖Zn‖ = max(‖Yn‖, ‖Wn‖) ≤ C
d∑
q=1

ωbq (n−1)→ 0.

The thesis (6.86) now follows from GLT 2, taking into account (6.87)–(6.89).
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6.5. Higher-order isogeometric Galerkin discretization of eigenvalue problems. Let
R+ be the set of positive real numbers. Consider the following eigenvalue problem: find
eigenvalues λj ∈ R+ and eigenfunctions uj , for j = 1, 2, . . . ,∞, such that

(6.90)

{
−∇ ·A∇uj = λjbuj , in Ω,

uj = 0, on ∂Ω,

where A = [a`q]
d
`,q=1 and Ω is a bounded open domain in Rd with Lipschitz boundary. We

assume that a`q ∈ L1(Ω) for all `, q = 1, . . . , d, that A(x) = [a`q(x)]d`,q=1 is symmetric
positive definite (SPD) for almost every x ∈ Ω, and that b ∈ L1(Ω) with b > 0 a.e. in Ω.
It can be shown that the eigenvalues λj must necessarily be real and positive. This can be
formally seen by multiplying (6.90) by uj and integrating over Ω:

λj =
−
∫

Ω
(∇ ·A∇uj)uj∫

Ω
bu2
j

=

∫
Ω

(∇uj)TA∇uj∫
Ω
bu2
j

> 0.

Isogeometric Galerkin discretization. The weak form of (6.90) reads as follows: find
eigenvalues λj ∈ R+ and eigenfunctions uj ∈ H1

0 (Ω), for j = 1, 2, . . . ,∞, such that

a(uj , w) = λj(buj , w), ∀w ∈ H1
0 (Ω),

where

a(uj , w) =

∫
Ω

(∇w)TA∇uj , (buj , w) =

∫
Ω

bujw.

In the standard Galerkin method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 (Ω), we

define the so-called approximation spaceW = span(ϕ1, . . . , ϕN ), and we find approximations
of the exact eigenpairs (λj , uj), j = 1, 2, . . . ,∞, by solving the following (Galerkin) problem:
find λj,W ∈ R+ and uj,W ∈ W , for j = 1, . . . , N , such that

(6.91) a(uj,W , w) = λj,W(buj,W , w), ∀w ∈ W.

Assuming that the exact and numerical eigenvalues are arranged in non-decreasing order, then
the pair (λj,W , uj,W) is taken as an approximation of the pair (λj , uj) for all j = 1, . . . , N ,
as prescribed in [65, Chapter 6], where one can find an error analysis for such a choice. The
numbers λj,W/λj − 1, j = 1, . . . , N , are referred to as the (relative) eigenvalue errors. In
view of the canonical identification of each function w ∈ W with its coefficient vector with
respect to the basis {ϕ1, . . . , ϕN}, solving the Galerkin problem (6.91) is equivalent to solving
the generalized eigenvalue problem

(6.92) Astiffuj,W = λj,WM
massuj,W ,

where uj,W is the coefficient vector of uj,W with respect to {ϕ1, . . . , ϕN} and

Astiff = [a(ϕj , ϕi)]
N
i,j=1 =

[∫
Ω

(∇ϕi)TA∇ϕj
]N
i,j=1

,(6.93)

Mmass = [(bϕj , ϕi)]
N
i,j=1 =

[∫
Ω

bϕjϕi

]N
i,j=1

.(6.94)
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The matrices Astiff and Mmass are referred to as the stiffness and mass matrices, respectively.
Due to our assumption that A is SPD a.e. and b > 0 a.e. in Ω, both Astiff and Mmass are SPD
regardless of the chosen basis functions ϕ1, . . . , ϕN . Moreover, it is clear from (6.92) that the
numerical eigenvalues λj,W , j = 1, . . . , N , are just the eigenvalues of the matrix

L = (Mmass)−1Astiff.

In the isogeometric Galerkin method [23, 51], we assume that the physical domain Ω is
described by a global geometry function G : [0, 1]d → Ω, which is invertible and satisfies
G(∂([0, 1]d)) = ∂Ω. We fix a set of basis functions {ϕ̂1, . . . , ϕ̂N} defined on the reference
(parametric) domain [0, 1]d and vanishing on the boundary ∂([0, 1]d), and we find approxima-
tions to the exact eigenpairs (λj , uj), j = 1, 2, . . . ,∞, by using the standard Galerkin method
described above, in which the basis functions ϕ1, . . . , ϕN are chosen as

(6.95) ϕi(x) = ϕ̂i(G
−1(x)) = ϕ̂i(x̂), x = G(x̂), i = 1, . . . , N.

The resulting stiffness and mass matrices Astiff and Mmass are given by (6.93) and (6.94) with
the basis functions ϕi defined as in (6.95). If we assume that G and ϕ̂i, i = 1, . . . , N , are
sufficiently regular, we can apply standard differential calculus to obtain for Astiff and Mmass

the following expressions:

Astiff =

[∫
(0,1)d

|det(JG)|(∇ϕ̂i)T ((JG)−1A(G)(JG)−T )∇ϕ̂j

]N
i,j=1

,(6.96)

Mmass =

[∫
(0,1)d

b(G)|det(JG)|ϕ̂jϕ̂i

]N
i,j=1

,(6.97)

where JG is the Jacobian matrix of G,

JG =

[
∂Gi
∂x̂j

]d
i,j=1

=

[
∂xi
∂x̂j

]d
i,j=1

.

GLT analysis of the higher-order isogeometric Galerkin matrices. In the higher-order
isogeometric Galerkin approach considered herein, we choose the basis functions ϕ̂1, . . . , ϕ̂N
as the tensor-product p-degree Ck B-splines

(6.98) B2,[p,k], . . . , Bn(p−k)+k,[p,k]

introduced in Section 6.2. If, for any W = [w`q]
d
`,q=1 with w`q ∈ L1((0, 1)d) and any

w ∈ L1((0, 1)d), we define

An,[p,k](W ) =

[∫
(0,1)d

(∇Bi+1,[p,k])
TW∇Bj+1,[p,k]

]n(p−k)+k−1

i,j=1

,

Mn,[p,k](w) =

[∫
(0,1)d

wBj+1,[p,k]Bi+1,[p,k]

]n(p−k)+k−1

i,j=1

,

then the stiffness and mass matrices (6.96) and (6.97) resulting from the choice of the basis
functions as in (6.98) are nothing else than An,[p,k](AG) and Mn,[p,k](bG), where

(6.99) AG = |det(JG)| (JG)−1A(G)(JG)−T , bG = b(G) |det(JG)|.
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The main result of this section is Theorem 6.19. It gives the spectral distributions of the
normalized sequences

{nd−2An,[p,k](AG)}n, {ndMn,[p,k](bG)}n, {n−2Ln,[p,k](AG, bG)}n,

where n = γn for some γ ∈ Qd and

Ln,[p,k](AG, bG) = (Mn,[p,k](bG))−1An,[p,k](AG)

is the matrix whose eigenvalues are just the numerical eigenvalues produced by the considered
higher-order isogeometric Galerkin method. To prove Theorem 6.19, some preliminary work
is necessary. In what follows, we systematically use Notation 6.4.

LEMMA 6.17. Let p ≥ 1 and 0 ≤ k ≤ p − 1. Suppose that n = γn, where γ ∈ Qd
is a fixed vector with positive components and n varies in the infinite subset of N such that
n = γn ∈ Nd. Then, for any W = [w`q]

d
`,q=1, w with w`q, w ∈ L1((0, 1)d),

{nd−2ΓTn+k,p−kÂ
1
n,[p,k](W )Γn+k,p−k}n ∼GLT

1

N(γ)

d∑
`,q=1

γ`γqw`q(x)(H[p,k])`q(θ),

(6.100)

{ndΓTn+k,p−kM̂
1
n,[p,k](w)Γn+k,p−k}n ∼GLT

1

N(γ)
w(x)µ[p,k](θ),

(6.101)

where H[p,k] and µ[p,k] are defined in (6.58) and (6.80), respectively.
Proof. By Lemma 6.14, the relations (6.100) and (6.101) hold with Â0

n,[p,k](W ) and

M̂0
n,[p,k](w) in place of Â1

n,[p,k](W ) and M̂1
n,[p,k](w). Since, by definition (see Notation 6.4),

Â1
n,[p,k](W ) = Â0

n,[p,k](W ) +R0
n,[p,k],

M̂1
n,[p,k](w) = M̂0

n,[p,k](w) +R0
n,[p,k],

with rank(R0
n,[p,k]) = o(nd), the relations (6.100) and (6.101) follow from Z 1, GLT 3, and

GLT 4.
LEMMA 6.18. Let p ≥ 1 and 0 ≤ k ≤ p − 1. Then, µ[p,k](θ) is Hermitian positive

definite for all θ ∈ [−π, π]d.
Proof. By Lemma 6.17, if we take n = (n, . . . , n), that is, γ = 1, then

{ndΓTn+k,p−kM̂
1
n,[p,k](1)Γn+k,p−k}n ∼GLT µ[p,k](θ).

Since ndM̂1
n,[p,k](1) is symmetric, we infer from GLT 1 that

(6.102) {ndM̂1
n,[p,k](1)}n ∼λ µ[p,k](θ).

Now, by the discussion in Notation 6.4, the eigenvalues of M̂1
n,[p,k](1) coincide with the

eigenvalues ofMn,[p,k](1) plus furtherN((n+k)(p−k))−N(n(p−k)+k−1) eigenvalues
that are equal to 1. By (6.78), P 7, and the positive definiteness of the matrix Mn,[p,k] for every
p, n ≥ 1 and 0 ≤ k ≤ p− 1, we have

λmin(Mn,[p,k](1)) = λmin

( d⊗
r=1

Mn,[pr,kr]

)
=

d∏
r=1

λmin(Mn,[pr,kr]).(6.103)
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By (6.28), for every p, n ≥ 1, every 0 ≤ k ≤ p− 1, and every y ∈ Rn(p−k)+k−1, we have

yT (nMn,[p,k])y = n

∫ 1

0

( n(p−k)+k−1∑
i=1

yiBi+1,[p,k](x̂)

)2

dx̂

= n

∥∥∥∥∥∥
n(p−k)+k−1∑

i=1

yiBi+1,[p,k]

∥∥∥∥∥∥
2

L2([0,1])

≥ cp‖y‖2.

Hence, by the minimax principle for eigenvalues [14, Corollary III.1.2],

λmin(nMn,[p,k]) = min
y 6=0

yT (nMn,[p,k])y

‖y‖2
≥ cp

for all n. In view of (6.103), this implies that
(6.104)

λmin(ndMn,[p,k](1)) ≥
d∏
r=1

cpr =⇒ λmin(ndM̂1
n,[p,k](1)) ≥ min

(
1,

d∏
r=1

cpr

)
for all n. Taking into account that λmin(µ[p,k](θ)) is a continuous function of θ just as
µ[p,k](θ), by (6.102), (6.104), and S 3 we have

λmin(µ[p,k](θ)) ≥ min

(
1,

d∏
r=1

cpr

)
for almost every θ ∈ [−π, π]d, that is, for all θ ∈ [−π, π]d, thanks to the continuity
of λmin(µ[p,k](θ)). We then conclude that µ[p,k](θ) is Hermitian positive definite for all
θ ∈ [−π, π]d.

THEOREM 6.19. Let Ω be a bounded open domain in Rd with Lipschitz boundary and
suppose that the following conditions on the PDE coefficients and the geometry map are
satisfied:
• a`q ∈ L1(Ω) for all `, q = 1, . . . , d;
• b ∈ L1(Ω) and b > 0 a.e. in Ω;
• A(x) = [a`q(x)]d`,q=1 is SPD for a.e. x ∈ Ω;
• |det(JG)| > 0 a.e. in [0, 1]d and (AG)`q ∈ L1((0, 1)d) for all `, q = 1, . . . , d, where AG

is defined in (6.99).
Let p ≥ 1 and 0 ≤ k ≤ p− 1, let γ ∈ Qd be a vector with positive components, and assume
that n = γn (it is understood that n varies in the infinite subset of N such that n = γn ∈ Nd).
Then,

{nd−2An,[p,k](AG)}n ∼σ,λ κ(γ)
G,[p,k](x̂,θ) =

1

N(γ)

d∑
`,q=1

γ`γq(AG)`q(x̂)(H[p,k])`q(θ),

(6.105)

{ndMn,[p,k](bG)}n ∼σ,λ µ(γ)
G,[p,k](x̂,θ) =

1

N(γ)
bG(x̂)µ[p,k](θ),

(6.106)

{n−2Ln,[p,k](AG, bG)}n ∼σ,λ (µ
(γ)
G,[p,k](x̂,θ))−1κ

(γ)
G,[p,k](x̂,θ),

(6.107)
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where bG is defined in (6.99), while H[p,k] and µ[p,k] are defined in (6.58) and (6.80), respec-
tively.

Proof. We first note that it is enough to prove (6.105)–(6.107) with An,[p,k], Mn,[p,k],
Ln,[p,k] replaced by, respectively, Â1

n,[p,k], M̂
1
n,[p,k], L̂

1
n,[p,k], that is,

{nd−2Â1
n,[p,k](AG)}n ∼σ,λ κ(γ)

G,[p,k](x̂,θ),(6.108)

{ndM̂1
n,[p,k](bG)}n ∼σ,λ µ(γ)

G,[p,k](x̂,θ),(6.109)

{n−2L̂1
n,[p,k](AG, bG)}n ∼σ,λ (µ

(γ)
G,[p,k](x̂,θ))−1κ

(γ)
G,[p,k](x̂,θ).(6.110)

Moreover, (6.108) and (6.109) follow immediately from Lemma 6.17 taking into account the
symmetry of the matrices Â1

n,[p,k](AG) and M̂1
n,[p,k](bG). It only remains to prove (6.110).

Keeping in mind the discussion in Notation 6.4, we note that

(M̂1
n,[p,k](bG))−1(Â1

n,[p,k](AG)) = (M̂1
n,[p,k](bG))−1Â1

n,[p,k](AG)

= (Pn,[p,k]Mn,[p,k](bG)P ∗n,[p,k]+R
0
n,[p,k])

−1(Pn,[p,k]An,[p,k](AG)P ∗n,[p,k]+R
0
n,[p,k])

= (Pn,[p,k](Mn,[p,k](bG))−1P ∗n,[p,k]+R
0
n,[p,k])(Pn,[p,k]An,[p,k](AG)P ∗n,[p,k]+R

0
n,[p,k])

= (Pn,[p,k](Mn,[p,k](bG))−1An,[p,k](AG)P ∗n,[p,k]+R
0
n,[p,k])

= L̂1
n,[p,k](AG, bG).

Thus,

n−2L̂1
n,[p,k](AG, bG) = (ndM̂1

n,[p,k](bG))−1(nd−2Â1
n,[p,k](AG))

∼ (ndM̂1
n,[p,k](bG))−1/2(nd−2Â1

n,[p,k](AG))(ndM̂1
n,[p,k](bG))−1/2,(6.111)

where X ∼ Y means that the matrix X is similar to Y ; note that M̂1
n,[p,k](bG) is positive defi-

nite because bG > 0 a.e. in [0, 1]d by the assumptions on b and G, hence (M̂1
n,[p,k](bG))−1/2

is well-defined. By combining the equality in (6.111) with Lemmas 6.17, 6.18, and GLT 4,
we immediately obtain
(6.112)
{n−2ΓTn+k,p−kL̂

1
n,[p,k](AG, bG)Γn+k,p−k}n ∼GLT (µ

(γ)
G,[p,k](x̂,θ))−1κ

(γ)
G,[p,k](x̂,θ).

The singular value distribution in (6.110) follows from (6.112) and GLT 1. Moreover, by
Lemmas 6.17, 6.18, GLT 4, and GLT 5 (applied with f(z) = |z|1/2), we have 3

{ΓTn+k,p−k(ndM̂1
n,[p,k](bG))−1/2(nd−2Â1

n,[p,k](AG))(ndM̂1
n,[p,k](bG))−1/2Γn+k,p−k}n

∼GLT (µ
(γ)
G,[p,k](x̂,θ))−1/2(κ

(γ)
G,[p,k](x̂,θ))(µ

(γ)
G,[p,k](x̂,θ))−1/2.

Considering that (ndM̂1
n,[p,k](bG))−1/2(nd−2Â1

n,[p,k](AG))(ndM̂1
n,[p,k](bG))−1/2 is sym-

metric, from GLT 1 we get

{(ndM̂1
n,[p,k](bG))−1/2(nd−2Â1

n,[p,k](AG))(ndM̂1
n,[p,k](bG))−1/2}n

∼λ (µ
(γ)
G,[p,k](x̂,θ))−1/2(κ

(γ)
G,[p,k](x̂,θ))(µ

(γ)
G,[p,k](x̂,θ))−1/2,

3Recall that Y g(X)Y −1 = g(Y XY −1); see [50, Theorem 1.13].
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which is equivalent to

{(ndM̂1
n,[p,k](bG))−1/2(nd−2Â1

n,[p,k](AG))(ndM̂1
n,[p,k](bG))−1/2}n

∼λ (µ
(γ)
G,[p,k](x̂,θ))−1(κ

(γ)
G,[p,k](x̂,θ))

by definition of the spectral distribution since

(µ
(γ)
G,[p,k](x̂,θ))−1(κ

(γ)
G,[p,k](x̂,θ))

∼ (µ
(γ)
G,[p,k](x̂,θ))−1/2(κ

(γ)
G,[p,k](x̂,θ))(µ

(γ)
G,[p,k](x̂,θ))−1/2

for all (x̂,θ) ∈ [0, 1]d × [−π, π]d. In view of the similarity in (6.111), we conclude that the
eigenvalue distribution in (6.110) is satisfied.
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