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Abstract. In this paper, we present a stochastic differential game to model the transboundary air pollution
problems of the Beijing-Tianjin region with emission permits trading. By using stochastic optimal control theory, we
obtain the Hamilton-Jacobi-Bellman equation satisfied by the value function for the cooperative games. Next, we
solve the Hamilton-Jacobi-Bellman equation by using a fitted finite volume method. Finally, the efficiency and the
usefulness of the fitted finite volume method are illustrated by an empirical study.
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1. Introduction. Pollution is a severe environmental problem in the world. As an
important part of environmental pollution, transboundary air pollution problems have extremely
important effects on health and lives, and serious transboundary air pollution even constitutes
great threats to the survival and the development of human beings, so it is inevitable to study
transboundary air pollution problems.

Transboundary air pollution problems have attracted the attention of environmentalists,
lawyers, economists, and political scientists; see, for instance, [1, 9, 17]. Transboundary air
pollution in the Beijing-Tianjin region is an outstanding example of it in China and even
around the world. The Beijing-Tianjin region is one of the important centers of economy
and culture, and it has major influence. Solving the transboundary air pollution problems
of the Beijing-Tianjin region has enormous significance. We focus on the transboundary
industrial pollution problem in the Beijing-Tianjin region and discuss it within a differential
game framework and employ the Hamilton-Jacobi-Bellman equation. By using the fitted finite
volume method, we solve the Hamilton-Jacobi-Bellman equation and provide an empirical
study.

The U.S. and Canada first completed a bargain deal on transboundary air pollution
problems, i.e., when pollution originates at one location and damages another region’s air
quality after traveling. Differential games can be regarded as an effective instrument for
dealing with pollution control problems and for examining the reciprocal actions between
the dynamic processes of pollution and the participants’ behaviors. They are often used to
model and analyze the actions in the case of dynamic systems. In this approach, there are
many players with their own goals in the system and the dynamics of the players’ states are
modeled by a series of differential equations. In a transboundary pollution control problem,
the neighboring countries or regions can be seen as the players, and they aim at maximizing
the joint or their own net present profits under a cooperative or non-cooperative games point
of view, respectively.
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FIG. 1.1. The map of China on the left-hand side and the map of Beijing city and Tianjing city on the right-hand
side.

Recently, many researchers have paid attention to transboundary air pollution problems.
For example, Yeung [15] first derived time-consistent solutions in a cooperative differential
game and studied the pollution management in a stochastic differential game framework.
In [16], the authors present a cooperative stochastic differential game of transboundary indus-
trial pollution and derive a payment distribution mechanism, which maintains the subgame
consistency. The authors study the impact of clean technology adoption with the finding
that countries can cope with the increase of pollution by increasing emissions in the non-
cooperative transboundary pollution game [1]. Others have studied the harmonization of
international and domestic law [9], abatement cost [14], and even R and D spillovers [17].

To our best knowledge, transboundary air pollution requires action by the international
community to control its formation and impact. A cooperative differential game model of
transboundary industrial pollution was presented by Yeung [15]. Then Li [12] extended
Yeung’s model to an even more general model, in which emission permits trading is taken into
account. For our applications and the empirical study, we also employ this model. Moreover,
Bernard [2] has tested the impact of the strategic interactions between Russia and China in
the international carbon emission permits market. Zhang [6] generalized the emission permits
price model obeying a geometric Brownian motion, which is commonly used to described the
path of an underlying asset in financial markets. Our goal is to make use of optimal control
theory to seek the cooperative optimal emission paths of the Beijing and Tianjing regions.

In this paper, we discuss a stochastic differential game to model the transboundary air
pollution problems of the Beijing-Tianjin region with emission permits trading. We make use
of stochastic optimal control theory to derive the Hamilton-Jacobi-Bellman equation satisfied
by the value functions for the cooperative games. Furthermore, we solve the Hamilton-Jacobi-
Bellman equation by using a fitted finite volume method. The efficiency and the usefulness of
this method are illustrated by an empirical study.

The outline of this paper is as follows. In Section 2, we provide the cooperative game
formulations from which the Hamilton-Jacobi-Bellman equation is derived. Then, a fitted finite
volume method is proposed for the discretization of the Hamilton-Jacobi-Bellman equation
in Section 3. In Section 4, an empirical study is performed to illustrate the efficiency and
usefulness of the numerical method.

2. The Hamilton-Jacobi-Bellman equation. In this section, we discuss the differential
game framework and the Hamilton-Jacobi-Bellman equation for the transboundary air pollution
problem of the Beijing-Tianjin region. In order to illustrate the dynamics of pollution and the
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interactions among the players in a commitment period, we propose a finite-horizon differential
game framework. We assume that the game involves the Beijing-Tianjin region; it is a region
that is not only a serious problem area of air pollution but also one of the pioneers in exploring
transboundary treatment.

Let Qi(t) (i = 1, 2) denote the production of region i (Beijing city and Tianjin city)
during the period [0, T ], where T is the maturity of the game. This production leads to an
amount of by-products, namely emissions Ei(t), which depend only on time t. Suppose
that region i’s net revenue arising from the production can be represented by an increasing
concave function Ri(Qi(t)). Following [3, 4, 8, 12], we assume that the relationship between
production and emissions is linear, and the production revenue function can be expressed by
the following quadratic functional form in terms of the emissions:

Ri(Ei(t)) = AiEi(t)−
1

2
E2
i (t),

where Ai (i = 1, 2) are positive constants.
In an emission permits trading scheme, the initial quota Ei0, which is a positive constant,

is often allocated by the grandfather principle or auction principle. Then, the trading volume
of the emission permits of region i is given by

Yi(t) = Ei(t)− Ei0.

We assume that the emission permits price S(t) is stochastic and follows a geometric Brownian
motion:

dS(t) = µSS(t)dt+ σSS(t)dWS ,

where µS and σS are two constants representing the drift rate and the volatility of the emission
permits price, respectively, and dWS denotes the increments to the standard Brownian process.

Region i’s industrial net revenue involves emission permits trading with a stochastic
dynamic price process at time t, and it can be written as

Πi(Ei(t)) = AiEi(t)−
1

2
E2
i (t)− S(t)(Ei(t)− Ei0)

= (Ai − S(t))Ei(t)−
1

2
E2
i (t) + S(t)Ei0.

Moreover, let P (t) denote the stock of pollution in the environment at time t. Then, the
dynamic process of the pollution stock is governed by the following stochastic differential
equation:

dP (t) =

((
2∑
i=1

Ei(t)

)
− θPP (t)

)
dt+ σPP (t) dWP ,

where E1(t) and E2(t) denote the emission levels of regions 1 and 2, respectively. Here θP
represents the exponential decay rate of the pollution. The constant σP is a noise parameter
and represents the volatility of the pollution stock, and WP is the increment to the standard
Brownian process. In particular, we set A2 = α1A1 and D2 = β1D1, where Di(i = 1, 2)
is a strictly positive parameter. By means of [13], the parameters α and β characterize the
differences in the two regions’ capacities in bearing damages from the stock of pollution or
from abatement costs and in generating revenues from production.

Besides, we suppose that the salvage cost at time T for the pollution stock is a linear
function gi(P̄i − P (T )), where gi > 0 and P̄i > 0.
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Hence, the current objective of region i is to find an optimal plan which maximizes the
expected value of the flow of the instantaneous net revenue. That is, the objective functional
and constraint conditions of region i are as follows:

max
Ei(t)

E

{∫ T

0

exp(−rt)
[
(Ai − S(t))Ei(t)−

1

2
E2
i (t) + S(t)Ei0 −DiP (t)

]
dt

}
− gi(P (T )− P̄i) exp(−rT ),

subject to



dS(t) = µSS(t)dt+ σSS(t)dWS ,

S(0) = S0,

dP (t) =

((
2∑
i=1

Ei(t)

)
− θPP (t)

)
dt+ σPP (t)dWP ,

P (0) = P0,

where r is the social risk-free discount rate.

Suppose that the joint value function VC(P, S, t) is a twice continuously differentiable
function of P and S, and we assume that the two Brownian processes WS and WP are
correlated with a correlation coefficient ρ > 0; here ρ = 0 means that they are independent
of each other. By applying the dynamic programming approach and Ito’s lemma to solve the
above stochastic optimal control problem, we obtain the following Hamilton-Jacobi-Bellman
equation satisfied by the value function VC(P, S, t):

(2.1) max
ECi(t)

{
∂VC
∂t

+

((
2∑
i=1

ECi

)
− θPP

)
∂VC
∂P

+
1

2
σ2
PP

2 ∂
2VC
∂P 2

+ µSS
∂VC
∂S

+
1

2
σ2
SS

2 ∂
2VC
∂S2

+ ρσPσSPS
∂2VC
∂P∂S

− rVC + FC(P, S,EC1, EC2, t)

}
= 0,

with the terminal condition

(2.2) VC(P, S, T ) = −
2∑
i=1

gi(P (T )− P̄i),

where

FC(P, S,EC1, EC2, t) =

2∑
i=1

(Ai − S)ECi −
2∑
i=1

E2
Ci

2
+

(
2∑
i=1

Ei0

)
S −

(
2∑
i=1

Di

)
P.

3. Fitted finite volume method. It is easy to see that the Hamilton-Jacobi-Bellman
equations (2.1)–(2.2) can not be solved analytically. In this section, we present a fitted finite
volume method to discretize them. A two-level implicit time-stepping method is used to
implement the time-discretization.
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Let us denote the optimal emission paths byE∗C1 andE∗C2. From the first-order optimality
condition, we know that equation (2.1) can be split into the following coupled equations:

∂VC
∂t

+ (E∗C1(t) + E∗C2(t)− θPP )
∂VC
∂P

+
1

2
σ2
PP

2 ∂
2VC
∂P 2

+ µSS
∂VC
∂S

+
1

2
σ2
SS

2 ∂
2VC
∂S2

+ρσPσSPS
∂2VC
∂P∂S

− rVC + FC(P, S,E∗C1(t), E∗C2(t), t) = 0,(3.1a)

E∗C1(P, S, t) = A1 − S +
∂VC
∂P

,

E∗C2(P, S, t) = A2 − S +
∂VC
∂P

.

(3.1b)

Now, we introduce the fitted finite volume method for the spatial discretization. Essential
for the discretization is a mesh for (Pmin, Pmax)× (Smin, Smax). We first divide the intervals
IP and IS into NP and NS subintervals, respectively:

IPi
:= (Pi, Pi+1), ISj

:= (Sj , Sj+1), i = 0, 1, . . . , NP − 1, j = 0, 1, . . . , NS − 1,

where

Pmin = P0 < P1 < · · · < PNP
= Pmax and Smin = S0 < S1 < · · · < SNS

= Smax.

Thus, a mesh on IP × IS is defined whose mesh lines are perpendicular to the axes. Next we
define another partition of IP × IS by letting

Pi− 1
2

=
Pi−1 + Pi

2
, Pi+ 1

2
=
Pi + Pi+1

2
, Sj− 1

2
=
Sj−1 + Sj

2
, Sj+ 1

2
=
Sj + Sj+1

2
,

for any i = 1, 2, . . . , NP − 1 and j = 1, 2, . . . , NS − 1. For completeness, we also set

P− 1
2

= Pmin, PNP + 1
2

= Pmax, S− 1
2

= Smin SNS+ 1
2

= Smax.

The stepsizes are given by hPi
= Pi+ 1

2
− Pi− 1

2
and hSj

= Sj+ 1
2
− Sj− 1

2
for each

i = 0, 1, . . . , NP and j = 0, 1, . . . , NS .
Then, for the purpose of formulating a finite volume scheme [7, 11], we write equa-

tion (3.1a) in the following divergence form:

(3.2) −∂VC
∂t
−∇ · (A∇VC + bVC) + cVC = FC ,

where

A =

[
a11 a12

a21 a22

]
=

[
1
2σ

2
PP

2 1
2ρσPσSPS

1
2ρσPσSPS

1
2σ

2
SS

2

]
,

b =

[
b1
b2

]
=

[
E∗C1 + E∗C2 − θPP − σ2

PP − 1
2ρσPσSP

µSS − σ2
SS − 1

2ρσPσSS

]
,

c = r + µS + 2
∂2VC
∂P 2

− θP − σ2
P − σ2

S − ρσPσS .

It follows by integrating equation (3.2) over Ri,j = [Si− 1
2
, Si+ 1

2
] × [δj− 1

2
, δj+ 1

2
] and

applying the midpoint quadrature rule to the resulting equation that

−
∂VCi,j

∂t
Ri,j −

∫∫
Ri,j

∇ · (A∇VC + bVC) dP dS + ci,jVCi,j
Ri,j = FCi,j

Ri,j ,(3.3)
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for i = 1, 2, . . . , NP−1, j = 1, 2, . . . , NS−1, whereRi,j = (Pi+ 1
2
−Pi− 1

2
)×(Sj+ 1

2
−Sj− 1

2
),

ci,j = c(Pi, Sj , t), VCi,j
= VC(Pi, Sj , t), and FCi,j

= FC(Pi, Sj , E
∗
C1, E

∗
C2, t).

The approximation of the second term in equation (3.3) is the difficult key point of this
numerical method. According to the definition of the flux A∇VC + bVC and by integrating by
parts, we have ∫∫

Ri,j

∇ · (A∇VC + bVC) dS dδ

=

∫
∂Ri,j

(A∇VC + bVC) · lds

=

∫ (P
i+1

2
,S

j+1
2

)

(P
i+1

2
,S

j− 1
2

)

(
a11

∂VC
∂P

+ a12
∂VC
∂S

+ b1VC

)
dS

−
∫ (P

i− 1
2
,S

j+1
2

)

(P
i− 1

2
,S

j− 1
2

)

(
a11

∂VC
∂P

+ a12
∂VC
∂S

+ b1VC

)
dS

+

∫ (P
i+1

2
,S

j+1
2

)

(P
i− 1

2
,S

j+1
2

)

(
a21

∂VC
∂P

+ a22
∂VC
∂S

+ b2VC

)
dP

−
∫ (P

i− 1
2
,S

j− 1
2

)

(P
i+1

2
,S

j− 1
2

)

(
a21

∂VC
∂P

+ a22
∂VC
∂S

+ b2VC

)
dP,(3.4)

where l denotes the unit vector outward-normal to ∂Ri,j . We approximate the first integral of
equation (3.4) by a constant:∫ (P

i+1
2
,S

j+1
2

)

(P
i+1

2
,S

j− 1
2

)

(
a11

∂VC
∂P

+ a12
∂VC
∂S

+ b1VC

)
dS

≈
(
a11

∂VC
∂P

+ a12
∂VC
∂S

+ b1VC

)∣∣∣∣
(P

i+1
2
,Sj)

· hSj
.

Now, we are in the position to derive the approximations to (a11
∂VC

∂P + a12
∂VC

∂S + b1VC) at
the midpoint (Pi+ 1

2
, Sj) of the interval IPi for any i = 0, 1, . . . , NP − 1. To begin with, the

term a11
∂VC

∂P + b1VC is approximated by a constant, which means that its derivative equals
zero, that is,(

1

2
σ2
PP

2 ∂VC
∂P

+

(
E∗C1 + E∗C2 + E∗C3 − θPP − σ2

PP −
1

2
ρσPσSP

)
VC

)′
≡
(
aP 2 ∂VC

∂P
+ b

i+ 1
2 ,j

1 VC

)′
= 0,(3.5a)

VC(Pi, Sj) = VCi,j ,

VC(Pi+1, Sj) = VCi+1,j ,
(3.5b)

where a = 1
2σ

2
P , bi+

1
2 ,j

1 = b1(Pi+ 1
2
, Sj), and VCi,j and VCi+1,j denote the values of VC at

(Pi, Sj) and (Pi+1, Cj), respectively. A first-order ordinary differential equation is obtained
by integrating both sides of equation (3.5a):

aP 2 ∂VC
∂P

+ b
i+ 1

2 ,j
1 VC = C1,
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where C1 is an arbitrary constant that can be determined by the boundary conditions (3.5b) as
follows [18]:

C1 = b
i+ 1

2 ,j
1

VCi+1,j
exp

(
− αi,j

Pi+1

)
− VCi,j

exp
(
−αi,j

Pi

)
exp

(
− αi,j

Pi+1

)
− exp

(
−αi,j

Pi

) ,

where αi,j = b
i+ 1

2 ,j
1 /a. Additionally, the derivative ∂VC/∂S can be approximated by a

forward difference (VCi,j+1
− VCi,j

)/hSj
. As a result, we have

(
a11

∂VC
∂P

+ a12
∂VC
∂S

+ b1VC

)∣∣∣∣
(P

i+1
2
,Sj)

· hSj

≈

bi+ 1
2 ,j

1

VCi+1,j
exp

(
− αi,j

Pi+1

)
− VCi,j

exp
(
−αi,j

Pi

)
exp

(
− αi,j

Pi+1

)
− exp

(
−αi,j

Pi

) + di,j
VCi,j+1 − VCi,j

hSj

 · hSj
,

(3.6)

where d = 1
2ρσPσSPS and di,j = d(Pi, Sj). Applying a similar method to the other three

terms in equation (3.4), we get the following results:

(
a11

∂VC
∂P

+ a12
∂VC
∂S

+ b1VC

)∣∣∣∣
(P

i− 1
2
,Sj)

· hSj

≈

bi− 1
2 ,j

1

VCi,j
exp

(
−αi−1,j

Pi

)
− VCi−1,j exp

(
−αi−1,j

Pi−1

)
exp

(
−αi−1,j

Pi

)
− exp

(
−αi−1,j

Pi−1

) + di,j
VCi,j+1

− VCi,j

hSj

 · hSj
,

(3.7)

(
a21

∂VC
∂P

+ a22
∂VC
∂S

+ b2VC

)∣∣∣∣
(Pi,Sj+1

2
)

· hPi

≈ Sj+ 1
2

(
b̄i,j+ 1

2

S
ᾱi,j

j+1VCi+1,j − S
ᾱi,j

j VCi,j

S
ᾱi,j

j+1 − S
ᾱi,j

j

+ d̄i,j
VCi,j+1

− VCi,j

hPi

)
· hPi

,

(3.8)

and (
a21

∂VC
∂P

+ a22
∂VC
∂S

+ b2VC

)∣∣∣∣
(Pi,Sj− 1

2
)

· hPi

≈ Sj− 1
2

(
b̄i,j− 1

2

S
ᾱi,j−1

j VCi,j
− Sᾱi,j−1

j−1 VCi,j−1

S
ᾱi,j−1

j − Sᾱi,j−1

j−1

+ d̄i,j
VCi,j+1

− VCi,j

hPi

)
· hPi

,

(3.9)

where ᾱi,j = b̄i,j+ 1
2
/āj , ā = 1

2σ
2
S , b̄ = µ− σ2

S − 1
2ρσPσS , and d̄i,j = 1

2ρσPσSPi. Hence,
we obtain the following equations by combining equations (3.3), (3.4), and (3.6)–(3.9):

(3.10)

−
∂VCi,j

∂t
Ri,j + ei,ji−1,jVCi−1,j

+ ei,ji,j−1VCi,j−1
+ ei,ji,jVCi,j

+ ei,ji,j+1VCi,j+1
+ ei,ji+1,jVCi+1,j

= FCi,j
Ri,j ,
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where

ei,ji−1,j = −bi−
1
2 ,j

1

exp
(
−αi−1,j

Pi−1

)
hSj

exp
(
−αi−1,j

Pi

)
− exp

(
−αi−1,j

Pi−1

) ,
ei,ji,j−1 = −Sj− 1

2
b̄i,j− 1

2

S
ᾱi,j−1

j−1 hPi

S
ᾱi,j−1

j − Sᾱi,j−1

j−1

,

ei,ji,j= hSj

 b
i+ 1

2 ,j
1 exp

(
−αi,j

Pi

)
exp

(
− αi,j

Pi+1

)
− exp

(
−αi,j

Pi

)+
b
i− 1

2 ,j
1 exp

(
−αi−1,j

Pi

)
exp

(
−αi−1,j

Pi

)
− exp

(
−αi−1,j

Pi−1

)+d̄i,j


+ hPi

(
Sj+ 1

2

b̄i,j+ 1
2
S
ᾱi,j

j

S
ᾱi,j

j+1 − S
ᾱi,j

j

+ Sj− 1
2

b̄i,j− 1
2
S
ᾱi,j−1

j

S
αi,j−1

j − Sᾱi,j−1

j−1

)
+ ci,jRi,j ,

ei,ji,j+1 = −Sj+ 1
2
b̄i,j+ 1

2

S
ᾱi,j

j+1hPi

S
ᾱi,j

j+1 − S
ᾱi,j

j

,

ei,ji+1,j = −bi+
1
2 ,j

1

exp
(
− αi,j

Pi+1

)
hSj

exp
(
− αi,j

Pi+1

)
− exp

(
−αi,j

Pi

) − hSj d̄i,j ,

for i = 1, . . . , NP − 1, j = 1, . . . , NS − 1. The other elements ei,jm,n equal zero if
m 6= i− 1, i, i+ 1 and n 6= j − 1, j, j + 1. We can observe that (3.10) represents an
(NP − 1)

2 × (NS − 1)
2 linear system of equations for

VC = (VC1,1 , . . . , VC1,NS−1
, VC2,1 , . . . , VC2,NS−1

, . . . , VCNP −1,1
, . . . , VCNP −1,NS−1

)
T
.

Note that VC0,j (t), VCi,0(t), VC0,NS
(t), and VCNP ,0

(t), for i = 1, . . . , NP and j = 1, . . . , NS ,
equal the given boundary conditions. Obviously, the coefficient matrix of the system (3.10) is
pentadiagonal.

Next we discuss the time-discretization of the system (3.10). For this purpose, we first
rewrite equation (3.10) as

(3.11) −
∂VCi,j

∂t
Ri,j +Di,jVC = FCi,j

Ri,j ,

where

Di,j = (0, . . . , 0, ei,ji−1,j , 0, . . . , 0, e
i,j
i,j−1, e

i,j
i,j , e

i,j
i,j+1, 0, . . . , 0, e

i,j
i+1,j , 0, . . . , 0)

for i = 1, . . . , NP−1 and j = 1, . . . , NS−1. We selectM−1 points in (0, T ) numbered from
t1 to tM−1, and let T = t0, tM = 0, to form a partition of time T = t0 > t1 > · · · > tM = 0.
Then, the fully discrete form of equation (3.11) is obtained by applying the two-level implicit
time-stepping method with a splitting parameter θ ∈ [ 1

2 , 1]:(
θD(P, S,E∗C1(tm+1), E∗C2(tm+1), E∗C3(tm+1), tm+1) +Gm

)
V m+1
C

= θFC
(
P, S,E∗C1(tm+1), E∗C2(tm+1), E∗C3(tm+1), tm+1

)
+ (1− θ)FC (P, S,E∗C1(tm), E∗C2(tm), E∗C3(tm), tm)

+ (Gm − (1− θ)D(P, S,E∗C1(tm), E∗C2(tm), E∗C3(tm), tm))V mC ,

(3.12)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

108 Z. LU, F. HUANG, L. LI, X. ZUO, AND J. LI

where

V mC = (V mC1,1
, . . . , V mC1,NS−1

, V mC2,1
, . . . , V mC2,NS−1

, . . . , V mCNP −1,1
, . . . , V mCNP −1,NS−1

)
T
,

Gm = diag (−R1,1/∆tm, . . . ,−RNP−1,NS−1/∆tm)
T
,

form = 0, 1, . . . ,M−1. Note that ∆tm = tm+1−tm < 0 and V mC denotes the approximation
of VC at t = tm. Particularly, when we set θ = 1

2 , the scheme (3.12) becomes the famous
second-order accurate Crank-Nicolson scheme; if we set θ = 1, the scheme (3.12) becomes
the first-order accurate backward Euler scheme. According to [5, Theorem 4], the system
matrix of (3.12) is an M-matrix.

4. An empirical study. In this section, we perform an empirical study for transboundary
air pollution of the Beijing-Tianjin region. Firstly, we give some economic data of Beijing
city and Tianjing city in Table 4.1. GDP denotes the gross domestic product (hundred million
yuan), and mean denotes the quadratic mean,

√
(a2

1 + · · ·+ a2
n)/n, for n ∈ R and ai (ai

denotes GDP or growth rates).

TABLE 4.1
The gross domestic product and economic growth rate of Beijing city and Tianjing city.

year Beijing city Tianjing city
GDP growth rates GDP growth rates

2006 8118 12.0 4463 13.1
2007 9847 13.1 5253 15.5
2008 11115 9.1 6719 16.5
2009 12153 10.2 7522 16.5
2010 14114 10.3 9224 17.4
2011 16252 8.1 11307 16.4
2012 17879 7.7 12894 13.8
2013 19801 7.7 14442 12.5
2014 21331 7.3 15727 10.0
2015 23015 6.9 16538 9.3

mean 15363 9.4 10409 13.1

According to the derivation of the air transboundary pollution model and references [12,
14, 15], the parameters are chosen as θP = 0.06, β = 1.2, ρ = 0.5, and r = 0.08. In
compliance with other areas and considering reference [6], the other parameters are chosen
to be A1 = 5, D1 = 0.1, σS = 0.3, µS = 0.2, gi = 3, gj = 2, P̄i = 1100, and P̄j = 1200.
For the empirical analysis, we set T = 10, Ei0 = 5, Ej0 = 6, Pmax = 2000, Smin = 20,
Smax = 50, and σP = 0.3, which are reasonable values and come from certain authoritative
bodies1.

In this example, the initial quotas E10 and E20 are both set to be very large, and the
emission levels do not exceed them, so the two regions can sell their unused emission permits,
and the net revenues VCi and VNi will increase with the increasing permits price S. Besides,
the first-order conditions show that the optimal emission levels of the two regions can be
expressed as

E∗Ci = Ai − S +
∂VCi
∂P

,

1http://data.stats.gov.cn
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FIG. 4.1. The value function based on pollution stock and permits price.
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FIG. 4.2. The emission level of region 1 based on pollution stock and permits price.

for i = 1, 2. From the above equations, we can clearly see that the emission levels should
decrease monotonically with increasing permit prices. This implies that the existence of the
emission permit trading scheme does influence the players’ decisions in the games.

Now, we illustrate the results by presenting some figures and tables. In Figure 4.1, the
value function based on the pollution stock and the permits price is presented. Figure 4.1
demonstrates that the value function is higher when the state pollution stock is fixed and the
emission permits prices are large. When the pollution stock is fixed, if the players intend to
increase the value function of the two regions (Beijing city and Tianjing city), then they should
increase the permits price.

Next, the emission levels of regions 2 and 3 based on th pollution and the price are
presented in Figures 4.2 and 4.3. Here red parts represent higher emission levels and blue parts
lower ones. It is clear that the trends of the emission level for both the two regions (Beijing
city and Tianjing city) are consistent. It is also clear that the value function will be reduced
when the pollution stock increases.
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FIG. 4.3. The emission level of region 2 based on pollution stock and permits price.

TABLE 4.2
The cooperative game at t = 0.

pollution
stock

permits
price value function emission levels trading volumes

P S VC EC1 EC2 YC1 YC2

470 23 2938.1 −3.16 −3.19 −8.16 −9.19
29 6110.4 −10.18 −10.43 −15.18 −16.43
35 7179.9 −16.61 −16.86 −21.61 −22.86

810 23 3065.7 −9.33 −9.58 −14.33 −15.58
29 6467.7 −15.78 −16.03 −20.78 −22.03
35 7642.4 −22.37 −22.62 −27.37 −28.62

1150 23 3293.2 −12.96 −13.21 −17.96 −19.21
29 7207.1 −20.79 −21.04 −25.79 −27.04
35 8626.3 −27.90 −28.15 −32.90 −34.15

In Tables 4.2 and 4.3, the value functions, emission levels, and trading volumes for the
pollution stock and the permit prices at time t = 0 and t = 5 are presented. The trading
volumes Y for each table are computed by using the equations Yi(t) = Ei(t) − Ei0, for
i = 1, 2. We can see from Tables 4.2 and 4.3 that the value function is higher when the permits
price and the pollution stock increases for regions 1 and 2.

Figure 4.4 depicts the value functions at t = 0 and t = 5. Comparing with the numerical
results, it demonstrates that our numerical method for the Hamilton-Jacobi-Bellman equation
governing the stochastic differential game in the transboundary air pollution problems of the
Beijing-Tianjin region is useful. Thus, we have reason to believe that the fitted finite volume
method can be a good tool for modeling the cooperative stochastic differential game for the
transboundary air pollution problems of the Beijing-Tianjin region, so it can motivate the
players to make more flexible decisions in the game. That is, with the increase of the emission
price, the value will increase, while there will be a certain reduction when the price increases
to a certain point so that the volume of emissions trading in the Beijing-Tianjin region will
decrease.
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TABLE 4.3
The cooperative game at t = 5.

pollution
stock

permits
price value function emission levels trading volumes

P S VC EC1 EC2 YC1 YC2

470 23 3697.0 −6.91 −7.16 −11.91 −13.16
29 5787.3 −13.66 −13.91 −18.66 −19.91
35 5836.5 −18.84 −19.09 −23.84 −25.09

810 23 3850.8 −11.34 −11.59 −16.34 −17.59
29 6262.7 −19.07 −19.32 −24.07 −25.32
35 6445.9 −24.61 −23.20 −29.61 −29.20

810 23 3850.8 −11.34 −11.59 −16.34 −17.59
1150 23 4103.1 −14.68 −13.20 −19.68 −19.20

29 7103.1 −23.97 −23.12 −28.97 −29.12
35 7531.7 −30.22 −30.47 −35.22 −36.47
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FIG. 4.4. The value functions at t = 0 and t = 5.

Furthermore, multi-regions transboundary air pollution problems are more common in
China. In this paper, we only consider a two-region transboundary air pollution. We will
consider multi-regions transboundary air pollution problems in future work. The main idea
is similar to the one in this paper. Adaptive resonance theory will be used to classify the
similarity of multi-region transboundary pollution problems.
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