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NUMERICAL EVALUATION OF SPECIAL POWER SERIES INCLUDING THE
NUMBERS OF LYNDON WORDS: AN APPROACH TO INTERPOLATION

FUNCTIONS FOR APOSTOL-TYPE NUMBERS AND POLYNOMIALS∗

IREM KUCUKOGLU† AND YILMAZ SIMSEK‡
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Abstract. Because the Lyndon words and their numbers have practical applications in many different disciplines
such as mathematics, probability, statistics, computer programming, algorithms, etc., it is known that not only
mathematicians but also statisticians, computer programmers, and other scientists have studied them using different
methods. Contrary to other studies, in this paper we use methods associated with zeta-type functions, which interpolate
the family of Apostol-type numbers and polynomials of order k. Therefore, the main purpose of this paper is not
only to give a special power series including the numbers of Lyndon words and binomial coefficients but also to
construct new computational algorithms in order to simulate these series by numerical evaluations and plots. By using
these algorithms, we provide novel computational methods to the area of combinatorics on words including Lyndon
words. We also define new functions related to these power series, Lyndon words counting numbers, and the Apostol-
type numbers and polynomials. Furthermore, we present some illustrations and observations on approximations of
functions by rational functions associated with Apostol-type numbers that can provide ideas on the reduction of the
algorithmic complexity of these algorithms.

Key words. Lyndon words, special numbers and polynomials, Apostol-type numbers and polynomials, arith-
metical function, interpolation function, zeta type function

AMS subject classifications. 03D40, 05A15, 11A25, 11B68, 11B83, 11S40, 11Y16, 65Q30, 68R15

1. Introduction. The main motivation of this article is to construct not only new formulas
for special power series representations involving the Lyndon words counting numbers and the
Apostol-type numbers and polynomials but also algorithms for the numerical computations
using these formulas. In addition, we define new functions including these infinite series and
Lyndon words counting numbers, and their numerical values are computed and plotted with
the help of constructed computational algorithms.

Let us start by giving a brief description of the Lyndon words, one of the main motivations
of this article, and the related definitions of the generating functions of the numbers that count
them. The k-ary Lyndon words of length n, represented by a primitive necklace consisting of
n beads of k different colors, are the lexicographically smallest elements in the set derived
from all primitive words having length n over the k-letter alphabet. Here, primitive words
means that a word cannot be written as a positive power of its subwords. For instance, let us
consider the alphabet {0, 1}. All 2-ary Lyndon words of length 5 which are derived from this
alphabet are given as follows: {00001, 00011, 00101, 00111, 01011, 01111}. It is clear that
the elements of this finite set are primitive words (cf. [3, 4, 6, 7, 11] and the references cited
therein).
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In this paper, Lk(n) denotes the numbers of k-ary Lyndon words of length n. These
numbers are computed by the following formula (cf. [3, 4, 6, 7]):

(1.1) Lk(n) =
1

n

∑
d|n

µ
(n
d

)
kd,

where the sum is over all positive divisors of n and µ is the Möbius function, which is an
arithmetic function defined by (cf. [2])

µ(1) = 1,

and for n > 1 if we write n = pa1
1 p

a2
2 . . . pak

k , where p1, p2, . . ., pk are k distinct primes, then

µ(n) =

{
(−1)k if a1 = a2 = · · · = ak = 1,

0, if n is the product of non-distinct primes (i.e., n is not square-free).

The paper is organized as follows. In Section 2 we give some auxiliary results. Two new
special power series, including the numbers of Lyndon words and binomial coefficients, are
defined in Section 3. We give new relations and identities related to these series including
zeta-type functions, the Apostol-type numbers of order k, and the Apostol-type polynomials
of order k. Section 4 is devoted to some algorithms for computing the values of the functions
representing these special power series by using a modification of recurrence formulas for the
family of Apostol-type numbers and polynomials of order k. Finally, in Section 5, by using
our algorithms, we provide some numerical evaluations and plots. Furthermore, we present
some illustrations and observations for the approximation by rational functions of functions
representing special power series that can provide ideas on the reduction of the algorithmic
complexity of our algorithms.

2. Some auxiliary results. We start this section with descriptions and formulas for
the Apostol-type numbers and polynomials, including their generating functions and their
interpolation functions.

The Apostol-type numbers and polynomials of order k have been defined by the second
author [14] as

Fw(t;λ; k) =
1

(λet + λ−1e−t + 2)
k
=

∞∑
n=0

W (k)
n (λ)

tn

n!

and

Gw(t, x, k;λ) = etxFw(t;λ; k) =

∞∑
n=0

W (k)
n (x;λ)

tn

n!
,(2.1)

respectively, where k is a non-negative integer and λ is a real or complex parameter. A relation
between the numbers W (k)

n (λ) and the polynomials W (k)
n (x;λ) is given in the following

theorem [14]:
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THEOREM 2.1. We have

W (k)
n (x;λ) =

n∑
m=0

(
n

m

)
xn−mW (k)

m (λ).

Setting x = 0 in (2.1), we obtain

W (k)
n (λ) =W (k)

n (0;λ).

A computational formula for the numbers W (k)
n (λ) is given by the next theorem [15]:

THEOREM 2.2.

(2.2) W (c+d)
n (λ) =

n∑
m=0

(
n

m

)
W (c)

m (λ)W
(d)
n−m(λ).

By using the above formula for the numbers W (k)
n (λ), some numerical values of these

numbers are obtained (cf. [15]):

W
(2)
0 (λ) =

λ2

(λ+ 1)4
, W

(2)
1 (λ) =

2λ2 (1− λ)
(λ+ 1)5

, W
(2)
2 (λ) =

4λ2
(
λ2 − 3λ+ 1

)
(λ+ 1)6

,

W
(3)
0 (λ) =

λ3

(λ+ 1)6
, W

(3)
1 (λ) =

3λ3 (1− λ)
(λ+ 1)7

, W
(3)
2 (λ) =

3λ3
(
3λ2 − 8λ+ 3

)
(λ+ 1)8

.

It should be noted that

Wn(λ) =W (1)
n (λ) and Wn(x;λ) =W (1)

n (x;λ).

The next theorem states a recurrence relation for the numbers Wn(λ) (cf. [14]):
THEOREM 2.3. Let n be a positive integer, and let

W0(λ) =
λ

(λ+ 1)
2 .

Then the recurrence relation

(2.3) 2Wn(λ) + λ

n∑
m=0

(
n

m

)
Wm(λ) + λ−1

n∑
m=0

(−1)n−m
(
n

m

)
Wm(λ) = 0

holds.
By (2.3), the following numerical values of the numbers Wn(λ) can be found:

W1(λ) = −
λ (λ− 1)

(λ+ 1)3
, W2(λ) =

λ
(
λ2 − 4λ+ 1

)
(λ+ 1)4

,

W3(λ) = −
λ
(
λ3 − 11λ2 + 11λ− 1

)
(λ+ 1)5

, . . .

The well-known Apostol-Bernoulli polynomials B(k)n (x;λ) and the Apostol-Euler polynomials
E(k)n (x;λ) can be expressed in terms of the polynomials W (k)

n (x;λ). Indeed, the following
relations hold (cf. [8]):

B(2k)n+2k(x;λ) =
(−1)k (n+ 2k)2k

λk
W (k)

n (x− k;−λ),
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E(2k)n (x;λ) =

(
4

λ

)k

W (k)
n (x− k;λ).

Otherwise, these polynomials of order k, B(k)n (x;λ) and E(k)n (x;λ), are defined by the gener-
ating functions (

t

λet − 1

)k

ext =

∞∑
n=0

B(k)n (x;λ)
tn

n!

and (
2

λet + 1

)k

ext =

∞∑
n=0

E(k)n (x;λ)
tn

n!

(cf. [1, 5, 12, 13, 16, 17, 18]).
REMARK 2.4. For other properties, relations, and identities related to the numbers Wn(λ)

and W (k)
n (λ) as well as to the polynomials Wn(x;λ) and W (k)

n (x;λ), the reader can consult
[8, 9, 14, 15].

In addition to the above preliminaries about the Apostol-type numbers and polynomials
W

(k)
n (λ) and W (k)

n (x;λ), we now give their interpolation functions

ζw(s, k;λ) =

∞∑
m=0

(−1)m
(
m+ 2k − 1

m

)
λm+k

(m+ k)
s(2.4)

and

ζw(s, x, k;λ) =

∞∑
m=0

(−1)m
(
m+ 2k − 1

m

)
λm+k

(x+m+ k)
s ,(2.5)

respectively, where λ, s ∈ C with |λ| < 1 and <(s) > 1 (cf. [9]). Special cases of the above
functions, related to the Hurwitz-Lerch zeta function, are given in [9]. For n ∈ N, we also
have (cf. [9])

ζw(−n, k;λ) =W (k)
n (λ),(2.6)

ζw(−n, x, k;λ) =W (k)
n (x;λ).(2.7)

3. Two special power series including the numbers of Lyndon words. In this section,
we define two new special power series involving the numbers of Lyndon words and binomial
coefficients. We give relations between these series and zeta-type functions. In the next section,
we give algorithms for computing the values of these series by using modifications of the
corresponding recurrence formulas for the numbers W (k)

n (λ).
First, we define a power series involving the numbers Lk(n) and the binomial coefficients.

DEFINITION 3.1. Let λ ∈ C with |λ| < 1, and let n be a positive integer. We define

(3.1) G(λ, n, k) =
∞∑

m=0

(
−2k
m

)
Lm+k(n)λ

m+k.

Since (
−2k
m

)
= (−1)m

(
m+ 2k − 1

m

)
,
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another representation of (3.1) is valid:

G(λ, n, k) =
∞∑

m=0

(−1)m
(
m+ 2k − 1

m

)
Lm+k(n)λ

m+k.

Combining (1.1) with (3.1) we get

G(λ, n, k) = 1

n

∑
d|n

µ
(n
d

) ∞∑
m=0

(
−2k
m

)
λm+k (m+ k)

d
.

Using (2.4) in the above equation yields

G(λ, n, k) = 1

n

∑
d|n

µ
(n
d

)
ζw(−d, k;λ).

Finally, combining (2.6) with the above equation we obtain the following result:
THEOREM 3.2. Let n be a positive integer. Then we have

(3.2) G(λ, n, k) = 1

n

∑
d|n

µ
(n
d

)
W

(k)
d (λ).

By substituting k = 1 into (3.2), we get the corollary:
COROLLARY 3.3.

G(λ, n, 1) =
∞∑

m=0

(−1)m (m+ 1)Lm+1(n)λ
m+1

or

G(λ, n, 1) = 1

n

∑
d|n

µ
(n
d

)
Wd(λ).

If n is replaced by a prime number p, then (3.2) reduces to the following:
COROLLARY 3.4. Let p be a prime number. Then we get

G(λ, p, k) = W
(k)
p (λ)−W (k)

1 (λ)

p
.(3.3)

REMARK 3.5. Let k = 1 in (3.3). Then, for p = 2 and p = 3 it reduces to

G(λ, 2, 1) = λ2 (λ− 2)

(λ+ 1)4
,

and

G(λ, 3, 1) = 4λ2 (λ− 1)

(λ+ 1)5
,

respectively.
Now, we define of a new family of polynomials Ln(x,m, k) of degree n:
DEFINITION 3.6. The polynomials Ln(x,m, k) of degree n are defined by

Ln(x,m, k) =
1

n

∑
d|n

µ
(n
d

) d∑
j=0

(
d

j

)
(m+ k)

d−j
xj .(3.4)
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If n = p (p is a prime number), then (3.4) yields:
COROLLARY 3.7. Let p be a prime number. Then

Lp(x,m, k) =
(x+m+ k)

p − (x+m+ k)

p
.

We also define a power series involving the polynomials Ln(x,m, k):
DEFINITION 3.8. Let λ ∈ C with |λ| < 1, and let n be a positive integer. We define

(3.5) H(x;λ, n, k) =
∞∑

m=0

(
−2k
m

)
Ln(x,m, k)λ

m+k.

Combining (3.5) with (3.4) yields

H(x;λ, n, k) = 1

n

∑
d|n

µ
(n
d

) ∞∑
m=0

(
−2k
m

)
λm+k (x+m+ k)

d
.

By using (2.5) in the above equality, we obtain

H(x;λ, n, k) = 1

n

∑
d|n

µ
(n
d

)
ζw(−d, x, k;λ).

Finally, with (2.7) the last equality yields the following result:
THEOREM 3.9. We have

(3.6) H(x;λ, n, k) = 1

n

∑
d|n

µ
(n
d

)
W

(k)
d (x;λ).

REMARK 3.10. Substituting k = 1 into (3.6) we have

H(x;λ, n, 1) = 1

n

∑
d|n

µ
(n
d

)
Wd(x;λ).

In addition, for x = 0 it reduces to

H(0;λ, n, k) = G(λ, n, k).

By combining (3.5) and (3.6), we obtain a connection between the polynomials Ln(x,m, k)

and W (k)
d (x;λ):

COROLLARY 3.11. We have
∞∑

m=0

(
−2k
m

)
Ln(x,m, k)λ

m+k =
1

n

∑
d|n

µ
(n
d

)
W

(k)
d (x;λ).

4. A modification of the recurrence formula for the numbers W (k)
n (λ) and algo-

rithms. In order to find the numerical values of the functions G(λ, n, k), in this section we
provide some computational algorithms for the numbers Wn(λ) and W (k)

n (λ).
For n ≥ 1, a modification of (2.3) is given by

(4.1) Wn(λ) =W0(λ)

n−1∑
m=0

[
(−1)n−m+1λ−1 − λ

](n
m

)
Wm(λ).
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By using (4.1), we state Algorithm 1 for computing the numbers Wn(λ).

Algorithm 1 Let n be a nonnegative integer and λ ∈ C. This algorithm will return the numbers
Wn(λ) recursively.

procedure W_APOSTOL_TYPE_NUM(n: nonnegative integer, λ)
Begin
Local variable m : positive integer
if n = 0 then

return λ/power (λ+ 1, 2)
else

return W_APOSTOL_TYPE_NUM(0, λ)

↪→ ∗sum
(
((1/λ) ∗ power (−1, n−m+ 1)− λ)∗ Binomial_Coef(n,m)

↪→ ∗W_APOSTOL_TYPE_NUM(n−m,λ) ,m, 1, n
)

end if
end procedure

We provide some numerical values of the numbers Wn(λ) computed by Algorithm 1:

W1

(
1
4

)
= 0.096, W2

(
1
4

)
= 0.0064, W3

(
1
4

)
= −0.08832,

W4

(
1
4

)
= −0.11648, W5

(
1
4

)
= 0.059136, W6

(
1
4

)
= 0.5126656.

By setting c = k− 1 and d = 1 in (2.2), we also have the following recurrence relation for the
numbers W (k)

n (λ):

(4.2) W (k)
n (λ) =

n∑
m=0

(
n

m

)
W (k−1)

m (λ)Wn−m(λ).

By using (4.2), we obtain Algorithm 2 for computing the numbers W (k)
n (λ).

Algorithm 2 Let n be a nonnegative integer, λ ∈ C, and k be a positive integer. This
algorithm will return the numbers W (k)

n (λ) recursively with the help of the procedure
W_APOSTOL_TYPE_NUM given by Algorithm 1.

procedure HIGHER_W_APOSTOL_TYPE_NUM(n: nonnegative integer, λ, k: positive
integer)

Begin
Local variable m : nonnegative integer
if k = 1 then

return W_APOSTOL_TYPE_NUM(n, λ)

else
return sum

(
Binomial_Coef (n,m) ∗ HIGHER_W_APOSTOL_TYPE_NUM(m,λ, k − 1)

↪→ ∗HIGHER_W_APOSTOL_TYPE_NUM(n−m,λ, 1) ,m, 0, n
)

end if
end procedure
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Some numerical values of the numbers W (k)
n (λ) computed by Algorithm 2 are as follows:

W
(2)
0

(
1
2

)
= 0.0493827160494,

W
(3)
0

(
1
3

)
= 0.006591796875,

W
(2)
1

(
1
2

)
= 0.0329218106996.

By using (3.2) related to the numbers W (k)
n (λ) and the Möbius function µ(n), we can also

state Algorithm 3 for computing the values of the functions G(λ, n, k).

Algorithm 3 Let λ ∈ C with |λ| < 1, n be a nonnegative integer, and k be a positive
integer. This algorithm will return G(λ, n, k) given by (3.2) with the help of the procedure
HIGHER_W_APOSTOL_TYPE_NUM given by Algorithm 2 and the Möbius function denoted as
the procedure Mobius_Func.

procedure G_LYNDON_FUNC(λ, n:nonnegative integer, k: positive integer)
Begin
Local variable G← 0
for all positive divisors d of n do

G← G+Mobius_Func(n/d) ∗HIGHER_W_APOSTOL_TYPE_NUM(d, λ, k)
end for
return G

end procedure

A computation by Algorithm 3 yields some values for the functions G(λ, n, k):

G
(
1
2 , 2, 1

)
= −0.0740740740741, G

(
− 1

2 , 2, 1
)
= −10,

G
(
1
2 , 3, 1

)
= −0.0658436213992, G

(
− 1

2 , 3, 1
)
= −48,

G
(
1
2 , 5, 1

)
= 0.0658436213992, G

(
− 1

2 , 5, 1
)
= −1872.

5. Numerical evaluation of the numbers Wn(λ) and W (k)
n (λ) and the functions

G(λ, n, k). In this section, by using our algorithms, we not only provide plots for the
numbersWn(λ) and the functions G(λ, n, k), but also give some numerical evaluations related
to the numbers Wn(λ), the numbers W (k)

n (λ), and the functions G(λ, n, k). Moreover, we
present some illustrations and observations on the approximation of the functions G(λ, p, 1)
by rational functions that can provide ideas for a reduction of the algorithmic complexity of
our algorithms.

We assume that λ is a real number. Firstly, by using Algorithm 1, we plot the numbers
Wn(λ) in the cases of n = 0, 1, . . . , 6 and for varying λ ∈

[
1

100 ,
1
10

]
. It is clear that the

Wn(λ) are rational functions of the variable λ. Thus, the curves in Figure 5.1 provide some
information for analysing some characteristics of the rational functions Wn(λ).
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0.02 0.04 0.06 0.08 0.10

λ

−0.15

−0.10

−0.05

0.00

0.05

0.10

W
n
(λ

)

W0(λ)

W1(λ)

W2(λ)

W3(λ)

W4(λ)

W5(λ)

W6(λ)

FIG. 5.1. Graphs of the numbers Wn(λ) for n = 0, 1, . . . , 6 and varying λ ∈
[

1
100

, 1
10

]
.

Graphs of the functions G(λ, p, 1) for the prime numbers p = 2, 3, 5, 7 and λ ∈ [0, 5]
obtained by Algorithm 3 are presented in Figure 5.2. This figure demonstrates the effects of
the prime numbers on the shape of the curve for the selected range λ ∈ [0, 5], and these curves
provide information for analysing some characteristics of the functions G(λ, p, 1).

0 1 2 3 4 5

λ

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

G(
λ
,p

,1
)

p=2
p=3
p=5
p=7

FIG. 5.2. Graphs of the functions G(λ, p, 1) for varying prime numbers and λ ∈ [0, 5].

Now, we provide an approximation to the functions G(λ, p, 1) by rational functions with
small errors to give ideas for a reduction of the algorithmic complexity of Algorithm 3 for
prime numbers.
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Let us assume that |λ| < 1, and let p be a prime number. It is clear that the numbers
Wn(λ) are rational functions of the variable λ. Therefore, by setting

GA(λ, p) =
Wp(λ)

p
,

the following inequality holds true:

(5.1) |G(λ, p, 1)− GA(λ, p)| ≤ εp.

where εp = 1/p.
We present some plots and numerical experiments in order to illustrate the approximations

of the functions G(λ, p, 1) by the rational functions GA(λ, p) with an error less than εp = 1/p.
The rational functions GA(λ, p) for four different prime numbers (p = 3, 5, 7, 11) are repre-
sented by red lines in Figure 5.3. According to (5.1) for sufficiently large prime numbers p, εp
tends to zero, and the curves of the functions G(λ, p, 1) and GA(λ, p) tend to overlap. This
indicates that by using the rational functions GA(λ, p) instead of G(λ, p, 1), Algorithm 3 can
operate more efficiently for sufficiently large prime numbers.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

λ

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

GA(λ, 3)

G(λ, 3, 1)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

λ

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

GA(λ, 5)

G(λ, 5, 1)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

λ

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

GA(λ, 7)

G(λ, 7, 1)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
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FIG. 5.3. Approximations of the function G(λ, p, 1) by the rational function GA(λ, p) in the cases: (a) p = 3,
ε3 = 1/3; (b) p = 5, ε5 = 1/5; (c) p = 7, ε7 = 1/7; (d) p = 11, ε11 = 1/11.

REMARK 5.1. In [10], Kucukoglu et al. constructed generating functions for the k-ary
Lyndon words having prime number length with the help of the Apostol-Bernoulli numbers and
other special numbers. Moreover, they gave an approximation to these generating functions by
rational functions of the Apostol-Bernoulli numbers. In this paper, we give approximations
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for functions representing our special power series by rational functions associated with
Apostol-type numbers by using similar techniques as the ones in [10].
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