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Abstract. In an earlier paper from 1970, entitled “Minimal Gerschgorin sets for partitioned
matrices,” a Spectral Conjecture, related to norms and spectral radii of special partitioned matrices,
was stated, this conjecture being at the heart of the sharpness of the boundaries of the associated
minimal Gerschgorin sets under partitioning. In this paper, this Spectral Conjecture is affirmatively
settled, and is applied to the sharpness of the minimal Gerschgorin set in the special case when
the block-diagonal entries are null matrices. The paper following this article then makes use of the
proof of the Spectral Conjecture to obtain the general sharpness of the boundaries of the associated
minimal Gerschgorin sets for partitioned matrices.
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1. Introduction and Notations. For n a positive integer, let ICn denote the
vector space of column vectors x = (x1, x2, · · · , xn)T , where xj ∈ IC for j = 1, 2, · · · , n.
Then, following the notations of [9], by a partition π of ICn, we mean a collection of
pairwise disjoint nonempty linear subspaces {Wi}Ni=1 whose direct sum is ICn, i.e.,

ICn = W1+̇W2+̇ · · · +̇WN .(1.1)

For nonnegative integers {rj}Nj=0 with r0 := 0 < r1 < · · · < rN := n and for the
standard column basis vectors {ej}nj=1 for ICn, i.e.,

ej = (δj,1, δj,2, · · · , δj,n)T (j = 1, 2, · · · , n),

where δi,j is the Kronecker delta function, we assume, without essential loss of gen-
erality, that

Wj = span {ek : rj−1 + 1 ≤ k ≤ rj} (j = 1, 2, · · · , N),(1.2)

and we denote the partition π by π := {rj}Nj=0. We further set

pj := dimWj(= rj − rj−1) (j = 1, 2, · · · , N).(1.3)

For a given partition π of ICn, define the norm N -tuple

φ := (φ1, φ2, · · ·φN ),

where each φj is a vector norm on Wj (j = 1, 2, · · · , N). If Pj denotes the projection
operator from ICn to Wj for each j, it is easily verified, with Xj := Pjx, that

‖x‖φ := max
1≤j≤N

{φj(Xj)} (x ∈ ICn)(1.4)
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is a vector norm on ICn. Then for any matrix B in ICn,n, ‖B‖φ denotes the induced
operator norm of B for the vector norm of (1.4), i.e.,

‖B‖φ := sup
‖x‖φ=1

‖Bx‖φ.(1.5)

It is convenient to define Φπ as the collection of all such normN -tuples φ = (φ1, φ2, · · ·,
φN ), associated with the partition π.

Next, given a matrix A in ICn,n and given a partition π = {rj}Nj=0 of ICn, we can
express the matrix A, partitioned with respect to π, as

A =


A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

...
...

AN,1 AN,2 · · · AN,N

 = [Ai,j ] (i, j = 1, 2, · · · , N),(1.6)

where each submatrix Ai,j represents a linear transformation from Wj into Wi.
To state the Spectral Conjecture of [9], fix a partition π of ICn and consider any

matrix E = [Ei,j ] in ICn,n, partitioned by π, which satisfies

Ei,i = O (i = 1, 2, · · · , N).(1.7)

Following Sylvester (cf. [5, p. 108]), we shall use throughout the notation that a
matrix E, which satisfies (1.7), is π-invertebrate (i.e., it has no backbone or spine).
For each φ ∈ Φπ, define

Γφπ(E) := {B = [Bi,j ] ∈ ICn,n : Bi,i = O (i = 1, 2, · · · , N) and ‖B‖φ = ‖E‖φ} ,(1.8)

and its subset

Γπ(E) :=
⋂
φ∈Φπ

Γφπ(E).(1.9)

It is clear from (1.8) and (1.9) that

Γπ(E) = {B = [Bi,j ] ∈ ICn,n : Bi,i = O (i = 1, 2, · · · , N) and
‖B‖φ = ‖E‖φ for all φ ∈ Φπ} .

(1.10)

If ρ(C) denotes the spectral radius of a matrix C in ICm,m (i.e., ρ(C) = max{|λ| : λ
is an eigenvalue of C}) and if ω is any vector norm on ICm, it is well-known that
‖C‖ω ≥ ρ(C), where ‖C‖ω is the induced operator norm of C with respect to the
vector norm ω. Hence, it is evident from (1.8) that

ρ(B̃) ≤ ‖B̃‖φ = ‖E‖φ
(
B̃ ∈ Γφπ(E)

)
,

so that

sup
B̃∈Γφπ(E)

ρ(B̃) ≤ ‖E‖φ.(1.11)

In the same manner, we have

ρ(B) ≤ ‖B‖φ = ‖E‖φ (B ∈ Γπ(E); φ ∈ Φπ),(1.12)
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and, since the right side of (1.12) is independent of B ∈ Γπ(E) and since the left side
is independent of φ ∈ Φπ, it follows (cf. [9, Theorem 3]) that

sup
B∈Γπ(E)

ρ(B) ≤ inf
φ∈Φπ

‖E‖φ.(1.13)

It was shown in [9] that equality holds in (1.13) in special cases, such as in the case
when the partition π is such that (cf. (1.1)) dimWj = 1 (j = 1, 2, · · · , n), where
the Perron-Frobenius theory of nonnegative matrices is used to establish equality in
(1.13), and in the case when the partitioned matrix E is a weakly cyclic matrix of some
index p (cf. [7, p. 39]), the latter result being due to Robert [6]. It was conjectured
in [9] that equality always holds in (1.13), and this is called here the

Spectral Conjecture: sup
B∈Γπ(E)

ρ(B) ?= inf
φ∈Φπ

‖E‖φ.(1.14)

We show below that this Spectral Conjecture is indeed true, and that a stronger form
(to be given below in Theorem 2.1) is valid in general.

2. Statement of Our Main Result. To state our main result, some additional
notation is needed. Given a partition π of ICn and given a matrix E = [Ei,j ] in ICn,n

which is π- invertebrate (cf. (1.7)), then for any φ = (φ1, φ2, · · · , φN ) in Φπ, define

Mφ
i,j(E) := sup

φj(Xj)=1

φi(Ei,jXj) (i, j = 1, 2, · · · , N),(2.1)

which is just the operator norm of the linear transformation Ei,j from Wj into Wi.
The N2 nonnegative numbers of (2.1) then determine the N ×N comparison matrix
Mφ(E)

Mφ(E) := [Mφ
i,j(E)].(2.2)

For any φ = (φ1, φ2, · · · , φN ) in Φπ and for any x in ICn with ‖x‖φ = 1, it follows from
(1.4) and (2.1), with Pjx := Xj, that

‖Ex‖φ = max
1≤i≤N

φi
 N∑
j=1

Ei,jXj

 ≤ max
1≤i≤N


N∑
j=1

φi(Ei,jXj)


≤ max

1≤i≤N


N∑
j=1

Mφ
i,j(E)φj(Xj)

≤
 max

1≤i≤N

N∑
j=1

Mφ
i,j(E)


{

max
1≤j≤N

φj(Xj)
}
.

But as ‖x‖φ = 1 implies from (1.4) that max
1≤j≤N

φj(Xj) = 1, we have

‖Ex‖φ ≤ max
1≤i≤N

N∑
j=1

Mφ
i,j(E) = ‖Mφ(E)‖∞,

where ‖Mφ(E)‖∞ is the operator norm of the matrix Mφ(E) of (2.2), induced by
the norm `∞ on ICN . As the above holds for any x with ‖x‖φ = 1, we have

‖E‖φ ≤ ‖Mφ(E)‖∞,
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from which it follows, using (1.11) and (1.13), that

sup
B̃∈Γφπ(E)

ρ(B̃) ≤ ‖E‖φ ≤ ‖Mφ(E)‖∞ (φ ∈ Φπ),(2.3)

as well as

sup
B∈Γπ(E)

ρ(B) ≤ inf
φ∈Φπ

‖E‖φ ≤ inf
φ∈Φπ

‖Mφ(E)‖∞.(2.4)

With this, our main result can be stated as

Theorem 2.1. Let π be a partition of ICn, and let E, in ICn,n, be π-invertebrate.
Then,

sup
B∈Γπ(E)

ρ(B) = inf
φ∈Φπ

‖E‖φ = inf
φ∈Φπ

ρ
(
Mφ(E)

)
= inf
φ∈Φπ

‖Mφ(E)‖∞.(2.5)

The first equality of (2.5) thus affirmatively settles the Spectral Conjecture of
(1.14), and the final equality of (2.5), involving the infinity norms of associated com-
parison matrices, is a further, and perhaps unexpected, characterization.

As might be imagined, the Perron-Frobenius theory of nonnegative matrices plays
a role in the proof of Theorem 2.1, since the N × N comparison matrix Mφ(E) of
(2.2) is a nonnegative matrix.

3. Proof of Theorem 2.1. Given the partition π of ICn and given a matrix
A = [Ai,j ] in ICn,n which is partitioned by π, let Gπ(A) denote the block-directed
graph of A, i.e., given N distinct vertices {vj}Nj=1, there is an arc from vi to vj
whenever Ai,j 6≡ O (i, j = 1, 2, · · · , N). This block-directed graph Gπ(A) is said to
be strongly connected if, for any two vertices vi and vj (i, j = 1, 2, · · · , N), there is a
path, consisting of abutting arcs, from vertex vi to vertex vj . In this case, A = [Ai,j ]
is said to be π-block irreducible, and we similarly say that A is π-block reducible if
Gπ(A) is not strongly connected. As is readily seen, A is π-block irreducible (π-block
reducible) if and only its N ×N comparison matrix (cf. (2.2.)) Mφ(A) is irreducible
(reducible) for each φ in Φπ, in the standard terminology of, say, [7, p. 19 and p. 45].
(We remark that the notion here of π-block irreducibility differs from the notion of
π-irreducibility of [9].)

Proposition 3.1. Let π be a partition of ICn, and let A ∈ ICn,n. If A is π-block
irreducible, then, given any φ in Φπ, there is a positive vector u = (u1, u2, · · · , uN)T

with uj > 0 for j = 1, 2, · · · , N , such that the norm N -tuple, defined by

φ̃ :=
(
φ1

u1
,
φ2

u2
, · · · , φN

uN

)
,(3.1)

satisfies

ρ
(
Mφ(A)

)
= ‖Mφ̃(A)‖∞ = ρ

(
Mφ̃(A)

)
.(3.2)

If A is π-block reducible, then, given any ε > 0, there is a norm N -tuple φ̃ ∈ Φπ, such
that

‖Mφ̃(A)‖∞ ≤ ρ
(
Mφ(A)

)
+ ε, where ρ

(
Mφ̃(A)

)
= ρ

(
Mφ(A)

)
.(3.3)
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Proof. As remarked above, if A is π-block irreducible, its comparison matrix,
Mφ(A), is an irreducible nonnegative matrix for each φ ∈ Φπ. From the Perron-
Frobenius theory of nonnegative irreducible matrices (cf. [7, p. 30]), there is a column
vector u = (u1, u2, · · · , uN )T with positive components (dependent on φ) such that

Mφ(A)u = ρ
(
Mφ(A)

)
u.

With D := diag(u1, u2, · · · , uN ), so that D is a nonsingular nonnegative matrix, the
above equation can be written as

Mφ(A)Dξ = ρ(Mφ(A))Dξ, where ξ := (1, 1, · · · , 1)T ∈ IRN ,

so that

D−1Mφ(A)Dξ = ρ
(
Mφ(A)

)
ξ.(3.4)

This implies that the row sums of the nonnegative matrix D−1Mφ(A)D are all equal
to ρ(Mφ(A)). As is well known (cf. [7, p. 15]), this implies

‖D−1Mφ(A)D‖∞ = ρ
(
Mφ(A)

)
.(3.5)

From (3.1), the norm N -tuple φ̃, which is clearly an element of Φπ, can be directly
verified to satisfy

Mφ̃
i,j(A) =

uj
ui
Mφ

i,j(A) (i, j = 1, 2, · · · , N),

so that its associated comparison matrix, Mφ̃(A), is given by

Mφ̃(A) = D−1Mφ(A)D.(3.6)

Hence, (3.5) becomes

‖Mφ̃(A)‖∞ = ρ
(
Mφ(A)

)
,

which is the first desired equality of (3.2). Then, sinceMφ̃(A) andMφ(A) are similar
from (3.6), we have ρ(Mφ(A)) = ρ(Mφ̃(A)), which gives the last desired equality of
(3.2).

For the case that A in ICn,n is π-reducible, the proof of (3.3), which is omitted, is
based on the notion of the normal reduced form (cf. [7, p. 46]) of the reducible matrix
Mφ(A), and on ε-scalings of this matrix (cf. Householder [2, p. 46]). (A detailed
proof of (3.3) can be found in Krautstengl [4]).

Next, given a partition π of ICn and given a matrix A in ICn,n, consider the non-
negative numbers, α(A) and β(A), defined by

α(A) := inf
φ∈Φπ

‖Mφ(A)‖∞ and β(A) := inf
φ∈Φπ

ρ
(
Mφ(A)

)
.(3.7)

Since ‖Mφ(A)‖∞ ≥ ρ(Mφ(A)) for any φ ∈ Φπ, it is evident that

α(A) ≥ β(A).(3.8)
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On the other hand, using appropriate sequences of norm N -tuples, it is a straight-
forward consequence of Proposition 3.1 that equality holds in (3.8) in all cases, which
we state as

Corollary 3.2. For any partition π of ICn and for any A in ICn,n, partitioned
by π,

inf
φ∈Φπ

ρ
(
Mφ(A)

)
= inf
φ∈Φπ

‖Mφ(A)‖∞.(3.9)

We remark, on comparing (2.4) and (3.9), that to establish Theorem 2.1, it suffices
to show that

sup
B∈Γπ(E)

ρ(B) ?= inf
φ∈Φπ

ρ
(
Mφ(B)

)
.(3.10)

Next, given a partition π of ICn, we set

Φπ,∞ := {ψ = (ψ1, ψ2, · · · , ψN ) : ψi(u) = ‖Siu‖∞ for all u ∈Wi,
where Si is a nonsingular matrix in ICpi,pi} ,(3.11)

so that

Φπ,∞ ⊂ Φπ.(3.12)

It is obvious that Φπ,∞ is a proper subset of Φπ if and only if max
1≤i≤N

pi > 1. For ψ =

(ψ1, ψ2, · · · , ψN ) ∈ Φπ,∞, its associated nonsingular matrices {Si}Ni=1, from (3.11),
then define the nonsingular block-diagonal matrix

S := diag(S1, S2, · · · , SN ) ∈ ICn,n,(3.13)

and, conversely, each such nonsingular block diagonal matrix in (3.13), with Si ∈
ICpi,pi (i = 1, 2, · · · , N), defines a norm N -tuple in Φπ,∞. With the definitions of
(2.1) and (3.11), we note, for any ψ = (ψ1, ψ2, · · · , ψN) in Φπ,∞ and for any matrix
B = [Bi,j ] in ICn,n, which is partitioned by π, that

Mψ
i,j(B) = ‖SiBi,jS−1

j ‖∞ (i, j = 1, 2, · · · , N).(3.14)

In analogy with the definition of Γπ(E) of (1.10) where E = [Ei,j ] in ICn,n is
π-invertebrate, we also set

Γπ,∞(E) := {B = [Bi,j ] ∈ ICn,n : Bi,i = O (i = 1, 2, · · · , N)
and ‖B‖ψ = ‖E‖ψ for all ψ ∈ Φπ,∞} ,

(3.15)

which gives

Γπ,∞(E) ⊃ Γπ(E).

However, a close examination of the constructions in the proof of Theorem 4.3 of [9],
based on `∞-type norms, shows in fact that

Γπ,∞(E) = Γπ(E).(3.16)
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Hence, the inequalities of (2.4) can be expressed, using the equalities of (3.9) and
(3.16), as

sup
B∈Γπ,∞(E)

ρ(B) ≤ inf
φ∈Φπ

‖E‖φ ≤ inf
φ∈Φπ

ρ
(
Mφ(E)

)
≤ inf
ψ∈Φπ,∞

ρ
(
Mψ(E)

)
,(3.17)

where the last inequality follows from the inclusion of (3.12). Thus, to establish
Theorem 2.1, it now suffices to show that

sup
B∈Γπ,∞(E)

ρ(B) ?= inf
ψ∈Φπ,∞

ρ
(
Mψ(E)

)
.(3.18)

For notational convenience, we also define, for any φ ∈ Φπ ,

Ωφπ(E) := {B = [Bi,j ] ∈ ICn,n : Bi,i = O and Mφ
i,j(B) = Mφ

i,j(E)
(i, j = 1, 2, · · · , N)}.(3.19)

Proposition 3.3. Let π be a partition of ICn, and let E, in ICn,n, be π-
invertebrate. Then for any ψ = (ψ1, ψ2, · · · , ψN ) ∈ Φπ,∞, there is a matrix B̃ ∈ Ωψπ (E)
such that

ρ ˜(B) = ρ(Mψ(E)).(3.20)

Proof. For any ψ ∈ Φπ,∞, let B̂ = [B̂i,j ] in IRn,n, partitioned by π, be defined by
means of

B̂i,j := Mψ
i,j(E) · Yi,j (i, j = 1, 2, · · · , N),(3.21)

where the Mψ
i,j(E)’s are the scalars of (2.1), and where the block submatrix Yi,j , a

matrix in IRpi,pj , is defined by
Yi,j := Ipi if i = j,

Yi,j :=
[

Ipj
Opi−pj ,pj

]
if pi > pj, and Yi,j :=

[
Ipi |Opi,pj−pi

]
if pi < pj ;

(3.22)

here, Ir denotes the r × r identity matrix and Os,t denotes the null matrix in IRs,t.
Note that each submatrix Yi,j has a unit main diagonal, i.e.,

[Yi,j ]k,k = 1 (k = 1, 2, · · · ,min (pi; pj)) ,

with all remaining entries of Yi,j being zero. Note that since Ei,i = O, so that
Mψ
i,i(E) = 0, then (3.21) implies that B̂i,i = O for all i = 1, 2, · · ·N . In addition, it is

evident from (3.21) and (3.22) that the partitioned matrix B̂ = [B̂i,j ], of (3.21), is a

nonnegative matrix, as is each of its powers, ˆ(B)
k
, k = 1, 2, · · ·.

We next bound the powers ˆ(B)
k

=: [B̂(k)
i,j ], for all k = 1, 2, · · ·. With [(Mψ(E))k]i,j

denoting the (i, j)-th entry of the matrix (Mψ(E))k in IRN,N , consider the nonnega-
tive matrix C(k), partitioned by π, where

C(k) := [C(k)
i,j ] ∈ IRn,n (k = 1, 2, · · ·),(3.23)
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and where its submatrices, C(k)
i,j , are defined by

C
(k)
i,j :=

[(
Mψ(E)

)k]
i,j
· Yi,j (i, j = 1, 2, · · · , N ; k = 1, 2, · · ·).(3.24)

In other words, each submatrix C
(k)
i,j is the nonnegative submatrix Yi,j of (3.22),

multiplied by the nonnegative scalar [(Mψ(E))k]i,j . We claim that, as nonnegative
matrices,

B̂
(k)
i,j ≤ C

(k)
i,j (i, j = 1, 2, · · · , N ; k = 1, 2, · · ·),(3.25)

and we claim, moreover, that equality holds in (3.25) in the (1, 1)-entry and in all
(zero) off-diagonal entries of these submatrices, for all i, j = 1, 2, · · · , N , and for all
k = 1, 2, · · ·. The key for seeing this is to verify, inductively, that any matrix product

m∏
j=1

Ysj−1,sj := Ys0,s1 · Ys1,s2 · · ·Ysm−1,sm (in IRs0,sm)

has, with the notations of (3.22), the form

m∏
j=1

Ysj−1,sj =
[

Ir Or,sm−r
Os0−r,r Os0−r,sm−r

]
, where r := min

0≤j≤m

{
psj
}
.(3.26)

Hence, the matrix product of (3.26) has exactly r (diagonal) entries which are unity,
with all other entries zero. Note that as r of (3.26) is at least unity, the (1, 1)-entry of
any such matrix product is always unity. Consequently, from the definition of (3.22)
we have

m∏
j=1

Ysj−1,sj ≤ Ys0,sm ,

where equality necessarily holds at least in the (1, 1)-entry, as well as trivially in all
(zero) off-diagonal entries. Because the matrix products of (3.26) occur naturally in
the powers of B̂, then, on taking into account the nonnegative multipliers Mψ

i,j(E) in
(3.21) and [(Mψ(E))k]i,j in (3.24), the claims for (3.25) follow.

As an example illustrating the inequalities of (3.25), consider the partition π :=
{0, 2, 5, 7} of IC7,7, so that p1 = dimW1 = 2, p2 = dimW2 = 3, and p3 = dimW3 = 2.
If we have, say,

Mψ(E) =

 0 1 2
3 0 3
2 1 0

 ,
then B̂ in IR7,7 is given from (3.21) by

B̂ =



0 0 1 0 0 2 0
0 0 0 1 0 0 2
3 0 0 0 0 3 0
0 3 0 0 0 0 3
0 0 0 0 0 0 0
2 0 1 0 0 0 0
0 2 0 1 0 0 0


.
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It can be verified in this case that

(Mψ(E))5 =

 204 124 236
372 192 372
236 124 204

 , (B̂)5 =



204 0 124 0 0 236 0
0 204 0 124 0 0 236

372 0 192 0 0 372 0
0 372 0 192 0 0 372
0 0 0 0 0 0 0

236 0 124 0 0 204 0
0 236 0 124 0 0 204


,

while

C(5) =



204 0 124 0 0 236 0
0 204 0 124 0 0 236

372 0 192 0 0 372 0
0 372 0 192 0 0 372
0 0 0 0 192 0 0

236 0 124 0 0 204 0
0 236 0 124 0 0 204


.

This illustrates the inequalities of (3.25) and the subsequent claims.
The inequalities of (3.25) can be used as follows. Because equality always holds

in (3.25) in at least the (1, 1)-entry of each submatrix, the trace of (B̂)
k

then satisfies
the inequalities

tr
[(
Mψ(E)

)k] ≤ tr
[

ˆ(B)
k
]
≤ d · tr

[(
Mψ(E)

)k]
(k = 1, 2, · · ·),(3.27)

where d := max
1≤i≤N

pi (where pi := dimWi). As d is independent of k, then taking k-th

roots gives

lim
k→∞

{
tr
[(
Mψ(E)

)k]}1/k

= lim
k→∞

{
tr
[

ˆ(B)
k
]}1/k

.(3.28)

But as Mψ(E), in IRN,N , and B̂, in IRn,n, are nonnegative matrices, it is essentially
well-known (and this can be found in Kingman [3]) that the quantities in (3.28) are,
respectively, ρ(Mψ(E)) and ρ ˆ(B); whence,

ρ
(
Mψ(E)

)
= ρ ˆ(B).(3.29)

(For a recent more general result, involving traces of powers of matrices and spectral
radii, see Fiedler and Pták [1, Prop. 3.7].)

Next, since ψ = (ψ1, ψ2, · · · , ψN ) in Φπ,∞ defines (cf. (3.13)) the nonsingular
block-diagonal matrix S = diag(S1, S2, · · · , SN ) in ICn,n, set

B̃ := S−1B̂S, and write B̃ = [B̃i,j ],(3.30)

where the last expression in (3.30) denotes the partitioning of B̃ with respect to π.
As B̃ is similar to B̂ from (3.30), it follows from (3.29) that

ρ
(
Mψ(E)

)
= ρ ˜(B).(3.31)
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To complete the proof of Proposition 3.3, it remains to show that B̃ ∈ Ωψπ,∞(E). From
(3.30), the submatrices B̃i,j , of B̃, and B̂i,j , of B̂, are related through

B̃i,j = S−1
i B̂i,jSj (i, j = 1, 2, · · · , N),(3.32)

so that from (3.14) and (3.32),

Mψ
i,j(B̃) = ‖SiB̃i,jS−1

j ‖∞ = ‖Si(S−1
i B̂i,jSj)S−1

j ‖∞ = ‖B̂i,j‖∞
= Mψ

i,j(E) · ‖Yi.j‖∞,

the last equality following from (3.21). On using the definition of Yi,j of (3.22), it
is easily seen that ‖Yi,j‖∞ = 1 in all cases (for square or rectangular submatrices).
Hence,

Mψ
i,j(B̃) = Mψ

i,j(E) (i, j = 1, 2, · · · , N),

proving (cf. (3.19)) that B̃ ∈ Ωψπ (E).
As a consequence of Proposition 3.3, we next have

Proposition 3.4. Let π be a partition of ICn, and let E, in ICn,n, be π-
invertebrate. Then for any ψ ∈ Φπ,∞,

sup
B∈Ωψπ (E)

ρ(B) = ρ(Mψ(E)).(3.33)

Proof. Fixing ψ ∈ Φπ,∞, we first show that

sup
B∈Ωψπ (E)

ρ(B) ≤ ρ
(
Mψ(E)

)
.(3.34)

For B = [Bi,j ] in Ωψπ (E), let σ(B) denote the set of all eigenvalues of B, and let
λ ∈ σ(B). Hence, Bx = λx for some x 6= 0, which we can express, with the partition

π, as λXi =
N∑
j=1

Bi,jXj (i = 1, 2, · · · , N). On applying the norms ψi, this gives

|λ| · ψi(Xi) = ψi

 N∑
j=1

Bi,jXj

 ≤ N∑
j=1

ψi (Bi,jXj)

≤
N∑
j=1

Mψ
i,j(B)ψj(Xj) =

N∑
j=1

Mψ
i,j(E)ψj(Xj),

(3.35)

for all i = 1, 2, · · · , N , the last equality following from the fact (cf. (3.19)) that
B ∈ Ωψπ (E). With the notation of (2.2), the inequalities in (3.35) can be simply
expressed in matrix form as

|λ| ·


ψ1(X1)
ψ2(X2)

...
ψN (XN )

 ≤Mψ(E) ·


ψ1(X1)
ψ2(X2)

...
ψN (XN )

 ,(3.36)
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whereMψ(E) is a nonnegative matrix in IRN,N , and where the ψi(Xi)’s are nonneg-
ative numbers with max

1≤i≤N
ψi(Xi) > 0. It is a familiar consequence (cf. [7, p. 47])

of the Perron-Frobenius theory of nonnegative matrices that the inequalities of (3.36)
imply that

|λ| ≤ ρ
(
Mψ(E)

)
.

As the above inequality holds for any λ ∈ σ(B) and for any B ∈ Ωψπ (E), we have the
inequality of (3.34). But on applying (3.20) of Proposition 3.3, there is a B̃ ∈ Ωψπ,∞(E)
with ρ(B̃) = ρ(Mψ(E)), which then gives the desired case of equality in (3.33).

As an immediate consequence of (3.33) of Proposition 3.4, we have

Corollary 3.5. Let π be a partition of ICn and let E, in ICn,n, be π-invertebrate.
Then,

inf
ψ∈Φπ,∞

{
sup

B∈Ωψπ (E)

ρ(B)

}
= inf
ψ∈Φπ,∞

{
ρ
(
Mψ(E)

)}
.(3.37)

On recalling the string of inequalities in (3.17), we now have from (3.37) that

sup
B∈Γπ,∞(E)

ρ(B)≤ inf
φ∈Φπ

‖E‖φ ≤ inf
ψ∈Φπ,∞

ρ
(
Mψ(E)

)
= inf
ψ∈Φπ,∞

{
sup

B∈Ωψπ (E)

ρ(B)

}
.(3.38)

Thus, in order to finally complete the proof of Theorem 2.1, it suffices from (3.38) to
establish

sup
B∈Γπ,∞(E)

ρ(B) ?= inf
ψ∈Φπ,∞

{
sup

B∈Ωψπ (E)

ρ(B)

}
.(3.39)

With the definition of the set Ωφπ(E) of (3.19), we next set

Ωπ(E) :=
⋂
φ∈Φπ

Ωφπ(E) =
⋂

ψ∈Φπ,∞

Ωψπ (E),(3.40)

the second equality following from the constructions in the proof of Theorem 4.3 of
[9]. It also follows from Theorem 4.3 of [9] that B = [Bi,j ] is in Ωπ(E) if and only if,
for each pair of integers (k, `) with 1 ≤ k, ` ≤ N , there exists a real parameter θk,`
(with 0 ≤ θk,` ≤ 2π) such that

Bk,` = exp(iθk,`) · Ek,` (k, ` = 1, 2, · · · , N).(3.41)

But then, from the definition of Γπ,∞(E) in (3.15) and from (3.16), we see that

Γπ,∞(E) = Ωπ(E).(3.42)

Thus, with (3.42), we can equivalently express (3.39) (for what is needed to complete
the proof of Theorem 2.1) as

sup
B∈Ωπ(E)

ρ(B) ?= inf
ψ∈Φπ,∞

{
sup

B∈Ωψπ (E)

ρ(B)

}
.(3.43)
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We consider first the quantity on the left in (3.43). Since the diagonal blocks of
E by hypothesis satisfy Ei,i = O (i = 1, 2, · · · , N), each B = [Bi,j ] in Ωπ(E) is then
determined from (3.41) by N2 −N real parameters θk,` (0 ≤ θk,` ≤ 2π). As ρ(B) is a
continuous function of these parameters, compactness considerations show that there
is a B in Ωπ(E) for which

sup
B∈Ωπ(E)

ρ(B) = ρ(B).(3.44)

It is also important to point out from (3.41) that B ∈ Ωπ(E) implies eiηB ∈ Ωπ(E)
for every real η. Hence, for the spectra σ(Ωπ(E)) of all matrices in Ωπ(E), i.e.,

σ (Ωπ(E)) :=
⋃

B∈Ωπ(E)

(σ(B)) ,(3.45)

we note that if λ ∈ σ(B) for some B in Ωπ(E), then the entire circle {z ∈ IC : |z| = |λ|}
is contained in σ(Ωπ(E)). In particular, this means that

{z ∈ IC : |z| = ρ(B)} ⊂ σ (Ωπ(E)) ⊂ {z ∈ IC : |z| ≤ ρ(B)} .(3.46)

Next, let ψ be an arbitrary, but fixed, element of Φπ,∞, and let Bψ, in Ωψπ (E),
be such that

ρ(Bψ) = sup
{
ρ(B) : B ∈ Ωψπ (E)

}
.(3.47)

The existence of such a Bψ follows directly from (3.20) of Proposition 3.3 and (3.33)
of Proposition 3.4. As above, we similarly have

eiηBψ ∈ Ωψπ (E) for every real η,

and this implies, as in (3.46), that{
z ∈ IC : |z| = ρ(Bψ)

}
⊂ σ

(
Ωψπ (E)

)
⊂
{
z ∈ IC : |z| ≤ ρ(Bψ)

}
.(3.48)

Also, since Ωπ(E) ⊂ Ωψπ (E), it is evident that

sup
B∈Ωπ(E)

{ρ(B)} ≤ sup
B∈Ωψπ (E)

{ρ(B)},

so that (cf. (3.44) and (3.47))

ρ(B) ≤ ρ(Bψ).(3.49)

Next, we establish

Proposition 3.6. Let π be a partition of ICn and let E, in ICn,n, be π-
invertebrate. Then for any ψ ∈ Φπ,∞, there is a matrix B(α) in ICn,n, whose entries
depend continuously on the parameter α (where α ∈ [0, 1]), with B(α) in Ωψπ (E) for
all α ∈ [0, 1], with B(0) = B and with B(1) = Bψ (where B and Bψ respectively
satisfy (3.44) and (3.47)).

Proof. Given ψ ∈ Φπ,∞, let S = diag(S1, S2, · · · , SN) be the block-diagonal
matrix in ICn,n of (3.13), associated with ψ. As B and Bψ are both in Ωψπ (E), then

Mψ
k,`(B) = Mψ

k,`(B
ψ) = Mψ

k,`(E) (k, ` = 1, 2, · · · , N),(3.50)
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where (cf. (3.14)) for a matrix C = [Ci,j ] in ICn,n which is partitioned by π,

Mψ
k,`(C) := ‖SkCk,`S−1

` ‖∞ (k, ` = 1, 2, · · · , N).(3.51)

What is to be established here is that, for each integer pair (k, `) from (k, ` =
1, 2, · · · , N), there exists a matrix Ak,`(α) in ICpk,p` , whose entries depend continu-
ously on the parameter α for α ∈ [0, 1], such that

‖Ak,`(α)‖∞ = µ for all α ∈ [0, 1]
(

where µ := µk,` := Mψ
k,`(E)

)
,(3.52)

with the additional requirements that

Ak,`(0) := SkBk,`S
−1
` and Ak,`(1) := SkB

ψ
k,`S

−1
` .(3.53)

Once Ak,`(α) is determined, Bk,`(α) is then defined (cf. (3.51)) by

Bk,`(α) := S−1
k Ak,`(α)S` (k, ` = 1, 2, · · · , N ; α ∈ [0, 1]),(3.54)

which in turn determines the desired matrix B(α) = [Bk,`(α)] in ICn,n of Proposition
3.6.

Fixing the integer pair (k, `), let the vector norm ω on ICpk·p` be defined, for

x = [x1, x2, · · · , xpk·p` ]
T in ICpk·p` , by ω(x) := max

1≤i≤pk


p∑̀
j=1

∣∣x(i−1)p`+j

∣∣. Clearly,

there is an obvious 1-1 relationship between matrices in ICpk,p` and column vectors
in ICpk·p` , and, when the entries of Ck,` = [τi,j ] in ICpk,p` are read in lexicographical
(English) order to form a column vector in ICpk·p` , it turns out that the ω-norm of this
vector coincides with the operator norm ‖Ck,`‖∞ of Ck,`. From (3.50)-(3.53), we see
that the matrices Ak,`(0) and Ak,`(1) in ICpk,p` , when regarded as vectors in ICpk·p` ,
both lie on the sphere

Bµ := {x ∈ ICpk·p` : ω(x) = µ} ,

where µ is defined in (3.52) Also, it is evident that there is a parameterization
α, α ∈ [0, 1], of any shortest path on the sphere Bµ from Ak,`(0) to Ak,`(1). But
then, each point of this path on Bµ determines a matrix Ak,`(α) in ICpk,p` which nec-
essarily satisfies (3.52) and (3.53), and which in turn determines the matrix B(α) in
Proposition 3.6.

Recalling that the eigenvalues of a square matrix depend continuously on its
entries and recalling that if B ∈ Ωπ(E), then so is eiηB for η real, we have from
Proposition 3.6 the useful consequence of

Corollary 3.7. With the hypotheses of Proposition 3.6, let ψ be an arbitrary
element of Φπ,∞. Then, the following annulus is in σ(Ωψπ (E)):{

z ∈ IC : sup
B∈Ωπ(E)

ρ(B) ≤ |z| ≤ sup
B∈Ωψπ (E)

ρ(B)

}
⊂ σ

(
Ωψπ (E)

)
.(3.55)

This brings us to
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Proposition 3.8. With the previous notations, and with the hypotheses of Propo-
sition 3.6, we have

inf
ψ∈Φπ,∞

{
sup

B∈Ωψπ (E)

ρ(B)

}
= sup
B∈Ωπ(E)

ρ(B).(3.56)

Proof. Let τ := sup
B∈Ωπ(E)

ρ(B), and let r(ψ) := sup
B∈Ωψπ

ρ(B) for each ψ ∈ Φπ,∞. By

(3.55) of Corollary 3.7, we know that

{z ∈ IC : τ ≤ |z| ≤ r(ψ)} ⊂ σ
(
Ωψπ (E)

)
for any ψ ∈ Φπ,∞.(3.57)

Taking intersections in (3.57) over all ψ ∈ Φπ,∞ and using (3.40) gives{
z ∈ IC : τ ≤ |z| ≤ inf

ψ∈Φπ,∞
r(ψ)

}
⊂ σ (Ωπ(E)) .(3.58)

On the other hand, we have from the definition of τ that

σ (Ωπ(E)) ⊂ ∆(0, τ) := {z ∈ IC : |z| ≤ τ} .(3.59)

On combining (3.58) and (3.59), we deduce that{
z ∈ IC : τ ≤ |z| ≤ inf

ψ∈Φπ,∞
r(ψ)

}
⊂ ∆(0, τ),(3.60)

which clearly geometrically implies that τ = inf
ψ∈Φπ,∞

r(ψ), and this establishes (3.56)

of Proposition 3.8. Then, recalling the comments concerning (3.43), we also see that
Proposition 3.8 in fact implies the truth of Theorem 2.1.

4. Sharpness of the Minimal Gerschgorin Set for Block Partitioned
Matrices Having Null Diagonal Blocks. In the previous sections, we considered
the Spectral Conjecture and its affirmative solution, subject to the constraint (cf.
(1.7)) that the matrix E in ICn,n is π-invertebrate. Although the general treatment
of the sharpness of minimal Gerschgorin sets for block partitioned matrices will be
treated in [10] without this constraint, it is worthwhile (and easy) to now treat the
associated minimal Gerschgorin sets and their sharpness for this constrained case.
(The proof here of sharpness is different from the sharpness proof to be given in [10].)

As in the previous sections, let π be any partition of ICn, and assume that the
matrix E in ICn,n is π-invertebrate. For any norm N -tuple ψ in Φπ,∞ and its associ-
ated nonsingular block-diagonal matrix S = diag(S1, S2, · · · , SN) in ICn,n from (3.13),
define (cf. (2.2))

Gψπ (E) :=
{
z ∈ IC : |z| ≤ ‖Mψ(E)‖∞

}
.(4.1)

Then, as in (3.19), we have

Ωψπ (E) := {B = [Bi,j ] ∈ ICn,n : Bi,i = O and
Mψ
i,j(B) = Mψ

i,j(E) (i, j = 1, 2, · · · , N)
}
.

(4.2)
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If

σ
(
Ωψπ (E)

)
:=

⋃
B∈Ωψπ

σ(B),

we easily obtain, as a consequence of Proposition 3.4, the result of

Proposition 4.1. Let π be a partition of ICn and let E, in ICn,n, be π-
invertebrate. Then for any ψ ∈ Φπ,∞,

σ
(
Ωψπ (E)

)
⊂ Gψπ (E).(4.3)

We next set

Gπ(E) :=
⋂

ψ∈Φπ,∞

Gψπ (E),(4.4)

and we define Gπ(E) of (4.4) to be the minimal Gerschgorin set for E, with respect
to the partition π, where E in ICn,n is assumed to be π-invertebrate. (We remark
that in the case when the partition π is such that dimWj = 1 (j = 1, 2, · · · , n), the
definition of (4.4) reduces to the original minimal Gerschgorin set of [8] for the matrix
E = [ei,j ] with ei,i = 0 for i = 1, 2, · · · , n.) Of course, with (3.9) of Corollary 3.2, it
follows that the minimal Gerschgorin set of (4.4) can also be expressed as

Gπ(E) =
{
z ∈ IC : |z| ≤ inf

ψ∈Φπ,∞
ρ
(
Mψ(E)

)}
.(4.5)

Hence, Gπ(E) is a closed disk, with center 0, in the complex plane.
With σ (Ωπ(E)) as defined in (3.45) and on taking intersections over all ψ ∈ Φπ,∞

in (4.3), we obtain the following analogue of Proposition 4.1.

Proposition 4.2. Let π be a partition of ICn and let E, in ICn,n, be π-invertebrate.
Then,

σ (Ωπ(E)) ⊂ Gπ(E).(4.6)

Now, we have the question of whether the inclusion in (4.6) of Proposition 4.2 is
sharp. But, with our previous results, this is easily answered in Theorem 4.3 below.
We remark that since Gπ(E) of (4.5) is a closed disk with center 0, its boundary,
denoted by ∂Gπ(E), is thus given by

∂Gπ(E) :=
{
z ∈ IC : |z| = inf

ψ∈Φπ,∞
ρ
(
Mψ(E)

)}
.(4.7)

Theorem 4.3. Let π be a partition of ICn and let E, in ICn,n, be π invertebrate.
Then,

∂Gπ(E) ⊂ σ (Ωπ(E)) ⊂ Gπ(E).(4.8)
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Proof. Clearly, ∂Gπ(E) of (4.7) can be equivalently expressed (from (2.5) of
Theorem 2.1, (3.16), and (3.42)) as

∂Gπ(E) =

{
z ∈ IC : |z| = sup

B∈Ωπ(E)

ρ(B)

}
.(4.9)

But since the compactness argument in the proof of Proposition 4 shows that there
is a B̃ in Ωπ(E) with ρ(B̃) = sup

B∈Ωπ(E)

ρ(B) and since eiθB̃ is in Ωπ(E) for any real

θ, then each point of the circle |z| = ρ(B̃) = sup
B∈Ωπ(E)

ρ(B) is an eigenvalue of some

matrix in Ωπ(E); whence, ∂Gπ(E) ⊂ σ (Ωπ(E)).

5. Concluding Remarks. There are two items, concerning Theorem 2.1 and
its proof, which are worthy of mention. First, it is possible that the hypothesis (1.7),
namely, that E = [Ei,j ] in ICn,n is π-invertebrate, is not really essential to the truth of
Theorem 2.1, though our proof of Theorem 2.1 makes strong use of this hypothesis.
Second, for those raised on finite-dimensional norm constructions, it would seem that
there might be a more direct proof of Theorem 2.1, based on constructions of an
appropriate equilibrated convex body in Wi to define a unit ball and norm in Wi, for
each i = 1, 2, · · · , N . This can indeed be done, but we were not able, by this approach,
to obtain the intriguing string of equalities in (2.5) of Theorem 2.1. This is why we
opted here for the proof given in Section 3.



ETNA
Kent State University 
etna@mcs.kent.edu

82 Minimal Gerschgorin Sets

REFERENCES

[1] M. Fiedler and V. Pták, Block analogies of comparison matrices, to appear.
[2] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co.,

New York, 1964.
[3] J. F. C. Kingman, A convexity property of positive matrices, Quart. J. Math. Oxford, Ser. 2,

12 (1961), 283-284.
[4] A. Krautstengl, Matrix Vectorial Norms and Their Application to the Gerschgorin Theory

for Block Partitioned Matrices, thesis, Kent State University, 1995.
[5] T. Muir and W. H. Metzler, A Treatise on the Theory of Determinants, privately published,

Albany, New York, 1930.
[6] F. Robert, Recherche d’une M-matrice parmi les minorantes d’un opérateur linéaire, Numer.
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