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ORTHONORMAL POLYNOMIAL VECTORS AND LEAST SQUARES
APPROXIMATION FOR A DISCRETE INNER PRODUCT∗

M. VAN BAREL AND A. BULTHEEL †

Abstract. We give the solution of a discrete least squares approximation problem in terms
of orthonormal polynomial vectors with respect to a discrete inner product. The degrees of the
polynomial elements of these vectors can be different. An algorithm is constructed computing the
coefficients of recurrence relations for the orthonormal polynomial vectors. In case the weight vectors
are prescribed in points on the real axis or on the unit circle, variants of the original algorithm can be
designed which are an order of magnitude more efficient. Although the recurrence relations require
all previous vectors to compute the next orthonormal polynomial vector, in the real or the unit-circle
case only a fixed number of previous vectors are required. As an application, we approximate a
vector-valued function by a vector rational function in a linearized least squares sense.

Key words. orthonormal polynomial vectors, least squares approximation, vector rational
approximation.
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1. Introduction. Suppose we want to approximate a set of data points (zi, fi, ei) ∈
C 3 , i = 1, 2, . . . ,m, by a rational function n(z)/d(z) of a given degree structure in the
sense that we want to minimize the sum of squares S with

S :=
m∑
i=1

|fi/ei − n(zi)/d(zi)|2.

This is a highly nonlinear problem which requires an iterative solver. A good starting
value for the iteration can often be obtained by solving the linearized problem, where
we minimize S with

S :=
m∑
i=1

|fid(zi)− ein(zi)|2.

The latter problem is linear and much easier to solve. If we set

FHi := [fi,−ei] and P (z)T := [d(z), n(z)],

we can rewrite the latter as

S =
m∑
i=1

|FHi P (zi)|2.

We can use the same setup if, at each knot zi, a vector of complex data is given, i.e.,
if fi ∈ C n−1 , ei ∈ C , this vector is approximated by a vector rational function, so that
also n(z) is an (n − 1)-dimensional vector polynomial and d(z) a common (scalar)
denominator. In the last form of S, we then have Fi ∈ C n×1 and P (z) ∈ C [z]n×1 . Of
course we have degree conditions on P (z), say

∂P ≤ ∆ := [δ1, δ2, . . . , δn] (componentwise), ∆ ∈ (N ∪ {−1})n×1
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2 Orthonormal polynomial vectors and least squares approximation

(we say that the zero polynomial has degree −1). To avoid the trivial solution P ≡ 0,
we add the condition that one of the elements of P has to be monic, i.e., we have
precise degree for the monic component. We will solve this discrete least squares ap-
proximation problem using polynomial vectors orthogonal with respect to the discrete
inner product

〈P,Q〉 :=
m∑
i=1

PH(zi)FiFHi Q(zi).

We will give an algorithm to compute the building blocks of a recurrence relation
from which these orthogonal polynomial vectors can be computed. We show that if
all the points zi are real or all the points zi are on the unit circle, the complexity of
the algorithm can be reduced by an order of magnitude.

In previous publications [5, 16, 17], we have considered special cases of the ap-
proximation problem described above. In [16], we gave an algorithm to solve the
problem with real points zi, n = 2 and δ1 = δ2. The algorithm is a generalization of
the algorithm of Reichel [12], which constructs the optimal polynomial fitting given
function values in real points zi in a least squares sense. Reichel’s algorithm itself is
based on the Rutishauser-Gragg-Harrod algorithm [14, 11, 1] for the computation of
Jacobi matrices. Similar results were obtained in [4, 8]. In Section 9, we investigate
the real point case for arbitrary n and arbitrary degrees δi, i = 1, 2, . . . , n.

Based on the inverse unitary QR algorithm for computing unitary Hessenberg
matrices [2], Reichel, Ammar and Gragg [13] solve the approximation problem when
the given function values are taken in points on the unit circle. In [17], we generalized
this from n = 1 to n = 2 with equal degrees δ1 = δ2. Section 10 handles the general
problem on the unit circle. When n = 2, we refer the reader to [5], which summarizes
[16] and [17] and handles the case of arbitrary degrees δ1 and δ2.

In [16, 17], we have given numerical examples showing that the algorithms can be
used to compute rational interpolants or rational approximants in a linearized discrete
least squares sense. In Section 7, we give the conditions for having an interpolating
polynomial vector. In a future publication, we shall show how we can use the theory
developed here to compute matrix rational interpolants or matrix rational approxi-
mants in a linearized discrete least squares sense. For the simpler problem of vector
rational approximation, we give an example in Section 11.

2. Discrete least squares approximation problem. We consider the follow-
ing inner product.

Definition 2.1 (inner product, norm). Given the points zi ∈ C , and the
weight vectors Fi ∈ C n×1 , i = 1, 2, . . . ,m, we consider a subspace P of all polynomial
vectors C [z]n×1 such that the following bilinear form defines a discrete inner product
〈P,Q〉 for two polynomial vectors P,Q ∈ P ⊂ C [z]n×1 :

〈P,Q〉 :=
m∑
i=1

PH(zi)FiFHi Q(zi).(2.1)

The norm ‖P‖ of a polynomial vector P ∈ P ⊂ C [z]n×1 is defined as

‖P‖ :=
√
〈P, P 〉.

For this to be an inner product in P , it is necessary and sufficient that P is a subspace
of polynomial vectors such that there is no nonzero polynomial vector P ∈ P with
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〈P, P 〉 = 0 or equivalently with FHi P (zi) = 0, i = 1, 2, . . . ,m. We will call this the
regular case. In Section 7, we will handle the singular case. Up to then, we will
assume that (2.1) is a (positive definite) inner product. We consider the following
approximation problem.

Definition 2.2 (discrete least squares approximation problem). Given
the points zi ∈ C and the weight vectors Fi ∈ C n×1 , i = 1, 2, . . . ,m, the degree vector
∆ := [δ1, δ2, . . . , δm]T ∈ (N ∪ {−1})n×1 and some degree index ν∆ ∈ {1, 2, . . . , n}.
With ∆̄ := (∆, ν∆) (the extended degree vector) and P := [P1, P2, . . . , Pn]T ∈ C [z]n×1 ,
consider the sets P∆ and P∆̄

P∆ := {P ∈ C [z]n×1 | ∂P ≤ ∆},
P∆̄ := {P ∈ P∆ | ∂Pν∆ = δν∆ and Pν∆ is monic}.

In the discrete least squares approximation problem, we look for the polynomial vector
P such that ‖P‖ = minQ∈P∆̄

‖Q‖. The degree vector ∆ is such that for the set P∆

‖ · ‖ is a norm (not a semi-norm), i.e. P∆ ⊂ P.
Note that in this paper, all inequalities between integer vectors are taken compo-

nentwise.

3. Orthonormal polynomial vectors. To solve the discrete least squares ap-
proximation problem, we could easily transform it into a linear algebra problem. Note
that FHi P (zi) ∈ C is a scalar. Therefore, the original problem is equivalent to solving
the m linear equations

FHi P (zi) = 0, i = 1, 2, . . . ,m,

in a least squares sense, i.e.

m∑
i=1

|ri|2 is minimal with ri = FHi P (zi)

(with P ∈ P∆̄). Because P∆ is a C -vector space having dimension |∆| :=
∑n
i=1(δi+1),

we can choose a basis for P∆ and write out the least squares problem using coordinates
with respect to this basis. Introducing the normality condition, i.e. Pν∆ has to be
monic, we can eliminate one of the coordinates. We obtain an m × (|∆| − 1) least
squares problem. The amount of computational work is proportional to m|∆|2 (e.g.
using the normal equations or the QR factorization).

Assume however that we have an orthonormal basis for P∆ such that the basis
vectors Bj := [Bj,1, Bj,2, . . . , Bj,n]T satisfy ∂Bj,ν∆ < δν∆ , j = 1, 2, . . . , |∆| − 1, and
∂B|∆|,ν∆ = δν∆ , then we can write every P ∈ P∆ in a unique way as

P =
|∆|∑
j=1

Bjaj , aj ∈ C .

Because Pν∆ has to be monic of degree δν∆ , a|∆| is fixed. The other coordinates aj ,
j = 1, 2, . . . , |∆| − 1 can be chosen freely. We get

‖P‖2 = 〈P, P 〉

=

〈 |∆|∑
j=1

Bjaj ,

|∆|∑
j=1

Bjaj

〉
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=
|∆|∑
j=1

|aj |2 (because 〈Bi, Bj〉 = δij).

Therefore, to minimize ‖P‖, we can put aj , j = 1, 2, . . . , |∆| − 1 equal to zero or

P = B|∆|a|∆| and ‖P‖ = |a|∆||.

Hence, to solve the least squares approximation problem we can compute the or-
thonormal polynomial vector B|∆| and this will give us the solution (up to a scalar
multiplication to make it monic).

Suppose we want to solve the problem for a certain degree vector ∆?. We want
to construct the basis vectors for P∆? recursively by gradually constructing the basis
vectors for nested subspaces

P∆(0) ⊂ P∆(1) ⊂ · · · ⊂ P∆(k) = P∆? .

If we arrange the degree vectors ∆(k) into an n-dimensional table, then we want to
reach ∆? by walking along a “diagonal”. This means that we pass through the points
∆? − U,∆? − 2U, . . ., where U := [1, 1, . . . , 1]T . Each move on the diagonal from ∆
to ∆ +U will be decomposed in a set of n elementary steps in each of the coordinate
directions: ∆ + U1

1 ,∆ + U1
2 , . . . ,∆ + U1

n = ∆ + U , where U1
j := [1, 1, . . . , 1, 0, . . . , 0]T

(j ones). This results in a staircase-like polyline. This works quite well when ∆ ≥ 0.
Unless ∆? is on the main diagonal, the starting point of the diagonal through ∆?

will be outside the positive part of the coordinate system. When some δi < 0, the
corresponding polynomial will be zero and it will remain zero, no matter how negative
δi will get. This means that whenever ∆(k) falls outside (N ∪ {−1})n×1, P∆(k) will
be equal to some P∆(l) with ∆(l) ∈ (N ∪ {−1})n×1. Therefore, we shall project the
polyline onto the part (N ∪ {−1})n×1 of Zn×1, such that ∆(k) < ∆(k+1) for all k ≥ 0.
This means that dimP∆(k+1) = dimP∆(k) +1, starting with ∆(0) = [−1,−1, . . . ,−1]T ,
which corresponds to P∆(0) = {[0, 0, . . . , 0]T } with dimP∆(0) = 0. Hence, we have the
following definition for the sequence of degree vectors ∆(k), degree indices νk and the
so-called pivot indices πk, k = 1, 2, . . ..

Definition 3.1 (degree vectors, degree indices and pivot indices). Let
∆? := [δ?1 , . . . , δ

?
n] be the target degree vector and define Uj := [0, . . . , 0, 1, 0, . . . , 0]T (1

at the j-th position). Set the initial degree vector ∆(0) := [−1,−1, . . . ,−1]T . Further-
more, if ∆(k−1) = [δ1, δ2, . . . , δn]T , then ∆(k) := ∆(k−1) + Uj with j the least integer
in {1, 2, . . . , n} that satisfies the equation δ?j − δj = max{δ?i − δi|i = 1, 2, . . . , n}. The
corresponding degree index is νk := j. The pivot indices πk are defined as follows. If
δj = −1 then πk := j. Otherwise πk := k − l + n with l the number of nonnegative
elements in ∆(k).

By defining the degree vectors in this way, for each degree vector ∆(k) > −U the
degree vector ∆(k) − U appears earlier in the sequence as ∆(j) = ∆(k) − U . Also
k − j = n is made as small as possible. This will result in a recurrence relation for
the orthonormal polynomial vector φk(z) written as a linear combination of zφj(z)
and the other previous orthonormal polynomial vectors. However, when all points
zi are on the real line or on the unit circle, only a limited number of the previous
orthonormal polynomial vectors will be needed. Hence, the computational work will
be decreased by an order of magnitude.

Why we define the pivot indices in this way will become clear later on when we
shall show that the algorithm, which we describe below, will indeed give the solution
with the prescribed degree structure.
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4. Algorithm. In this section, we give an algorithm which inputs the initial
data (the points zi, the weights Fi) and outputs the building blocks of a recurrence
relation generating the desired orthonormal polynomial vectors. This transformation
process is influenced by the parameters

∆? := [δ?1 , δ
?
2 , . . . , δ

?
n]T ,

with

δ?1 ≥ δ?2 ≥ . . . ≥ δ?n ≥ 0, δ?i ∈ N.
Note that by a permutation this ordering can always be assumed without loss of
generality.

The algorithm starts with the following matrix:
F1 z1

F2 z2

...
. . .

Fm zm

 =:
[
F Λ

]
∈ Cm×(n+m) ,

and transforms this using similarity transformations on Λ into[
QHF | QHΛQ

]
= QH [F | Λ]

[
In

Q

]
(Q unitary) such that

[
QHF | QHΛQ

]
has zeros below the pivot positions (i, πi),

i = 1, 2, . . . ,m. The following algorithm will add, for each i, the point zi with cor-
responding weight Fi. Note also, that each iteration changes the underlying inner
product.

Algorithm 4.1. Transformation of the initial data matrix D := [F | Λ] =: [dij ]
into a matrix

[
QHF | QHΛQ

]
having zeros below the pivot elements.

for i := 1 to m do
for j := 1 to i− 1 do

* make element di,πj zero
by using a Givens rotation (or reflection) JH

with the pivot element (j, πj):
D← JHD

* D← D

[
In

J

]
(similarity transformation)

Algorithm 4.1 constructs
m∑
i=1

(i− 1) = (m− 1)m/2

Givens rotations. For a certain i and j, the Givens rotation is applied to the left on 2
vectors of length (i+ n+ 1− j) and to the right on 2 vectors of length ≤ (j + n+ 1).
The total number of Givens rotations applied to vectors is therefore bounded by

m∑
i=1

i−1∑
j=1

[(i+ n+ 1− j) + (j + n+ 1)]

=
m(m+ 1)(3m+ 1)

6
+ (2n+ 2− 1)

m(m+ 1)
2

− (2n+ 2)m

= O(m3/2).
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Counting 4 multiplications for each application of a Givens rotation, this results in
O(2m3) multiplications. Note that also a Householder variant of Algorithm 4.1 could
be designed.

5. Recurrence relations for the columns of the unitary transformation
matrix Q. In the previous section we transformed the initial data matrixD := [F | Λ]
into

QH [F | Λ]
[
In 0
0 Q

]
=: [E | G].

We can write

F = QE,(5.1)
ΛQ = QG.(5.2)

Knowing E =: [ei,j ] and G =: [gi,j ], we can reconstruct the columns Qk of Q, k =
1, 2, 3, . . . ,m based on the pivot indices. There are the following two possibilities:

a) 1 ≤ πk ≤ n: We know that ei,πk = 0, i > k, because E is zero below the
pivot position (k, πk). Therefore, writing out equality (5.1) for the πk-th column gives
us (F ′j denotes the j-th column of F )

F ′πk = [Q1Q2 . . . Qk]

 E′πk

 ,
with

Eπk =
[
E′πk

0

]
.

So, we can write Qk as

ek,πkQk = F ′πk −
k−1∑
i=1

ei,πkQi.(5.3)

b) πk − n =: π′k > 0. We know that gi,π′
k

= 0, i > k. Writing out equality (5.2)
for the π′k-th column gives us:

ΛQπ′
k

= [Q1Q2 . . . Qk]

 G′π′
k


, with

Gπ′
k

=
[
G′π′

k

0

]
.

So, we can write Qk based on the previous columns of Q as

gk,π′
k
Qk = ΛQπ′

k
−
k−1∑
i=1

gi,π′
k
Qi.(5.4)

Note that k > π′k because 1 ≤ τk ≤ n, k > 1, with

τk := k − π′k = #{πj |1 ≤ πj ≤ n, j < k}.(5.5)
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As long as ek,πk and gk,π′
k

are different from zero, we can use (5.3) and (5.4) as a
recurrence relation to compute the columns Qk, k = 1, 2, 3, 4, . . .. In Section 7, we
shall see that ek,πk and gk,π′

k
will be nonzero in the regular case.

6. Recurrence relations for a sequence of orthonormal polynomial vec-
tors. Similar to the recurrence relations (5.3) and (5.4) for the columns Qk, we can
construct a sequence of polynomial vectors {φk}mk=1, φk ∈ C [z]n×1 as follows:

a) 1 ≤ πk ≤ n:

ek,πkφk(z) = Uπk −
k−1∑
i=1

ei,πkφi(z)(6.1)

b) πk − n =: π′k > 0:

gk,π′
k
φk(z) = zφπ′

k
(z)−

k−1∑
i=1

gi,π′
k
φi(z).(6.2)

Theorem 6.1 (relationship between Qk and φk(z)). Let Fk denote the rows
of F and F ′k the columns of F :

[F ′1, F
′
2, . . . , F

′
n] := F =:


F1

F2

...
Fm

 .
Then

Qk = F ?φ?k,

with

F ? := block diagonal {F1, F2, . . . , Fm}, and φ?k :=

 φk(z1)
...

φk(zm)

 .
Proof. The result it true for k = 1, because (U1 = [1, 0, . . . , 0]T )

e1,1Q1 = F ′1 = F ?


U1

U1

...
U1

 ,

e1,1φ1(z) = U1, hence e1,1φ
?
1 =


U1

U1

...
U1

 .
Thus,

Q1 = F ?φ?1.

Suppose the theorem is true for Qi, i = 1, 2, . . . , k − 1.



ETNA
Kent State University 
etna@mcs.kent.edu

8 Orthonormal polynomial vectors and least squares approximation

a) 1 ≤ πk ≤ n: Take the recurrence relation (5.3) for Qk:

ek,πkQk = F ′πk −
k−1∑
i=1

ei,πkQi.

We use the induction hypothesis,

Qi = F ?φ?i , i = 1, 2, . . . , k − 1,

to get

ek,πkQk = F ?


Uπk
Uπk

...
Uπk

− F ?
k−1∑
i=1

ei,πkφ
?
i

= F ?(ek,πkφ
?
k).

b) πk − n > 0: The proof is similar.

Using the connection between the polynomial vectors φk(z) and the columns Qk
of the unitary transformation matrix Q, we get

Theorem 6.2 (orthonormality of φk). The polynomial vectors, defined by
(6.1) and (6.2), satisfy

〈φk, φl〉 = δkl,

where the inner product is defined in (2.1).
Proof. This follows from the orthogonality of the columns Qk:

〈φk, φl〉 =
m∑
i=1

φk(zi)HFHi Fiφl(zi) = QHk Ql = δkl.

At this point, we have given an algorithm to compute the recurrence coefficients
for a sequence of orthonormal polynomial vectors φk. Now, we want to show that
our choice of the pivot indices π1, π2, . . . indeed gives the desired degree structure
(∆(k), νk) of the orthonormal polynomial vectors φk.

Theorem 6.3. The orthonormal polynomial vectors φk computed by Algorithm 4.1
have the corresponding extended degree vectors ∆̄(k) = (∆(k), νk); i.e.,

• ∂φk ≤ ∆(k);
• the νk-th component of φk is non-zero.

Proof. We proceed by induction on k. It is clear that the theorem is true for
k = 1. Suppose the theorem is true for 1, 2, . . . , k − 1. When the recurrence relation
(6.1) is used, φk(z) has the extended degree vector ∆̄(k) because ∆(i) ≤ ∆(k) and the
πk-th component is equal to −1, i = 1, 2, . . . , k − 1.

When the recurrence relation (6.2) is used, we see from (5.5) that only the first τk
components of ∆(i), i = 1, 2, . . . , k, are greater than −1. Hence, ∆(π′k) = ∆(k) − U1

τk

and νπ′
k

= νk. The degree vectors ∆(i), i = 1, 2, . . . , k−1, are smaller than or equal to
∆(k)−Uνk . Therefore, using recurrence relation (6.2) gives an orthonormal polynomial
vector having the desired degree structure.
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Note that if we want to use the orthonormal polynomial vectors φk to solve
the discrete least squares approximation problem of Definition 2.2, we only have to
compute φ|∆| using the recurrence relations (6.1) and (6.2). Therefore, Algorithm 4.1
can be adapted to compute only those entries of E and G needed in the recurrence
relations. The computational work will then be proportional to m|∆|2 instead of m3.

7. Singular case. Until now, we assumed all the entries ek,πk and gk,π′
k
, k =

1, 2, . . .m to be different from zero. In this case, all orthonormal polynomial vectors
φk(z) can be computed by using the recurrence relations (6.1) and (6.2). For each k,
1 ≤ k ≤ m, the inner product is a true inner product (positive definite). Hence, the
subspace P∆(k) ⊂ P ; i.e., we are in the regular case. Indeed, each polynomial vector
P ∈ P∆(k) can be written as a linear combination of the orthonormal polynomial
vectors:

P =
k∑
i=1

aiφi.

Hence, ‖P‖2 =
∑k
i=1 |ai|2. This can only be zero when P ≡ 0.

Suppose now that some of the entries ek,πk or gk,π′
k
, k = 1, 2, . . .m are zero.

Suppose that the first entry equal to zero is
1. ek,πk : In this case, we cannot use recurrence relation (6.1) to compute φk(z).

However, we can compute a polynomial vector φ′k as follows:

φ′k(z) = Uπk −
k−1∑
i=1

ei,πkφi(z).

From (5.3), we know that

0 = ek,πkQk = F ′πk −
k−1∑
i=1

ei,πkQi

= F ′πk −
k−1∑
i=1

ei,πkF
?φ?i

= F ?


Uπk
Uπk

...
Uπk

−
k−1∑
i=1

ei,πkF
?φ?i

= F ?φ′?k .

Hence, Fjφ′k(zj) = 0, j = 1, 2, . . . ,m.
2. gk,π′

k
: As in 1., we can prove that

φ′k(z) = zφπ(z)−
k−1∑
i=1

gi,π′
k
φi(z)

satisfies

Fjφ
′
k(zj) = 0, j = 1, 2, . . . ,m.

In the regular case, the least squares approximation error ‖P‖ = |a|∆|| is different
from zero. In the singular case, this error is zero and φ′k is an interpolating polynomial
vector for the given data.
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8. Related orthonormal polynomial vectors and matrices. We can con-
sider orthonormal polynomial vectors with respect to the generalized inner product

〈P,Q〉 :=
m′∑
k′=1

P (zk′)H


F

(1)
k′

...
F

(l)
k′


H 

F
(1)
k′

...
F

(l)
k′

Q(zk′),

with

P,Q ∈ C [z]n×1

and with

F
(j)
k′ ∈ C 1×n , k′ = 1, 2, . . . ,m′, j = 1, 2, . . . , l.

This inner product can be written as

〈P,Q〉 =
m′∑
k′=1

l∑
j=1

P (zk′)HF
(l)H

k′ F
(l)
k′ Q(zk′),

which can always be rewritten as

〈P,Q〉 =
m∑
k=1

P (zk)HFHk FkQ(zk),

reducing the problem of constructing a corresponding sequence of orthonormal poly-
nomial vectors to the original problem.

To get orthonormal polynomial matrices, we consider the following inner product:

〈P,Q〉 :=
m∑
k=1

P (zk)HFHk FkQ(zk) ∈ C l×l ,(8.1)

with P,Q ∈ C [z]n×l . Taking the parameters ∆?, we can easily represent all polynomial
matrices having a degree at most

[δ1U + ∆? − U0
j1 , . . . , δlU + ∆? − U0

jl
],

using the orthonormal polynomial vectors φk(z) where U0
j := [0, 0, . . . , 0, 1, . . . , 1]T (j

zeros). By grouping together l of these orthonormal polynomial vectors, we get (a
kind of) orthonormal polynomial matrices with respect to (8.1).

We get the “classical” orthonormal polynomial matrices by setting l = n,

∆? := [δ?1 , δ
?
2 , . . . , δ

?
n]T = 0,

and by taking members of {φk}∞k=1 in groups of n columns to form a sequence of
orthonormal polynomial (n×n)-matrices. For more details, see for example [6, 9, 10,
7].
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9. Recurrence relations if all points zi are real. If zi ∈ R, i = 1, 2, . . . ,m,
then G := QHΛQ is Hermitian because

GH = (QHΛQ)H = QHΛQ = G.

Because gk,j = 0 for j < πk, we also have gj,k = 0 for j < πk. The recurrence relation
(6.1) to compute a sequence of orthonormal polynomial vectors will not change in
this case, but recurrence relation (6.2) will have a smaller number of terms in the
right-hand side:

gk,π′
k
φk(z) = zφπ′

k
(z) −

k−1∑
i=λk

gi,π′
k
φi(z).(9.1)

with

λk := π′π′
k

:= ππ′
k
− n = k − τk − τπ′

k
.

The number ηk of polynomial vectors φi in the right-hand side of (9.1) is equal to

ηk = (k − 1)− λk + 1 = k − λk
= (k − π′k) + (π′k − π′π′

k
)

= τk + τπ′
k
≤ 2τk ≤ 2n.

Hence, to compute φk we need not more than the previous 2n orthonormal polynomial
vectors φi while in the general case we have to use all the previous φi. Let us look at
some special cases of this result.

1. When n = 1 (the scalar case), the recurrence relation (9.1) is just the classical
3-term recurrence relation for scalar orthonormal polynomials:

gk,k−1φk(z) = (z − gk−1,k−1)φk−1(z)− gk−2,k−1φk−2(z), k > 1,

with

e1,1φ1(z) = U1 and φ0(z) ≡ 0.

2. When πi = i, i = 1, 2, . . . , n, we use recurrence relation (6.1) to compute
φ1, φ2, . . . , φn. For k > n, recurrence relation (9.1) gives us

gk,k−nφk(z) = zφk−n(z)−
k−1∑

i=k−2n

gi,k−nφi(z),

with φi ≡ 0, i < 1.
The computational work of Algorithm 4.1 reduces by an order of magnitude in

case all zi are real. Each Givens rotation (or reflection) involves vectors of length at
most 2(n+1) instead of vectors of length i+n+1−j. Applying the Givens rotation to
the left requires at most 8(n+1) multiplications. Applying the Givens rotation to the
right requires only 8 multiplications because of symmetry considerations. Therefore,
the total number of multiplications is bounded by

m∑
i=1

i−1∑
j=1

[8(n+ 1) + 8] = 4(n+ 2)m(m− 1)

= O(4(n+ 2)m2),
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which is an order of magnitude m smaller compared to the general case. If we are
only interested in φ|∆|, the computational work is proportional to m|∆|.

We can transform the recurrence relation for the polynomial vectors φk into a
block 3-term recurrence relation. Due to the notational complexity, we only give an
example indicating this equivalence.

Example 9.1. Suppose the transformed data matrix has the following structure:

[E G] =



~ × × × × 0 0 0 0 0

0 × × ~ × × × 0 0 0

0 ~ × 0 × × × × 0 0

0 0 × 0 ~ × × × × ×

0 0 × 0 0 ~ × × × ×

0 0 ~ 0 0 0 × × × ×

0 0 0 0 0 0 ~ × × ×



=:



× × × × C0 0 0 0

0 × × × A0 C′1 0 0 0

0 × × 0 × 0 0

0 0 D0 0 B0 × × ×

0 0 0 A′1 × × ×

0 0 × 0 0 0 × × ×

0 0 0 0 0 0 B′1 × × ×


.

The pivot elements (k, πk), k = 1, 2, . . . , 7 are indicated by ~. If we define

Φ−1(z) := 03, Φ0(z) := I3 = [U1 U2 U3],
Φ1(z) := [φ1(z) U2 − e1,2φ1(z) U3 − e1,3φ1(z)],

Φ2(z) := [φ2(z) U2 −
2∑
i=1

ei,2φi(z) U3 −
2∑
i=1

ei,3φi(z)],

Φ3(z) := [φ2(z) φ3(z) U3 −
3∑
i=1

ei,3φi(z)],

Φ4(z) := [φ4(z) φ5(z) U3 −
5∑
i=1

ei,3φi(z)],

Φ5(z) := [φ4(z) φ5(z) φ6(z)], Φ6(z) := [φ7(z)],

they satisfy the block 3-term recurrence relation

Φk(z) = Φk−1(z)βk−1 + Φk−2(z)αk−1, k = 1, 2, . . . , 6,
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with

β0 :=

 1
e1,1

− e1,2e1,1
− e1,3e1,1

0 1 0
0 0 1

 , α0 := 03,

β1 :=

 (z−g1,1)
g2,1

− (z−g1,1)
g2,1e2,2

− (z−g1,1)
g2,1e2,3

0 1 0
0 0 1

 , α1 := 03,

β2 :=

 1 0 0
0 1

e3,2
− e3,3e3,2

0 0 1

 , α2 := 03,

β3 :=
[

(z −A0)B−1
0 −(z − A0)B−1

0 D0

01×2 1

]
,

α3 :=
[
−C0B

−1
0 C0B

−1
0 D0

02 02×1

]
,

β4 :=

 1 0 0
0 1 0
0 0 1

e6,3

 , α4 := 03,

β5 := (z − A′1)B
′−1
1 , α5 := −C′1B

′−1
1 .

This can be rewritten as

[Φk Φk+1] = [Φk−1 Φk]Vk, k = 0, 1, 2, . . . , 6,

with

Vk :=
[

0 αk
In βk

]
.

Note that

Vk ∈ R[z]2n×2n , k = 0, 1, 2, . . . , 5,

and

V6 ∈ R[z]2n×(n+1) .

The partitioning of these Vk-matrices, suggests that one can construct matrix con-
tinued fraction formulas for rational forms built up by components of the polynomial
vectors φk.

10. Recurrence relations if all points zi are on the unit circle. If |zi| = 1,
i = 1, 2, . . . ,m, then G := QHΛQ is a unitary block Hessenberg matrix. This will not
influence recurrence relation (6.1). However, recurrence relation (6.2) can be rewritten
using a decomposition of the matrix G.

Theorem 10.1 (generalized block Schur parameter decomposition).

The unitary block Hessenberg matrix G := QHΛQ can be decomposed as

G = G1G2G3 . . . Gm−τm ,
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with Gi having the form

Gi :=

 Ik−1

G′i
Im−k−1−λi

 ,
where G′i a unitary (λi × λi)-matrix (block Schur parameters) and where λi := τk + 1
with k satisfying π′k = i. In the sequel we will also need the following partitioning of
G′i:

G′j =:
[
γj Σj
σj Γj

]
,(10.1)

with σj a scalar. The entries γj , σj ,Σj,Γj are called the block Schur parameters. The
entry σπ′

k
can be read off in the original matrix G, σπ′

k
= gk,π′

k
. Note that

2 ≤ λi ≤ λj ≤ n, i < j.

Proof. We proceed by induction on i. The unitary block Hessenberg matrix G
can be written as

G = G1G
′.

Because the first column of G1 is equal to the first column of G and because G is
unitary, we get that the unitary matrix G′ has the form

G′ = GH1 G =


1 0 . . . 0
0
... G′′

0

 .
Note that σπ′

k
= gk,π′

k
with k such that π′k = 1. G′′ is also unitary and has the

same block structure as G, except for the first row and column. Therefore, the same
reasoning can be applied again. Note that g′′k,π′

k
= gk,π′

k
, π′k > 1.

Instead of computing the unitary block Hessenberg matrix G using Algorithm 4.1,
we construct the blocks G′i, defined by (10.1), of the block Schur parametrization of
G. This reduces the order of computations by a factor m.

Suppose we know the decomposition for m points zi. Adding one point zm+1 with
|zm+1| = 1, and corresponding weight vector Fm+1, gives us the following initial data
structure:

[Ē | Ḡ] :=
[
Fm+1 zm+1 0
E 0 G

]
with G = G1G2 . . . Gm−τm .

Using unitary similarity transformations, this initial structure is transformed into

Q′H
[
Fm+1 zm+1 0
E 0 G

] [
In 0
0 Q′

]
= [E′ | G′]

having zeros below the pivot elements.
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Algorithm 10.1. Transformation of the initial data matrix D̄ := [Ē | Ḡ] into a
matrix having zeros below the pivot elements.
for i := 1 to m do

* make element d̄i+1,πi zero by using a Givens rotation (or reflection) JH with
the pivot element (i, πi):

Ē ← JHĒ(10.2)
Ḡ← JHḠ(10.3)

* Ḡ← ḠJ (similarity transformation).
Note that (10.2) can be skipped if τi = n. If τi < n only n− τi nonzero columns

of Ē are involved.
Instead of working with the unitary block Hessenberg matrix Ḡ, we work with its

decomposition

Ḡ =
[
zm+1

Im

] [
1

G1

]
. . .

[
1

Gm−τm .

]
= Ḡ0Ḡ1Ḡ2 . . . Ḡm−τm ,

which we transform into a decomposition for G′:

G′ = G′1G
′
2 . . . G

′
m+1−τm−1

.

Algorithm 10.1 changes as follows:

Algorithm 10.2. Initialization

H0 ← Ḡ0

π ← 0

for i := 1 to m do
{The last pivot element used with πi > n was in column π of Ḡ}
{Ḡ = G′1G

′
2 . . . G

′
πHi−1ḠiḠi+1 . . . Ḡm−τmḠm−τm+1 . . . Ḡm with

Ḡm−τm+j = Im+1, j = 1, 2, . . . , τm}
if 1 ≤ πi ≤ n then

* make element ēi+1,πi zero by using a Givens rotation
(or reflection) JH with the pivot element ēi,πi :

Ē ← JHĒ

Hi ← JHHi−1ḠiJ

else (πi > n)
* make element (i+ 1, πi) of Hi−1 zero by using a Givens rotation
(or reflection) JH with the pivot element (i, πi) of Hi−1:

Ē ← JHĒ

G′π+1Hi ← JHHi−1ḠiJ, π ← π + 1

{i.e. G′π+1 is the first block Schur parameter of JHHi−1ḠiJ ,
while Hi is the tail of the generalized block Schur decomposition}

G′m+1−τm+1
← Hm.
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Note that in the else-part, the elements (i + 1, πi) and (i, πi) of Hi−1 are also the
elements at the same position in Ḡ.

For notational simplicity, we have written down the algorithm using (m + 1) ×
(m + 1) matrices. However, when looking at the computational complexity, we have
only to take into consideration the nontrivial operations. Besides constructing the m
Givens rotations, we have the step Ē ← JHĒ involving at most 4n multiplications.
The nontrivial part of JHHi−1ḠiJ is a unitary matrix of size at most (2n + 2) ×
(2n + 2). Therefore, adding one new data point (zm+1, Fm+1) requires a number of
multiplications proportional to m and not to m2 as in the general case. Therefore,
constructing [E | G] for m data points needs a number of multiplications proportional
to m2. Hence, the amount of computational work, as in the real case, is reduced by an
order of magnitude m. Note that if we are only interested in φ|∆|, the computational
work is proportional to m|∆|.

Once we have computed E and G1, G2, . . . , Gm−τm , we have the following recur-
rence relations for the columns Qk of Q, k = 1, 2, 3, . . . ,m:

a) 1 ≤ πk ≤ n:

ek,πkQk = F ′πk −
k−1∑
i=1

ei,πkQi (see (5.3)).(10.4)

b) πk − n =: π′k > 0: We know that ΛQ = QG1G2 . . .Gm−rm .
For k = 1, 2, . . . ,m, we define Q(k)

1 , Q
(k)
2 , . . . , Q

(k)
k as

[Q(k)
1 Q

(k)
2 . . .Q

(k)
k Q

(k)
k+1 Q

(k)
k+2 . . . Q

(k)
m ] := QG1G2 . . .Gπ′

j
,

with

π′j := max{π′i|i ≤ k}.

Note that if π′k > 0, we have

[Q(k−1)
1 Q

(k−1)
2 . . . Q(k−1)

m ] = [Q(j)
1 Q

(j)
2 . . .Q

(j)
j Qj+1 . . . Qk Qk+1 . . . Qm].

Multiplying the previous columns by Gπ′
k
, we get

QG1G2 . . .Gπ′
k
−1Gπ′

k
= [Q(k−1)

1 . . . Q
(k−1)
k−1 Qk . . . Qm]Gπ′

k

= [Q(k)
1 . . . Q

(k)
k−1 Q

(k)
k Qk+1 . . . Qm].

(10.5)

If we partition the nontrivial (τj + 1)× (τj + 1) part G′j of Gj (see (10.1)) using the
block Schur parameters as

G′j =:
[
γj Σj
σj Γj

]
,

with σj a 1× 1 block, we can rewrite (10.5) as

[Q(k−1)
π′
k

Q
(k−1)
π′
k
+1 . . .Q

(k−1)
k−1 Qk]

[
γπ′

k
Σπ′

k

σπ′
k

Γπ′
k

]
= [Q(k)

π′
k
Q

(k)
π′
k
+1 . . . Q

(k)
k−1 Q

(k)
k ].(10.6)

Recalling from Theorem 10.1 that σπ′
k

= gk,π′
k
. Because the π′k-th column of

ΛQ = QG1G2 . . . Gm−τm
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is equal to the π′k-th column of QG1G2 . . . Gπ′
k
, we get the following recurrence relation

for Qk by taking the first column of the left hand side of (10.6):

σπ′
k
Qk = ΛQπ′

k
− [Q(k−1)

π′
k

Q
(k−1)
π′
k
+1 . . . Q

(k−1)
k−1 ]γπ′

k
.(10.7)

In the next steps, we do not need Q(k)
π′
k

anymore. Therefore, by taking the last columns
of left and right hand side of (10.6), we get the following recurrence relation for the
auxiliary columns Q(k)

j , j = π′k + 1, . . . , k:

[Q(k)
π′
k
+1 . . . Q

(k)
k ] = [Q(k−1)

π′
k

. . . Q
(k−1)
k−1 Qk]

[
Σπ′

k

Γπ′
k

]
.(10.8)

The recurrence relations (10.4), (10.7) and (10.8) can be rewritten as recurrence
relations with a limited number of terms. We proceed to rewrite this in terms of the
orthonormal polynomial vectors φi. For each k = 1, 2, . . . ,m, we start with

[φk−n φk−n+1 . . . φk−1|φ(k−1)
k−τk . . . φ

(k−1)
k−1︸ ︷︷ ︸

τk

|S(k−1)
τk+1 . . . S(k−1)

n ],

where

S
(k−1)
j := Uj −

k−1∑
i=1

ei,jφi, j = τk + 1, τk + 2, . . . , n.

If 1 ≤ πk ≤ n, we can use recurrence relation (10.4) to get

[φk−n+1 . . . φk−1|φk|φ(k)
k−τk . . . φ

(k)
k−1|φ

(k)
k |S

(k)
τk+2 . . . S

(k)
n ]

← [φk−n+1 . . . φk−1|φ(k−1)
k−τk . . . φ

(k−1)
k−1 |S

(k−1)
τk+1 |S

(k−1)
τk+2 . . . S(k−1)

n ] Tk,

with

Tk :=



Dn 0 0 0 0

0 0 Iτk 0 0

0 1
ek,πk

0 1
ek,πk

− 1
ek,πk

[ek,πk+1 . . . ek,n]

0 0 0 0 In−τk−1



,

where

Dn :=


0 0 . . . 0
1 0 . . . 0
...

. . . . . .
...
0

0 0 . . . 1

 ∈ C n×(n−1) .



ETNA
Kent State University 
etna@mcs.kent.edu

18 Orthonormal polynomial vectors and least squares approximation

If πk − n =: π′k > 0, we can use recurrence relations (10.7) and (10.8) to get

[φk−n+1 . . . φk−1|φk|φ(k)
k−τk+1 φ

(k)
k−τk+2 . . . φ

(k)
k |S

(k)
τk+1 . . . S

(k)
n ]

← [φk−n . . . |φπ′
k
| . . . φk−1|φ(k−1)

k−τk . . . φ
(k−1)
k−1 |S

(k−1)
τk+1 . . . S(k)

n ] Tk,

with

Tk :=



0 0 0

Dn
z
σπ′
k

z
σπ′
k

Γπ′
k

−z
σπ′
k

[ek,τk+1 . . . ek,n]

0 0 0

0
−γπ′

k

σπ′
k

Σπ′
k
−

γπ′
k

σπ′
k

Γπ′
k

γπ′
k

σπ′
k

[ek,τk+1 . . . ek,n]

0 0 0 In−τk



.

Note that

Σπ′
k
− γπ′

k
σ−1
π′
k

Γπ′
k

= Σ−Hπ′
k

and

σ−1
π′
k

Γπ′
k

= −γHπ′
k
Σ−Hπ′

k
.

Hence, looking at the second and third block column of Tk, we see a type of Szegő
recurrence relations.

These recurrence relations can be combined to get generalized block Szegő re-
currence relations. To avoid notational complexity, we only give a diagram of this
result.

Example 10.1. Suppose the transformed data matrix has the following structure:

[E | G] =



~ × × × × × × × × × ×
× × ~ × × × × × × ×
~ × × × × × × × ×
× ~ × × × × × ×
~ × × × × × ×

~ × × × × ×
~ × × × ×

~ × × ×


.
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Define

Φ0 := I3, Φ′0 := 03,

Φ1 := [φ1 S
(1)
2 S

(1)
3 ], Φ′1 := [φ(1)

1 0 0],
Φ2 := [φ2 S

(2)
2 S

(2)
3 ], Φ′2 := [φ(2)

2 0 0],
Φ3 := [φ2 φ3 S

(3)
3 ], Φ′3 := [φ(3)

2 φ
(3)
3 0],

Φ4 := [φ3 φ4 φ5], Φ′4 := [φ(5)
3 φ

(5)
4 φ

(5)
5 ],

Φ5 := [φ6 φ7 φ8], Φ′5 := [φ(8)
6 φ

(8)
7 φ

(8)
8 ].

The polynomial matrices Φk satisfy the generalized block Szegő recurrence relation

[Φk Φ′k] = [Φk−1 Φ′k−1]
[
Ak−1 Ck−1

Bk−1 Dk−1

]
, k = 0, 1, 2, 3, 4,

with

A0 :=

 1
e1,1

−e1,2
e1,1

−e1,3
e1,1

0 1 0
0 0 1

 , B0 := 03,

C0 := 03, D0 := 03,

A1 :=

 z
σ1

−z
σ1
e2,2

−z
σ1
e2,3

0 0 0
0 0 0

 , B1 :=

 −γ1
σ1

−γ1
σ1
e2,2

−γ1
σ1
e2,3

0 0 0
0 0 0

 ,
C1 :=

 z
σ1

Γ1 0 0
0 0 0
0 0 0

 , D1 :=

 Σ−H1 0 0
0 0 0
0 0 0

 ,
A2 :=

 1 0 0
0 1

e3,2

−e3,3
e3,2

0 0 1

 , B2 := 03,

C2 :=

 0 0 0
0 1

e3,2
0

0 0 0

 , D2 :=

 1 0 0
0 0 0
0 0 0

 ,
A3 :=

 0 z
σ2

−ze4.3
σ2e5,3

1 0 0
0 0 1

 , B3 :=
[

0 −γ2
σ2

γ2
σ2

e4,3
e5,3

0 0 0

]
,

C3 :=

 z
σ2

Γ2
−ze4,3
σ2e5,3

0 0
0 0

 , D3 :=
[

Σ−H2
γ2e4,3
σ2e5,3

0 0

]
,

A4 := z σ−1
3,5, B4 := −γ3,5σ

−1
3,5,

C4 := −γ3,5Σ−H3,5 , D4 := Σ−H3,5 ,

with  G3

1
1

 1
G4

1

 1
1

G5

 =:
[
γ3,5 Σ3,5

σ3,5 Γ3,5

]
.

Note that the last block recurrence relation is just the classical block Szegő recurrence
relation. If we add more data points, we can use the latter relation to compute the
next block of 3 orthonormal polynomial vectors φi.
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11. Application: linearized vector rational approximation. In this sec-
tion, we generalize the discrete linearized least-squares rational approximation of
[16, 17] to the vector case. The definitions can be easily extended to the vector case as
follows. Let us assume that the function values are given in the form Ei/fi for the ab-
scissae zi, i = 1, 2, . . . ,m, where Ei ∈ C (n−1)×1 and fi and zi are all complex numbers.
In the sequel, we make no distinction between the vector rational form N(z)/d(z)
and the polynomial vector P =: [P1, P2, . . . , Pn]T with N := [P1, P2, . . . , Pn−1]T

and d := Pn. If we define the ~τ -degree of a polynomial vector P with ~τ ∈ Zn as
~τ -degP (z) := max{degPi(z) − τi} (deg 0 = −1), then in the rational interpolation
problem, one wants to describe all vector rational forms N(z)/d(z) of minimal ~τ -
degree which satisfy the interpolation conditions

N(zi)
d(zi)

=
Ei
fi
, i = 1, 2, . . . ,m.(11.1)

In [15], a parametrization was given and an efficient algorithm to solve this prob-
lem. When the data are corrupted with noise, one does not want the interpolation
conditions to be satisfied exactly.

Definition 11.1 (proper vector rational approximation problem). Given
the data points zi with corresponding estimated function values Ei/fi, i = 1, 2, . . . ,m,
given ~τ , the ~τ-degree α and the weights w(p)

i > 0, i = 1, 2, . . . ,m, we look for a vec-
tor rational form N(z)/d(z) of ~τ-degree ≤ α satisfying the following least squares
approximation criterion:

minimize dist 2
(p)(N, d) :=

m∑
i=1

w
(p)
i ‖R

(p)
i ‖22,(11.2)

with R
(p)
i := Ei/fi − N(zi)/d(zi), ‖R(p)

i ‖22 := (R(p)
i )HR(p)

i and where dist (p)(N, d)
denotes the l2-distance between the rational function N(z)/d(z) and the data.

The proper vector rational approximation problem is a non-linear least squares
problem which can only be solved in an iterative way. Therefore, we rather minimize
the norm of the linearized residual vector with components

Ri := Eid(zi)− fiN(zi), i = 1, 2, . . . ,m.(11.3)

We shall fix the ~τ -degree of the approximant N(z)/d(z) to be α where usually α� m.
We also normalize the approximant in the following sense. Suppose Pi(z) =: Pi,0 +
Pi,1z+· · ·+Pi,α+τiz

α, then we require Pi,α+τi = 1 if Pj,α+τj = 0, j = i+1, i+2, . . . , n.
Thus, we shall solve the following vector rational approximation problem.

Definition 11.2 (linearized vector rational approximation problem).

Given the data points zi with corresponding estimated function values Ei/fi, i =
1, 2, . . . ,m, given ~τ , the ~τ-degree α and the weights wi > 0, i = 1, 2, . . . ,m, we look
for the normalized rational form N(z)/d(z) of ~τ -degree α satisfying the following least
squares approximation criterion:

minimize dist 2(N, d) :=
m∑
i=1

wi‖Ri‖22,(11.4)

with Ri := Eid(zi) − fiN(zi), ‖Ri‖22 = Ri
HRi and where dist (N, d) denotes the

distance between the vector rational form (N(z), d(z)) and the data.
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Note that the function values Ei/fi can be replaced by kiEi/(kifi) (with ki 6=
0). This yields a different value of the residual Ri. Solving the linearized rational
approximation problem with kiEi, kifi instead of Ei and fi, is equivalent to solving
the problem with the original Ei, fi but with the weights wi|ki|2 instead of wi.

The solution of the linearized problem can be used to obtain a solution of the
proper problem as follows. Suppose we know the values d(p)(zi), i = 1, 2, . . . ,m with
N (p)/d(p) a solution of the proper problem. If we solve the linearized problem with
weights

wi =
w

(p)
i

|fid(p)(zi)|2
, i = 1, 2, . . . ,m,(11.5)

we get (N (p), d(p)). However, in practice, we do not know the values d(p)(zi). In this
case we can estimate these values, compute the solution of the linearized problem,
take the denominator of this solution as a new estimation of the final d(p), and so on.
This algorithm was proposed by Loeb for the l∞ norm and by Wittmeyer for the l2
norm [3]. In Example 11.1 we shall show the influence of executing one iteration step
of this algorithm. Of course one could also use the solution of the linearized problem
as a starting value for other iterative schemes.

The linearized vector rational approximation problem can be formulated as a
discrete least squares approximation problem with polynomial vectors where each
point zi is taken with (n − 1) different weight vectors, the rows of the (n − 1) × n
matrix

√
wi[Ifi −Ei].

The degree vector ∆? can be taken equal to ~τ .
Example 11.1. The points zi are 30 equidistant points in the interval [−π/2 +

0.01, π/2 + 0.01]. The function values are taken as follows:

fi = 1, Ei = [tan(zi), sin(zi)]T .

The weights wi and w(p)
i are all taken equal to 1. We allow the degree of the numerator

to be 2 higher than the degree of the denominator, i.e. ~τ = (2, 2, 0). All computations
were done on a DEC workstation using MATLAB 4.1 with machine epsilon eps =
2.2204e−16. Table 11.1 shows the degree vectors ∆(k), the degree indices νk, the pivot
indices πk and the norm of the solution of the discrete least squares approximation
for the initial values of k. The absolute errors of each of the two components of the
vector rational approximant for k = 19 is given in Figure 11.1. After one iteration
step of the Loeb-Wittmeyer algorithm, we get the smaller errors of Figure 11.2 with
a more equi-oscillating character.

12. Conclusion. In this paper, we have constructed several variants of an algo-
rithm which computes the coefficients of recurrence relations for orthonormal poly-
nomial vectors with respect to a discrete inner product. When the points zi are real
or on the unit circle, we have shown that the number of computations reduces by
an order of magnitude. Also the recurrence relations only require a fixed number of
terms.

The orthonormal polynomial vectors were used to solve a discrete least squares
approximation problem. As an application, we have considered the vector rational
approximation problem in a linearized least-squares sense. Future work will show
how to compute matrix rational interpolants and matrix rational approximants in a
linearized least squares sense based on these orthonormal polynomial vectors.
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k ∆(k) νk πk ‖P (k)‖
1 (0,-1,-1) 1 1 5.4772e+00
2 (0,0,-1) 2 2 5.4772e+00
3 (1,0,-1) 1 4 5.1030e+00
4 (1,1,-1) 2 5 5.1030e+00
5 (2,1,-1) 1 6 4.2454e+00
6 (2,2,-1) 2 7 4.2454e+00
7 (2,2,0) 3 3 1.2223e+02
8 (3,2,0) 1 8 2.5927e+00
9 (3,3,0) 2 9 3.4585e+00
10 (3,3,1) 3 10 1.6908e+02
11 (4,3,1) 1 11 1.9535e+00
12 (4,4,1) 2 12 2.7890e+00
13 (4,4,2) 3 13 3.4205e-01
14 (5,4,2) 1 14 1.4593e+00
15 (5,5,2) 2 15 7.0727e-02
16 (5,5,3) 3 16 2.6297e-01
17 (6,5,3) 1 17 1.0807e+00
18 (6,6,3) 2 18 5.6111e-02
19 (6,6,4) 3 19 8.0443e-03
20 (7,6,4) 1 20 3.3817e-01
21 (7,7,4) 2 21 1.4988e-03
22 (7,7,5) 3 22 5.9541e-03
23 (8,7,5) 1 23 2.5137e-01
24 (8,8,5) 2 24 1.0902e-03
25 (8,8,6) 3 25 2.5033e-03

Table 11.1

results for example 11.1

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3
x 10

-4

i

er
ro

r

absolute error of the first component for k=19

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

i

er
ro

r

absolute error of the second component for k=19

Fig. 11.1. absolute error
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