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Abstract. In this paper we present a definition of Sobolev spaces with respect to general measures, prove some
useful technical results, some of them generalizations of classical results with Lebesgue measure and find general
conditions under which these spaces are complete. These results have important consequences in Approximation
Theory. We also find conditions under which the evaluation operator is bounded.
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1. Introduction. Weighted Sobolev spaces are an interesting topic in many fields of
Mathematics. In the classical books [7], [8], we can find the point of view of Partial Differen-
tial Equations. (See also [20] and [6]). We are interested in the relationship between this topic
and Approximation Theory in general, and Sobolev Orthogonal Polynomials in particular.

The specific problems we want to solve are the following:
1) Given a Sobolev scalar product with general measures in � , find hypotheses on the

measures, as general as possible, so that we can define a Sobolev space whose elements are
functions.

2) If a Sobolev scalar product with general measures in � is well defined for polynomials,
what is the completion, ���
	 � , of the space of polynomials with respect to the norm associated
to that scalar product? This problem has been studied in some particular cases (see e.g. [4],
[3], [5]), but at this moment no general theory has been built.

Our study has as application an answer to the question of finding the most general con-
ditions under which the multiplication operator, ������������������� , is bounded in the space���
	 � . We know by a theorem in [10] that, the zeroes of the Sobolev orthogonal polynomials
are contained in the disk ������� � �"!$#%�&#(' . The location of these zeroes allows to prove re-
sults on the asymptotic behaviour of Sobolev orthogonal polynomials (see [9]). In the second
part of this paper, [15], and in [17] and [1], we answer the question stated also in [9] about
general conditions for � to be bounded.

The completeness that we study now is one of the central questions in the theory of
weighted Sobolev spaces, together with the density of )+* functions. In particular, when all
the measures are finite, have compact support and are such that ) *, �-�.� is dense in a Sobolev
space that is complete, then the closure of the polynomials is the whole Sobolev space. This
is deduced from Bernstein’s proof of Weierstrass’ theorem, where the polynomials he builds
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approximate uniformly up to the 0 -th derivative any function in )��1�32 4�576789� (see e.g. [2],
p.113).

In the paper we also prove some inequalities which generalize classical results about
Sobolev spaces with respect to Lebesgue measure (see Theorem 3.2).

What we present here is an abridged version of the paper [14], where the complete proofs
of the results may be found, together with the corresponding lemmas and related results.

In the first part of the article we obtain a good definition of Sobolev space with respect to
very general measures. We allow the measures to be almost independent of each other. The
main result that we present in the paper is Theorem 3.1. It states very general conditions on
the measures under which this Sobolev space is complete.

2. Definitions and previous results. The main concepts that we need to understand the
statement of our results are contained in the following definitions. The first one is a class of
weights that will be the absolutely continuous part of our measures.

DEFINITION 2.1. We say that a weight : belongs to ;�<=�?>@� , if and only if,

:�ACB�DFE B3G%H < ACB3IJLK , �?>@� 5 for MN!POFQSRT5:�ACB�DFEUBJLK , �?>@� 5 for O��VRXW
This class contains the classical YZ< weights appearing in Harmonic Analysis, but is

larger. We consider vectorial measures [\�]�9[@^_5%W%W`W%5a[ � � in the definition of our Sobolev
space and make for each one the decomposition b_[Ccd�eb"��[�c��3fhg\:ic`b_� , where �9[ c��3f is
singular with respect to the Lebesgue measure and :Uc is a Lebesgue measurable function.

DEFINITION 2.2. Let us consider M�!POF!SR and a vectorial measure [j�k��[@^_5%W`W%W%5a[ � � .
For lm!onp!d0 , we define the open setq cN�r�s�
�FDt�u��v an open neighbourhood w of � with :xc�DF;y<z�-w��{'|W

Observe that we always have : c D\; < � q c � , for any ld!&nS!X0 . In fact,
q c is the

largest open set } with : c Do; < �~}�� . Obviously,
q c depends on O and [ , although O and [

do not appear explicitly in the symbol
q c . It is easy to check that if  H c I DPE < � q c 53: c � withl�!sn�!$0 , then, �H c I�D�EUBJLK , � q c
� , and therefore �H c ACB3I�DdY�) JLK , � q c
� if M�!Vn�!$0 . The

notation Y�) JLK , refers to the class of locally absolutely continuous functions.
We denote by

q H c I the set of “good” points at the level n for the vectorial weight ��:Z^�5%W%W`W%5: � � . These are in essence the points � for which there exists a weight :�� with n�Q��|!S0 that
is, in a neighbourhood of � , in the class ;�< .

Let us present now the class of measures that we use and the definition of Sobolev space.
DEFINITION 2.3. We say that the vectorial measure [j���9[@^_5%W%W`W%5a[ � � is O -admissible if�9[�c
�af(����� q H c I �|��l , for M�!�npQ�0 , and ��[ � �3fy�Sl .

Remarks.
1. The hypothesis of O -admissibility is natural. It would not be reasonable to consider

Dirac deltas in [ c in the points where �H c I is not continuous.
2. Observe that there is not any restriction on supp �9[ ^ � f .
3. Every absolutely continuous measure is O -admissible.
DEFINITION 2.4. Let us consider M�!�O�!kR , an open set

q$� � and a O -admissible
vectorial measure [�����[C^_5%W`W%W%5a[ � � in

q
. We define the Sobolev space ���
	 < � q 5a[@� as the

space of equivalence classes of

w �
	 < � q 5a[@�x����� j� qd���d�  H c I DFY�) JLK , � q H c I � for n���l=5%M�5`W%W`W�570���M and

#� H c I #%� � H ¡¢	 £�¤3I Q�R for n���l=5%M�5`W%W`W�570@¥+5
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90 J.M. RODRÍGUEZ, V. ALVAREZ, E. ROMERA, AND D. PESTANA

with respect to the seminorms

#%.#
¦�§{¨ � H ¡C	 £(I �r�ª© �«ca¬¢^ #% H c I # < � � H ¡C	 £ ¤ I? BaG
< 5 for MN!�OFQSRX5

#%.#`¦ §{¨ ® H ¡C	 £(I �r�°¯�±(²^`³zc�³ � #% H c I #%� ® H ¡¢	 £ ¤ I W
Here

#{´¢# ��® Hµ¡C	 £ ¤ I �r�S¯�±(²�¶.·
¸a¸"¸3¹zº»�¼ ¡ � ´ �����½:|c �9���`�r5 ¸a¹zº»¾¼ supp Hµ£ ¤ I-¿ � ´C�9� �%�µÀZ5
where ess sup refers to Lebesgue measure, and we assume the usual convention ¸a¹zºZÁ��k��R .

Before we state our theorems, let us recall a classical result that will be generalized in
our Theorem 3.2.
Muckenhoupt inequality. ([12], [11]) Let us consider, Mm!ÂOoQsR and [@^�53[ B measures in��4�5{678 with : B �r��b_[ B � b�� . Then there exists a positive constant Ã such thatÄÄÄ�Å�Æ» ´C�9Ç3�1b_Ç ÄÄÄ � � H�HµÈ
	 Æ�É 	 £(Ê3I !�ÃË#{´¢# �1� H9HÌÈ
	 Æ�É 	 £�Í½I
for any measurable function ´ in ��4�576{8 , if and only ifÎ < �9[ ^ 53[ B �y���Ï¸a¹zºÈ
Ð�Ñ%Ð Æ [ ^ �a��4�53Ò
89�%#�:

ACBB # � Í~Ó½Ô ��Õ Í�Ö H9× Ñ3	 Æ I9I Q�RXW
3. Completeness of the Sobolev spaces. And now, here is our main theorem in the

paper. In it and in Theorem 3.2 we consider special classes that we call Ø and Ø=^ . The
conditions � q 53[@�xDÙØ1^ and � q 5a[@�xDÙØ are not very restrictive. The first one consists, roughly
speaking, in considering measures [ such that �µ�ÛÚa�µ� ¦ §�¨ � HÌÜÞÝ 	 £(I is a norm for some sequence of
compact sets �(��ß"' growing to

q
. As to the class Ø , it is a slight modification of Ø=^ , in which

we consider measures [��ª��[ ^ 5`W%W%W`53[ � � such that by adding a minimal amount of deltas to[ ^ we obtain a measure in the class Ø ^ .
THEOREM 3.1. Let us consider M�!POF!SR , an open set

qà� � and a O -admissible vec-
torial measure [P���9[ ^ 5`W%W`W%53[ � � in

q
with � q 5a[@�ZDtØ . Then the Sobolev space ���
	 < � q 5a[@�

is complete.
The main ingredient of the proof of this result is Theorem 3.2. It allows us to control

the Ei* norm (in appropriate sets) of a function and its derivatives in terms of its Sobolev
norm. It is also useful by its applications in the papers [15], [16], [17], [18], [1], [19] and
[13]. Furthermore, it is important by itself, since it answers to the following main question:
when the evaluation functional of  (or �H c I ) in a point is a bounded operator in �k��	 < � q 53[@� ?

THEOREM 3.2. Let us consider Mt!sOS!&R , an open set
qá� � and a O -admissible

vectorial measure [ in
q

. If âmc is a finite union of compact intervals contained in
q H c I , forlm!�npQ�0 , then:

(a) If � q 5a[@�xD�Ø ^ there exists a positive constant Ã B ��Ã B �-â ^ 5`W%W%W`5aâ ��ACB � such that

Ã B ��ACB«
ca¬C^ #{´ H c I # � ® Hµã ¤ I !�#{´¢#`¦ §{¨ � H ¡C	 £(I 5

for all ´�DFw+��	 < � q 53[@� .
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(b) If ä q 5a[@å�D�Ø there exists a positive constant Ã � ��Ã � �-â ^ 5`W%W`W%5aâ �
ACB � such that for
every ´�D�w��
	 < � q 5a[@� , there exists ´ ^ D�w��
	 < � q 53[@� , independent of â ^ 5%W`W%W�57â �
A¢B and Ã � ,
with

#{´ ^ �P´C# ¦ §{¨ � H ¡¢	 £(I �àly5
Ã � �
A¢B«
ca¬C^ #�´ H c I^ # � ® HLã.¤½I !\#{´ ^ #
¦�§{¨ � H ¡@	 £(I �$#{´¢#`¦p§{¨ � H ¡C	 £(I W

Furthermore, if ´ ^ 57 ^ are these representatives of ´ 57 respectively, we have for the same
constant Ã �

Ã � ��ACB«
ca¬C^ #�´ H c I^ �� H c I^ # �"® HLã.¤3I !s#�´+��.# ¦ §�¨ � H ¡@	 £(I W

This theorem has the following corollary, that we use in the proof of Theorem 3.1:
COROLLARY 3.3. Let us consider, M�!�OP!VR , an open set

q\� � and a O -admissible
vectorial measure [ in

q
. If â�c is a finite union of compact intervals contained in

q H c I , forl�!onpQ�0 , then:
(a) If � q 53[@�xD�Ø1^ there exists a positive constant Ã B ��Ã B ��âp^�5%W`W%W`5aâ �
A¢B � such that,

Ã B �
A¢B«ca¬C^ #�´ H caæ B½I # � Í HLã.¤aI !�#{´¢# ¦ §�¨ � H ¡C	 £(I 5 ç"´pDFw �
	 < � q 5a[@��W
(b) If ä q 5a[@å�D�Ø there exists a positive constant Ã � ��Ã � �-â ^ 5`W%W`W%5aâ �
ACB � such that for

every ´PD�w��
	 < � q 5a[@� , there exists ´ ^ D�w��
	 < � q 5a[@�Z� the same function as in Theorem 3.2 � ,
with

#{´¾^U�P´C# ¦ §{¨ � H ¡¢	 £(I ��ly5 Ã � �
ACB«
ca¬C^ #{´ H caæ B3I^ # � Í HLã.¤3I !�#{´¾^_# ¦ §{¨ � H ¡@	 £(I �$#{´¢# ¦ §{¨ � H ¡C	 £(I W

Furthermore, if ´�^_57�^ are the representatives of ´ 57 respectively, we have for the same con-
stant Ã �

Ã � ��ACB«
ca¬C^ #�´ H caæ B½I^ �� H caæ B3I^ # � Í HLã.¤3I !s#�´+��.#`¦ §�¨ � H ¡@	 £(I W

As a consequence of theorems 3.2 and 3.1, we can prove the density of the space of
polynomials in these Sobolev spaces (see [15], [16], [18], [1] and [19]) and the boundedness
of the multiplication operator (see [15], [17] and [1]).

Proof of Theorem 3.1: Let ��(ß"' be a Cauchy sequence in �k�
	 < � q 53[@� . Then, for eachl�!\no!$0 , �� H c Iß ' is a Cauchy sequence in E < � q 53[�c
� and it converges to a function ´(ctDE < � q 5a[�c
� .
First of all, let us show that ´(c can be extended to a function in )m� q H c I3� (if l�!�ntQV0 )

and in ExBJµK , � q H c A¢B½Ia� (if l�Q�n�!d0 ).
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92 J.M. RODRÍGUEZ, V. ALVAREZ, E. ROMERA, AND D. PESTANA

If lm!onpQd0 , let us consider any compact interval â �dq H c I . By part (b) of Theorem 3.2
we know there exists a representative (independent of â ) of the class of  ß DS���
	 < � q 5a[@�
(which we also denote by ¾ß ) and a positive constant Ã such that for every è.53é�Dtê

ÃË#` H c Iß �� H c Ië # � ® HLãyI ! �« �µ¬C^ #% H � Iß �o H � Ië #%� � H ¡C	 £(ì9I W
As �( H c Iß ' � )m��âP� , there exists a function í c Dj)m�-âP� such that

ÃË#% H c Iß ��í c_# � ® HLãyI ! �« �µ¬C^ #% H � Iß ��´��7#�� � H ¡¢	 £ ì I W
Since we can take as â any compact interval contained in

q H c I , we obtain that the func-
tion í1c can be extended to

q H c I and we have in fact í1c�DF)m� q H c I3� . It is obvious that ´�cÞ�àí1c
in
q H c I (except for at most a set of zero [Cc -measure), since  H c Iß converges to ´�c in the norm

of E < � q 53[ c � and to í c uniformly on each compact interval â �îq H c I . Therefore we can
assume that ´ c DF)m� q H c I3� .

If lsQTn�!ï0 , let us consider any compact interval > �]q H c ACB3I . Now, part (b) of
Corollary 3.3 gives

ÃË#% H c Iß �� H c Ië # � Í Hµð¾I ! �« �L¬¢^ #` H � Iß �� H � Ië #�� � H ¡¢	 £ ì I W
As �( H c Iß ' � ExB(�½>@� , there exists a function ñ c DÙEUB(�?>@� such that

ÃË#` H c Iß �Pñ=c_# � Í Hµð¾I ! �« �L¬C^ #% H � Iß �P´��a#�� � H ¡C	 £ ì I W
Since we can take as > any compact interval contained in

q H c A¢B½I , we obtain that the functionñ=c can be extended to
q H c A¢B½I and we have in fact ñ"c�DtEUBJLK , � q H c ACB3I3� . It is obvious that ´�c��ñ=c in

q H c I (except for at most a set of zero Lebesgue measure), since  H c Iß converges to ñ"c inExBJµK , � q H c I7� and to ´�c locally uniformly in
q H c I . Let us consider a set Y which concentrates

the mass of ��[�c
�af , with � Y��z�\l ; we can take ñ"c��s´�c in Y . We only need to show ñ"c��V´�c
in

q c �p� q H c IxòÂY�� (recall that by hypothesis : c �ól in �s� q c ), but this is immediate
since : c DÙ; < � q c � and the convergence in E < � q c 53: c � implies the convergence in EUBJµK , � q c � .
Therefore we can assume that ´ c DtE BJLK , � q H c A¢B½I � .

In fact, we have seen that �( H c Iß ' converges to ´(c in Ei*JLK , � q H c I3� (if lo!�n�Q&0 ) and inExBJµK , � q H c A¢B½I7� (if l�Q�n�!S0 ).
Let us see now that ´1ôc �õ´�caæ B in the interior of

q H c I for l�!�n�Q�0 . Let us consider
a connected component ö of int � q H c I � . Given ÷�Dd) *, ��ö � , let us consider the convex hullâ of supp ÷ . We have that â is a compact interval contained in ö �áq H c I . The uniform
convergence of �� H c Iß ' in â and the ExB convergence of �� H caæ B3Iß ' in â gives that

Å ã ÷ ô ´ c �ùøµúL¯ß�û * Å ã ÷ ô  H c Iß ���üøLúµ¯ß�û * Å ã ÷m H caæ B3Iß �k� Å ã ÷+´ caæ B W
Then ´�caæ B �S´ H caæ B3I^ in int � q H c I3� and ´ H c I^ DÙYh) JLK , � int � q H c I3�3� for lm!�npQ�0 . In order to see
that ´ H c I^ DÙYh) JµK , � q H c I3� , it is enough to recall that �9´ H c I^ �½ô ��´�caæ B DFEUBJLK , � q H c I3� .
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Approx. Theory, 127 (2004), pp. 83–107.
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