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� -ORTHOGONAL POLYNOMIALS RELATED TO THE
QUANTUM GROUP �������	�
�������

ALEXANDER ROZENBLYUM �
Abstract. Orthogonal polynomials in two discrete variables related to finite-dimensional irreducible repre-

sentations of the quantum algebra ���	� ����������� are studied. The polynomials we consider here can be treated as
two-dimensional � -analogs of Krawtchouk polynomials. Some properties of these polynomials are investigated: the
difference equation of the Sturm-Liouville type, the weight function, the corresponding eigenvalues including the
explicit description of their multiplicities.
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1. Introduction. This work is devoted to a description of a type of orthogonal polyno-
mials in two discrete variables related to representations of the quantum group � � ���! "����� .
This group (more exactly, algebra) is a � -deformation of the universal enveloping algebra�#���! $���!� which corresponds to the classical group %'&#���� of the rotations in 5-dimensional
Euclidian space. The obtained results generalize some of the results on orthogonal polyno-
mials related to representations of the classical group %(&#���! [1].

The orthogonal polynomials that we study here are some modifications of eigenfunctions
of infinitesimal operators (generators) of representations of the quantum group � � ���! "����� .
Formulas for these generators are generalizations of classical Gelfand-Tsetlin formulas for
generators of representations of the group %(&#���� . Such formulas for the algebra � � �)�$ $�+*,�
were constructed in [2]. In the case of the group %(&#���! , as shown in [1], investigation of
the eigenfunctions of generators of representation lead to a class of orthogonal polynomials
that may be considered as two-dimensional analogs of classical Krawtchouk polynomials
[3]. Accordingly, orthogonal polynomials related to representations of the quantum group�(���)�! 
����- may be treated as two-dimensional � -analogs of the Krawtchouk polynomials.

2. � -analogs of Gel’fand-Tsetlin formulas. These formulas for the representations of
the classical type of the algebra � � ���! "�.*,� were obtained in [2]. Let’s rewrite these formulas
for the case *0/1� . Finite-dimensional irreducible representations of the classical type of
the algebra �'���)�! 
����- are given by two integral or half-integral numbers *32 and *,4 , such
that *52768*94:6<; . We will consider the case of integers. The � -analog of Gelfand-Tsetlin
basis in the representation space corresponds to successive reduction of the representation of�(���)�! 
����- to subalgebras �����)�$ $�+="� , �(���)�! 
�.>!- , and �'���)�! $��?�- . The basis vectors @	A can be
enumerated by tableaux BC/8�.DE2GF-D:4�H-I�H�JK , where the components of B satisfy the conditionsL *52M6NDO2P6N*94Q6RD:4Q60ST*94�FDU2M6VIW6YX D:4$XZF3IW6YX J9X\[
Let’s introduce the following notationsL^] 2T/_*52a`N?KF ] 4b/c*94�`cd!F ]"e /fI�`cd!Fg /_D 2 `cd!F,hi/VD 4 [j

Received November 29, 2004. Accepted for publication May 8, 2005. Recommended by F. Marcellán.� Mathematics Department, New York City College of Technology, CUNY
(arozenblyum@citytech.cuny.edu).

74



ETNA
Kent State University 
etna@mcs.kent.edu

� -ORTHOGONAL POLYNOMIALS RELATED TO THE QUANTUM GROUP ���	�lk-mn������� 75

Then the new parameters satisfy the conditionsL ] 4Qo g o ] 2 Spd] e o g F L X h9X o ] 4 SpdX h9X o ] e Spd [(2.1)

Using these notations, we denote the basis vectors @ A as @�q�r�s q�tus quv�s wx s y . Let zY/{z�| s } be a
generator in the representation space corresponding to the rotation in the plane ��~�|�F-~ }  in the
5-dimensional space. Then the generator z acts on basis elements @
q�r�s q�tus quv�s wx s y by the formula

z!@ q�r�s qutus quv�s wx s y / d� x ` �$� x�� z q�r�s qutus quvx s y @ q�r�s q�tus quv�s wx	� 2 s y S�z q�r�s q�tus quvx � 2 s y @ qnr�s qut�s quvus wx � 2 s y �` d� y ` �$� y � z q�r�s qut�s quvy�s x @ q r s q t s q v s wx s y � 2 S�z q r s q t s q vy � 2 s x @ q r s q t s q v s wx s y � 2 � F(2.2)

were

z q�rus qutus quvx s y / L�� ] 2(` g�� � ] 2�S g Spd � � ] 4'` g�� � ] 4TS g Spd � � ]"e ` g�� � ]"e S g Spd �� g `�h � � g S�h � � g `�hQ`_d � � g S�hQ`_d � � 2���4 [(2.3)

Here square brackets mean � -numbers:� ] � / � qbS � � q� S �$� 2 [
The representation space � has the dimension�
��� �8/ ��? ] 2�Spd����? ] 4�Spd��� ] 2�S ] 4n�� ] 2(` ] 4�Spd�� [

3. Discrete equation related to the eigenvectors of the operator z . Let’s fix the pa-
rameters

] 2 , ] 4 , ]"e , and J such that d o ] 4�� ] 2 , d o ]"e � ] 2 , X J9X o ]"e SVd , and consider
the subspace ���8� spanned by the vectors @$q r s q t s q v s wx s y , where the parameters g and h sat-
isfy the inequalities (2.1). It follows from the formulas (2.2) and (2.3) that subspace � is
invariant with respect to the operator z and has the dimension�K�)� ��/<� ] S��a`_d	���?��(`_d	�F
where ��   ] / ] 2�SRd�F�T/ �i¡�¢ � ] 4 F ] e uF��/ ����£ � ] 4 F ] e aSpd![(3.1)

Let ¤b��¥T be the space of all complex-valued functions of two discrete variables defined on
the lattice

¥V/0¦$� g F-h
nXGS�� o h o �P�R� o g o ]¨§ [(3.2)

It follows from (2.1) – (3.1) that space � is isomorphic to the space ¤M��¥T , and operator z
acts in the space ¤M��¥T by the formula: ©«ªO¬:¤M��¥T ,
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�.z"ª«�� g F�hK/ 2��® � ��¯!® � S�°Mq	s ±�s ²x s y ª3� g `_d�F-hK9`�° q	s ±�s ²x � 2 s y ª3� g Spd!F�hK �` 2�´³ � � ¯ ³ � S�°Pq	s ±�s ²y�s x ª3� g F-hQ`_d	,`N° q	s ±�s ²y � 2 s x ª3� g F-hµSRd	 � [
where ° q	s ±�s ²x s y / Li� ] ` g `_d � � ] S gK� � �(` gK� � ��S g SRd � � �(` g `cd � � ��S g��� g `�h � � g S�h � � g `¶h·`cd � � g S�hQ`_d � � 2-�-4 [
We will consider the problem of diagonalization of the operator z in the space ¤b��¥T . Let¸ ¬:¤M��¥T be an eigenfunction of the operator z with the eigenvalue ¹ :��z ¸ �� g F�hK'/f¹ ¸ � g F�hKuF(3.3)

Let’s make the following substitution in the equation (3.3)¸ � g F�hK(/_º xn� y"» ¼ � g F-h
-½i� g F�hKuF
where ¼ � g F-h
�/ � g S�h � � g `¶h � � g `p��Spd ��¾ � �'S�h�SRd �¿¾ � �a`�h�SRd �¿¾ � g S���SRd �¿¾� ] S gK�¿¾ � ] ` gK�¿¾ � g S�� �¿¾ � ] SCh �¿¾ � ] `�h ��¾ � g `�� �¿¾ � h·`�� �¿¾ � ��S�h ��¾ [(3.4)

Here � -factorials are defined as
� J ��¾ / � J � � JµSpd � [n[�[ � ? � � d � .

Then the function ½i� g F-h
 satisfies the equationÀ x�ÁÀ 4 x�Á ¦ � ] S gK� � g `N� � � g S�� � ½i� g `cd!F�hK9` � g ` ] � � g S¶� � � g `N� � ½i� g SRd�F-hK §` À y ÁÀ 4 y Á ¦ � ] SCh � � h·`N� � � ��SCh � ½i� g F-h·`_d	9` � hQ` ] � � �'S�h � � hQ`N� � ½i� g F�h�Spd� §/ Â·¦ � g S�h � � g `¶h � § ½i� g F�hKuFÃ� g F�hK�¬U¥PFÄÂÅ/f¹Æº�[(3.5)

This equation can also be written in terms of finite differences using the operators��Ç x ª«�� g F�hK(/Èª3� g `_d�F-h
WS¶ª3� g F�hKuF���É x ª«�� g F�hK'/Èª3� g F�hKWS�ª3� g SRd�F�hK�F
and similarly Ç y and É y :� gK�� ? g�� � ] ` gK�¿¾ � ] S g���¾ � g S�� ��¾ � g `�� �¿¾� g `N��SRd �¿¾ � g S���Spd ��¾Ê Ç x L � g `p�'SRd �¿¾ � g S���Spd ��¾� ] ` g SRd �¿¾ � ] S g���¾ � g S���SRd �¿¾ � g `N��Spd ��¾ É x ½i� g F�hK �` � h �� ?Gh � � ] `�h ��¾ � ] S�h �¿¾ � �'`�h ��¾ � ��S�h ��¾� �a`¶h�SRd �¿¾ � �(S�h�Spd ��¾Ê Ç y L � �a`¶hµSpd ��¾ � ��S�h ��¾� ] `�h�SRd �¿¾ � ] S�h ��¾ � �'`¶hµSpd ��¾ � ��S�h ��¾ É y ½i� g F-hK �/_Ë � g SCh � � g `�h � ½i� g F�hK�F^ËU/fÂiS � ] S��a`N� � F�� g F�hK�¬U¥P[
(3.6)

If we let �·Ì d (case of the classical group %(&#���� ), the equation (3.6) becomes� ] ` g  ¾ � ] S g  ¾ � g S��� ¾ � g `N�� ¾� g `p�'SRd	 ¾ � g S���SRd	 ¾Ê Ç x L � g `p��Spd� ¾ � g S���Spd� ¾� ] ` g Spd� ¾ � ] S g  ¾ � g S���SRd	 ¾ � g `���SRd	 ¾ É x ½i� g F�hK �` � ] `¶hK ¾ � ] S�h
 ¾ ���'`¶hK ¾ ����S�hK ¾���a`¶hµSpd� ¾ ����S�hµSRd	 ¾Ê Ç y L ���(`¶hµSpd� ¾ ����S�h
 ¾� ] `¶h�Spd� ¾ � ] SChK ¾ �.�'`�h�SRd	 ¾ ����SChK ¾ É y ½i� g F�hK �/f?�Ë(� g 4 SCh 4 ´½i� g F�hKu[
(3.7)
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This equation describes eigenvectors of infinitesimal operator of irreducible representations
of the group %(&#���! . As it is shown in [1], equation (3.7) can be considered as two-dimensional
analog of the equation for Krawtchouk polynomials. Equation (3.6) can be treated as two-
dimensional � -analog of the equation for Krawtchouk polynomials.

Let’s make the following substitution in the equation (3.7): g /ÎÍ � 2 g 2�F�h�/ÏÍ � 2 g 4 ,
where g 2 and g 4 are new variables, ÍVÐ^; . If we let Í Ì ; , and

] F���F�� ÌÒÑ such that] Í 4 Ì d , ��Í Ì B , �9S:� Ì � , then the discrete equation (3.7) is transformed to the following
differential equationdg 44 S g 4 2 ~ x t r � g 4 2 S�B 4  �«ÓfÔÔ g 2 L ~ � x t r � g 4 2 S�B 4  Ó � 2 Ô ½i� g 2�F g 4	Ô g 2 �` dg 4 2 S g 44 ~ x tt � g 44 S�B 4  �«Ó ÔÔ g 4 L ~ � x tt � g 44 S�B 4  Ó � 2 Ô ½i� g 2 F g 4 Ô g 4 � /c¹«½i� g 2�F g 4nu[(3.8)

S�B o g 4Õo B o g 2 � Ñ [
The equation (3.8) can be considered as two-dimensional analog of the equation for Her-
mite polynomials. The explicit formulas for the complete set of polynomial solutions of the
equation (3.8) are given in [1].

4. Spectrum and structure of solutions of the equation (3.5). The following theorem
gives the explicit description of the spectrum of the equation (3.5).

THEOREM 4.1. Equation (3.5) has Ö×/Ï?K� ] Sp��`c��(`Ød distinct eigenvalues of the
form Â�/ÈÂ�Ù7/ � ] S��a`N��S�* � FÚ*O/f;KF�d!F�[n[�[uF-ÖÎSRd�[
The multiplicity

�
��� ÂÛÙ of the values ÂÛÙ can be described as follows.
If � o ] S�� then�
��� Â�Ù7/

��  8Ü Ù � 44ØÝ F if ; o * o ?���a`^Þ � 2´ß+à � 24 F if ?�� o * o ?�� ] S¶��] S¶�(`���S Ü Ù � 24ØÝ F if ?�� ] S��� o * o ?�� ] S¶�a`��n
Here Ü J Ý means the integer part of the number J . The multiplicity of eigenvalues Â Ù can be
represented by the Fig. 4.1.

1

1

c

2c 2(a-b) 2(a-b+c) n

Multiplicity

FIG. 4.1.

If �P6 ] S�� then�
��� Â�Ù7/
��   Ü Ù � 44ØÝ F if ; o * o ?K� ] S¶��] S¶�3`_d�F if ?�� ] S��� o * o ?��] S¶�3`N��S Ü Ù � 24 Ý F if ?�� o * o ?�� ] S¶�a`��n
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The multiplicity of eigenvalues Â Ù can be represented by the Fig. 4.2.

1
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2c2(a-b) 2(a-b+c) n

Multiplicity

FIG. 4.2.

The structure of the solutions of the equation (3.5) is described by the following theorem.

THEOREM 4.2. Equation (3.5) has � ] S��a`fd	���?��'`fd	 linearly independent solutions.
The solutions are symmetric polynomials in

� g�� and
� h � , which are orthogonal on the lattice

(3.2) with the weight (3.4). A basis of solutions of the equation (3.5) can be obtained by the
orthogonalization of the sequencedá	â�ã	äå	æ F � gK� � h �á âuã äå r F � gK� 4 � h � 4 F � gK� 4 ` � h � 4á â�ã äå t F � g�� e � h � e F � gK� e � h � ` � g�� � h � eá âuã äå v F�[n[�[

Theorems 4.1 and 4.2 can be proved analogously to those in [1] by constructing a special
family of symmetric polynomials that form a basis in space ¤b��¥T .
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