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ON RECURRENCE RELATIONS FOR RADIAL WAVE FUNCTIONS FOR THE
N-TH DIMENSIONAL OSCILLATORS AND HYDROGENLIKE ATOMS:
ANALYTICAL AND NUMERICAL STUDY*

R. ALVAREZ-NODARSET, J. L. CARDOSO?, AND N. R. QUINTERO#

Abstract. Using a general procedure for finding recurrence relations for hypergeometric functions and polyno-
mials introduced by Cardoso et al. [J. Phys. A, 36 (2003), pp. 2055-2068] we obtain some new recurrence relations
for the radial wave functions of the N-th dimensional isotropic harmonic oscillators as well as the hydrogenlike
atoms. A numerical analysis of such recurrences is also presented.
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1. Introduction. There are many applications in modern physics that require the knowl-
edge of the wave functions of hydrogenlike atoms and isotropic harmonic oscillators (see e.g.
[13, 16] and references therein). Of particular interest is the numerical implementation of
such functions. The most natural, efficient and fast way for generating such functions is to
use recurrence relations. In fact, although the explicit expressions are known, their numerical
implementations are usually very unstable.

In this paper we will continue the research started in [8] for obtaining recurrence rela-
tions and ladder-type operators for the N-th dimensional isotropic harmonic oscillators and
the hydrogenlike atoms. In fact, using the technique of [8] we will obtain some new recur-
rences on one hand, and on the other we will present a comparative numerical analysis of the
obtained recurrence relations for generating numerically the corresponding eigenfunctions.
The numerical analysis of the linear recurrences, i.e., the rounding errors bounds, stability
of the scheme, etc. is, in general, very complicate (see the nice paper [5] and references
therein). So we will restrict ourselves to the discussion of the numerical examples. Even in
this framework of no rigorous numerical analysis it is possible to conclude what kind of rela-
tions are more useful for numerical computations and what are not. This is the main original
contribution of the present paper. Finally, let us mention that the present method for finding
recurrence relations can be extended to any quantum system whose (radial) wave function are
proportional to hypergeometric-type functions (see e.g. [4]).

The structure of the paper is as follows: In sections 2 and 3 the isotropic oscillator and
hydrogenlike atoms radial wave functions are introduced. In both cases we include some new
recurrence relations as well as the detailed discussion of their computational applications.
Finally, an appendix with the required formulas of the Laguerre polynomials is included.

2. The isotropic harmonic oscillator. The /N-dimensional isotropic harmonic oscilla-
tor (I.H.O.) is described by the Schrédinger equation

(—A + %,\%2) U =FEV, A
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Its solutions are of the form ¥ = Rfl]lv) (") Yim (2n), where Rfjlv) (r) is the radial part, usually
called the radial wave functions, defined by (see e.g. [3, 6])

N
(N) /N AAN) 4 L2 Y1 (N) _ 2nI\tz
@ R =AY e PRI 0, M = ey

beingn =0,1,2,... andl = 0,1,2, ..., the quantum numbers, and N > 3 the dimension of
the space. The angular part Y;,,, (Q) are the so-called Nth-spherical or hyperspherical har-
monics [3, 14]. In the following, we will assume that the parameters 7, [, [N are nonnegative
integers.

2.1. Recurrence relations for the I.H.O. radial functions. For the functions (2.1) the

following theorem hold [8]
THEOREM 2.1. Let RSIV) (r), Rfﬁ)m 141, (1) and REL{VF)TLQ,FHQ (r) be three different radial
functions of the N -th dimensional isotropic harmonic oscillator, where ny ,ng and ly , 1o are

integers such that
min(n+n1,n+n2,l+l1,l+lz) > 0.

Then, there exist three all non vanishing polynomials in r, Ag, Ay, and As, such that

22 AR @) + AR, )+ AR, L) =0,

The proof of this theorem can be found in [8]. A key point on the proof was the recurrence
relation,

2.3) Co(s) L5 > "1(s) + Cu(s) LIS L) 4 Oy () LIH2H 5 () = 0,

n+na

where s = Ar2, and Ci(s),i = 0,1, 2, are not all three vanishing polynomials. Moreover, in
[8] it was shown that

-1
Ao(r) = (M) Colu?yrtit,

—1
2.4) A1) = (N, ) CLw?yrt,

Aol = (N ! 2\, i
2(r) = (Nn+n2,l+lz) Co(Ar?)rt.

From the above theorem and the relation (2.3) it is very simple to obtain a la carte
relations between three different radial functions of the .H.O. Let us point out that, in general,
it is not easy to obtain the coefficients Cj in (2.3), nevertheless, combining in a certain way
the known relations of the Laguerre polynomials (see the appendix A) they can be found.
This has been shown in [7, 8]. We will show here how this works in one of the new examples,
for the others the computations are similar. Here we present some examples. The first four
can be found in [8] and the other five seem to be new.

eny =—1,n, =111 =1, =08, page 2059]

N N
\/n <n+l+5—1) RN () + {Aﬂ— <2n+l+5)] RN (r)

N
+\/(n+1) (n+l+E>Rfﬁ)Ll(r) =0.

2.5)




ETNA

Kent State University
etna@mcs.kent.edu

ON RECURRENCE RELATIONS FOR REDIAL WAVE FUNCTIONS 9

e =Ny = O, l1 = —1, l2 =1 [8, page 2059]

N N
T‘\/)\ (n-l—l-l— 5~ I)jo)l(r) - (l+ 5 - 1+)\7‘2) RELJ,\II)(T)

(2.6)

N
+7r4/ A <n+l+ E)Rgi\lzl(r) =0.

N = 0, ng = 1, ll = —1, l2 =0 [8, page 2059]

N
T \//\ <n+l+ 5 1>Rg)_1(r) + (n+1-2r?) Rg)(r)

_ \/(n +1) (n +1+ %)Rﬁﬂ’,(r) =0.

e = —]_’ Ny = 0, l1 = 0, l2 =1 [8’ page 2059]

2.7

N
—\/n (n +1+ 5 1>R£LN)1J(7') + (n—Mr?) RS,\;)(T)

(2.8)
N
+r4/A (n +1+ _>R£1]\;)+1(7“) =0.
D) ;
eny =—-1,ny=1,1; =1,1, = —1,i.e., we are looking for a relation of type (2.2)

Ao(r)RSY (1) + A (MR, 10, (1) + ARSD L (1) =0

For finding the polynomials A;, 7 = 0,1,2 we use (2.4) where C;, ¢ = 0,1, 2 are the polyno-
mials in (2.3). Putting o = [ + % — 1 we have

Co(s)Lg(s) + Ci(s)Loti(s) + Ca(s) Loy 1 (s) = 0.

Now we substitute the functions L2*1(s) and Lg;i (s) using the relations (A.2)

_n+a

Latis) ="

n
L3 () - 2L5 ()
and (A.4)
Ly (s) = Ly (s) = Ly(s),
respectively. This leads to

n+o

Cl (S)

Ly 1(s) +[Co(s) — 301(5) — Ca(s)IL7(s) + Ca(s) L5441 (s) = 0.

Comparing the last formula with the three-term recurrence relation TTRR (A.5) for the La-
guerre polynomials we find

Co(s)=s—a, Ci(s)=s, Ca(s)=n+1,
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and therefore for the wave functions we find

N
\/n/\erﬁ)l,l+1 (r) — (l + 5 = 1-— )\r2) RS’\;) (r)

+ry/(n+ DARY) () =0.

2.9

Analogously, we can find the following three recurrence relations
eNn = —1,“2 :l,ll :—1,12 =1
N N N
(2.10) Ao RN (r) + AR (1) + As(r)REY, 1 (1) = 0,

where,
Ap(r) =— l()\r2 —(n+1)M?=n) <2n +1+ % - )\r2> +

(2n+1) <n+l+%) (/\r2—n)—n(l+g—1+)\r2>]a

Al(r):r()\r2—(n+1))\/)\n(n+l+g—2) (n+l+g—1),

As(r) :r(/\TQ—n)\/)\(n—}-l) (n+l+%) (n+l+%+1).

on1:0,n2:2,l1=1,l2=0

N N
(it (n+l+5 + 1—)\7'2) RN (r)

N
@.11) ~VAr (2n+l+7 +2- w) RN, (r)

N
—\/(n+1)(n+2) (n+l+5 + 1) RN, (r) =0.
® N :0,n2 = —2,l1 :1,l2 = ]_
N 2 \p(N)
vV 2n+l+7—1—/\r R, (r)

N N
(2.12) — <n+l+3) <n+l+5—1—,\r2> RN (r)

N
+\/n(n—1) (n—i—l—i—; - 1) RSX)Q,,H(T) =0.
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on1:—1,n2:1,11:0,l2:1

N
n (n+l+§ - 1> (r? —n—1) BT ,(r)

N
+ [n(n+1)— (3n+l+5+1—/\r2) )\7‘2:| Rfﬁ)(r)

N N
+T\/A(n+1) <n+l+3) (n+l+5 + 1) RN () =0.

2.2. Ladder-type relations for the I.H.O. radial functions. Another important rela-
tions for the functions (2.1) are the so-called ladder operators. The following result was
proved in [8].

THEOREM 2.2. Let Rgi\l[) (r) and Rg—vi-)nl,lﬂl (r) be two radial functions of the N-th
dimensional isotropic harmonic oscillator and let min (n +ny,l +11) > 0 and (n1)? +
(11)% # 0, where ny and 1y are integers. Then, there exist three not all vanishing polynomials

inr, Ao, A1, and As, such that

d

2.13) AR (1) + ARV () + AR () = 0.

The proof of this theorem can be found in [8]. A key point on the proof was the recurrence
relation,

(2.14) Bo(s)L > 7 (s) + Bu(s)L5 % (5) + Bo(s) L5715 =

n+ni

where By, B;, and By are not all three vanishing polynomials. Moreover, (2.13) can be
rewritten as

l

d
Bi(s) 5 + M (Bu(s) = 2Bo(s)) = Ba(s) . | B (r)
(2.15)
NT(Lfy) 1—1; p(N)
= 2By (S) WT Rn+n1,l+l1 (T)
n4n1,l+1l

To obtain the unknown polynomials By, By, and B in (2.14) we can proceed as in the
previous section, i.e., use the Egs. (A.1)—(A.5) to transform (2.14) into one of the formulas
(A.1)—=(A.5) or in a sum of linearly independent Laguerre polynomials and solve the resulting
equations for the unknown coefficients. Let us consider some examples. The first two are
taken from [8] and the other two are new.

eny =0,1l; =1[8, page 2061]

d ! N
(2.16) [% —Ar— ;] RN (r) = —24/x <n +1+ E)jojil(r),

eny =1,1; = 0[8, page 2061]

@.17) [r (d%—m«) +(2n+l+N)] ROV () = 2\/(n+1) (n+l+%>R§ﬁ’1,,(r).
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e ny = 2,1; = 0. Introducing these values into (2.14) and putting o = n + % —1 we get
(2.18) Bo(s)L2(s) + B1(s) L2t (s) + Ba(s) L%, 5(s) = 0.

Now, using relations (A.2) and the TTRR (A.5), (2.18) becomes into

n+a n n+1+4+a
B 2L+ (Blo) - LB - 0Bl ) 1)
2Zn+a+3—s
+ B2(8)n—HLg+1(s) =0.

Comparing with the TTRR (A.5) we find
N N N
By(s) = (n+1) (2n+ E) - <3n+2+ 5 —s) <2n+ - —s) )
N
Bi(s)=s{3n+2+ 5 ~5) Bs(s) = (n+1)(n+2),
and therefore, for the wave functions we find (see (2.15))

[(3n +24 % - w) (rd% +4n+N—l—/\r2) —(n+1)(4n+N)] R (r)

= 2\/(n+1)(n+2) <n+l+g) (n+l+% + 1)351)2,,(@.

e ny = 0, /3 = 2 Following the same technique and using now twice, in the resulting (2.14),
formulas (A.3) and (A.2) we get

N . N
Kn + 5+ /\r2> (r—i —l) +Ar? <3n+ 5 )\rz>] RN (r)
N N
= 2)\7‘2\/<n+l+5) (n+l+—2 + 1) ROYa ().

2.3. Numerical analysis of the recurrences. In this section we will present the numer-
ical analysis of some of the recurrence relations and ladder-type operators for the .LH.O. We
have used the commercial program MATLAB [12].

First of all, let us point out that if we choose the values of n and I large enough and
compute the radial wave functions Rs\;) (r) using the definition (2.1) we observe a picture of
an unbounded function that do not cor}esponds to the real ones. This picture is probably due
to numerical instabilities and consequently, we can not directly evaluate these functions for a
given r by means of (2.1). In figure 2.1 we represent the maximum value of the parameters
n, [ for which the direct computation works, i.e., the region below the curve defined by these
points is the region of computational validity of (2.1). Therefore, if we want to have the
values of the radial functions for n, [ large enough, it is necessary to apply the recurrence
relations (RR) in order to calculate them.

From the previous sections it follows that the recurrence relations of the I.H.O. can be
classify in three different types:

¢ RRs which involve functions R, ;; with indices (n,{), (n £ 1,1) (see (2.5)); (n,1),
(n,1£1) (see (2.6)); (n,1) and (nF 1,1+ 1) (see (2.9)); and (n,l) and (n £ 1,lF1)
(see (2.10)). We will call them the regular recurrences.
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F1G. 2.1. We plot the maximum value of l versus n, for which the radial wave functions can be calculated by
using (2.1).

e The other RRs, e.g. the ones which involve the indices (n, ), (n,1 — 1), (n + 1,1);
(n,1), (n,1+1), (n—1,1); (n,1), (n, I +1), (n+2,1); (n,1), (n, 1 +1), (n—2,1);
etc. (see e.g. (2.7), (2.8), (2.11), (2.12)).
e Relations which involve the derivatives, i.e., ladder-type relations.
In this section we evaluate the radial wave functions by using different recurrence relations
with the aim to discuss their effectiveness (based on the time of the numerical simulations

and convergence of the formulas). In all the numerical computations of R,, ;(r) weuse A = 1
and N = 3.

4
*
*
37 *
*
— *00
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S
E= ogg
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00, * ¥
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OOoO * . w7
° « Lt
o®O g** +++
0 e ¥yt .
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n

FIG. 2.2. We represent with pluses, stars and circles the computational time (in seconds) to obtain the radial

Sfunction versus n from the RRs (2.5), (2.6), and (2.10), respectively. In this case l = n and each function have been
evaluated at 1000 points.

First of all, we evaluate the function R, ;(r) in 1000 points, corresponding to the ele-
ments of the vector r = (4.01,4.02, - - - , 14) (in the matlab notation r = [4.01 : 0.01 : 14]),
by using the formulas (2.5), (2.6) and (2.10). In figure 2.2 we compare the computational
time to do these operations in each case when n = [ (notice that in this case we need to apply
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F1G. 2.3. Computational time versus n for | = 40. The pluses refer to the recurrence relation (2.5), whereas
the circles are results from (2.11)+(2.5).

We observe that formula (2.5) allows us to compute these functions faster. The difference
in time among these methods is more appreciable when n is bigger. We would like to remark
that in order to apply the formula (2.5) to obtain R,, ;(r), we fix [ and change the first argu-
ment from 1 to n — 1. In addition, we need to know the initial conditions of the RR, which in
this case are Ry (r) and Ry ;(r). Both functions are related with the Laguerre polynomials
L6+N/ *(z) =1and L11+N/ >~!(z) = =, respectively, regardless of the value of I. Further-
more, for using the relation (2.6) one should use the initial conditions R, o(r) and Ry, 1(r),
but they can not be calculated by formula (2.1) for large values of n (see figure 2.1) as already
pointed out. So, the initial conditions should be calculated using the recurrence formula (2.5).
Moreover, when we use the relation (2.6) we see that there exists an interval close to r = 0
where R,, ;(r) diverges (oscillates without any pattern) and this interval becomes larger when
n increases. This divergence, at the vicinity of zero, also appears when we use (2.10). In the
last case, one should also use (2.5) to obtain the initial condition.

The recurrences (2.7), (2.8), (2.11) and (2.12) are even more complicated to use than (2.6)
and (2.10). They should be used together with (2.5), not only because the initial conditions,
but also because their own nature (they mix both indices). Let us check if Ry, ;(r) can be
obtained faster when we combine for example (2.11) with (2.5), instead of using (2.5) alone.
In figure 2.3 we show the computer time to obtain Ry, ;(r) versus n (and fixing [ = 40) for the
relation (2.5) alone, and combining (2.11) and (2.5) together. Both functions are computed in
1000 points corresponding to the elements of the vector [0.01 : 0.01 : 10]. From this figure
we conclude that the formula (2.5) is the best one for computing R, ; (7).

Concerning the ladder-type relations, let us mention that the relations (2.16) and (2.17)
behave numerically unstable for large values of [ and n, respectively. Therefore, they are not
useful to compute numerically the radial wave functions but instead of this we can use them,
together with (2.5) for finding the derivative of the radial wave functions (see figure 2.4).
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FIG. 2.4. In the top panel we show the R, 50(r) computed by using the recurrence relation (2.5). In the
bottom panel we represent the derivative of this function computed from the ladder-type relation (2.16).

3. Radial functions for the Hydrogen atom. In this section we will provide a similar
study for the Hydrogen atom described by the Schrodinger equation
2

1 0
_ _ _ 2
(—A—;)\II_EW, A_E Bxi’ r= E zi.
k=1 k=1

The solution is given by ¥ = RSIV) (r)Yim (2n), where the radial part RSIV) (r) is defined by
(2, 9]

l
3.1 Ry =N L S S PAP | . —
G B = G | P ey ) e e

Heren =1+ 1,1l +2,... and [ = 0,1,2,... are the quantum numbers, N > 3 is the
dimension of the space, and the normalizing constant A, ,(5) is

N(N) _ (n—l—l)! 2
mt T\ (n+ 14+ N - 3)! (n+¥)2'

As we already pointed out in [8], the Laguerre polynomials that appear in the expression
of the radial functions are not the classical ones L%(z) in the sense that the parameter « as
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well as the variable z depend on the degree of the polynomials, n. When the parameters of the
classical polynomials depend on n, the polynomials are orthogonal with respect to a variant
weights (for more details see e.g. [10, 11, 18]). Nevertheless, as we showed in [8], using
the algebraic properties of the classical Laguerre polynomials (A.1)—(A.5) one can derive the
algebraic relations of the radial wave functions.

3.1. Recurrence relations and ladder-type operators for the radial functions. In [8]
we proved the following

THEOREM 3.1. Let the functions R(n]lv) [(n+N2_3) ] Rfﬁgl s [(n—l—nl—l—%)r] and
R(N)

et I+l [(n +ng + %) T] be three different radial functions of the N-th Hydrogen

atom and ny1,ny and ly, 15 integers such that
min (n + nq,n +ng, L + 1,0 +12) > 0.

Then, there exist not all three vanishing polynomials inr, Ay, A1, and As, such that

N N-3 N N-5
Ao(r) R [(“ + T) T] + Al(T)Ril-‘r)nl,l-‘rll [(" Tt T) r]

N N-1
+ A2(7")1LZ£L+)TL2JH2 Kn +no + T) r] =0.

Moreover, the expressions for the polynomial coefficients in the above formula are given by
[8, Eq. (4.7) page 2063]

Ao(r) = A3(r) (M) A = A1) (M, )
Ay(r) = A5(r )(anm,urh)_l i,

where Af, A, and A3, are the non all three vanishing polynomials of the linear relation

AS(r) L (r) + AT () Loty (r) + A () Lot2e  (r) =0,

m+ny—I1 m+ng—l2
anda=2l+N-2,m=n—-1-1.

As examples of recurrences obtained by using the Theorem 3.1 we have the following
(the first two are taken from [8], the other five are seem to be new). Other cases can be
obtained in the same way.

eny =1,n, =-1,11 =1, =08, page 2063]

2n+ N -5 2 (N) N-5

(3.2) —@n+N- 3—r)R(N [(n+—> r]
+vVm=Dn+I+N—-2) (;Ziﬁ‘;) R;T”[(n+ ) ]:0.

N =Ny = 0, ll = —]., lz =1 [8, page 2064]

@2+ N-1)/(n=1)(n+1+N-3)rRN)  (r) + (21 + N - 2)x

(3.3) 2n+ N —3)r—(2+N—-3)Q2l+N—1) (n + ?)] AN ()

+ @2+ N = 3)/(n—I-1)(n+1+N—-2)rR),  (r) = 0.
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.nlzl,nzzl,llzo,lzzl

Va—=1(1-r)r RY) [(n + %) r]

n+1,l

MmN 1 nty
-[@+N-1+Q-r)2+N-1-7)]vVn+l+N—-1x

N N-1
><R£L+)UJrl [(n+T> r] =0,

e =—-1,n=10L1H=1,1, =-1

2n+ N —3\° N —
+VnHl+N—2(2+N—-1) (LS> r R K 3>r]

{@I+N—-1—7)[(2I+N-3)(2l+ N—-2)+r(r+2)]+2r(n—1l—1—r)} x

X R;{\? [(n+ —Nz_ 3) r]
2n+N—-5)\" N-5
—/(n—1—-2)(n—1-1) (ZZTT_?) @+N-3-rrR{, [(n—l—— r]

2

m+N-1\° ) N-1\ ]_
— (n—l)(n_l+].) (m) (2Z+N_1_T')T Rn+17171 n -+ T r —0,

on1=—1,n2=1,l1:—1,l2:1

Ao(r)RY [(n + ?) r] + Ay (r) RS,y [ n+ H) r]
(3.4)

2]

Ao(r) = @RI+ N—-1+47r)[-2I+N-3)2l+ N-2)+(2(n—1-1)—7r)r] —
2(n—l—1—7r)r,

+ Aa(r) Rq(ﬁ)l J+1

where,

() = VN DN =3 (2N o N1
e M+ N—3 ’
2n+N -1\

on1=O,n2:2,l1:1,l2:O

AO(T)RS’\;) [(n + ?) r] + Ay (r) RS}QFI [(n + u) r]
3.5)

2
N+1
+ AQ(T)RSPQJ [(n + T+> r] =0,

where,

Ao(r) =vVn+l+N-2[2I+N-1)(n+I+N—-1—r)+(2n+N—-1—r)r],
A(r)=vn—-1-12n+N —1—1)r,

A ) =@+ N-D)Vn-Dr-1+1)n+1+N-1) (%) '
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on1:2,n2:2,l120,l2:1

N-3 N+1
Ao(r)RY) [(n + T) r] + 4, (RN, [(n + T+> r]

(3.6) N
+ AQ(T)R;IYF)Z,l—i-l [(n + —) T:| =0,

where,

2n+N-3\"
2n+N+1) "’
A1) =vn—1+1[21+ N-1)n—1l—-r)+(2n+ N — 1 —r)r],
As(r) =vn+I1+N@2n+N-1—1)r.
3.2. Ladder-type relations for the radial functions of the Hydrogen atom. Our start-
ing point is the following
THEOREM 3.2. Let Rslv) [(n + %) r], and Rg-vi-)m,lﬂl [(n +ny + %) r] two dif-
ferent radial functions of the Hydrogen atom and %RSIV) [(n + %) 7'] , the first derivative
with respect to r, where ny and 1y are integers such that min(n+ ny,l+1)

> 0, (n1)? + (I1)* # 0. Then, there exist not all three vanishing polynomials in r, Ao,
Ay and As, such that

Ao(r)RY) [(n + ?) r] + Al(T)d%RW [(n + E) r]

Ao(r) = —2U+N-1)\/(n=1)(n+I1+N=2)(n+I+N—1) (

2

N-3
<n+n1+T) r] =0.

The proof is similar to the one of Theorem 2.2 and was given in [8]. In fact in this case the
relation (3.7) becomes into (see [8, (4.13) page 2064])

rh (Bl(r)dir - Bl(r)(% - %) - Bo(r)) RV Kn + ?) r]

3.7
N
+ A (NRUY, o,

(3.8) M
N-3
= Bx(r) (N)n’l Rg-vk)nl,l-i-h (’I”L Tt 2 ) T:| ’
Nn+n1,l+l1

where the polynomials By, B, and B; are such that

(3.9) Bo(2)L2,(2) + B1(2) L% (2) + Ba(2) LM, (2) = 0,

m+ni—I1

andz =r/n+ %,a:2l+N—2,m:n—l—1.

Again, from the above theorem it is easy to obtain several relations for the radial wave
functions of the Hydrogen atom and, in particular, the ladder operators in n and [, respectively.
We will present here some of them. The first three are taken from [8] and the other two are
seem to be new.

en; =0,1; =1[8, page 2065]

3.10
G109 _1 1—<l+(N_1)/2)2R(N) (r)
2 n+(N—3)2) "



ETNA

Kent State University
etna@mcs.kent.edu

ON RECURRENCE RELATIONS FOR REDIAL WAVE FUNCTIONS 19
eny =1,1; =18, page 2065]

d 1 1 (N) N-3 _
[(2l+N—1+r) (%—;—§)+(n+l+N—2)]Rnl [<n+T r] =

AN (SR RO [0+ 552 ).

(3.11)

eny =1,1; =08, page 2066]

d 1 . )
(3.12) [T (5_ 2(n + (N — 3)/2)) +(”+N—2)] Ry, (r) =
. - — (n+(N = 1)/2\* L) [(n+(N—1)/2) ]
Vo0 N () B | () )
en; = 0,0; = 2. Introducing these values into (3.9) and putting o = 2l + N — 2,

m=n—1—1and z = —F{=, we get
2

n+—5—
(3.13) By(2)L2,(2) + B1(2) L& (2) + B2(2) LET4,(2) = 0.
Now, using three times relations (A.4) and (A.2), (3.13) becomes into
(m+a+2)(m+a+1)
2'2 L?n—i_—22 (Z)
(m+a+2)(m-1)
22

[Bo(z) — By(z) + Bz(2)

+ [—230(7:) + B1z — 2By(2) ] ng_—% (2)

+ [Bo(z) + Bz(z)(mzi;)m] Lot2(2) =0.

Comparing with the TTRR (A.5) we find
m(m — 1) 28
Bo(z)=m— —— ) By(2) = ——
o(z) =m (a+2)(a+3)” 2(2) (a+2)(a+3)’
a+D(a+3)—2m+a+1)z
a+3

Bl (Z) = — (
and therefore (see (3.8)), for the wave functions we find

[(2l+N) (2r— 20+ N—1)2 +N+1)) (dii—%%)—

-2
(n—i—1) ((21+N)(21+N+1)+ :+ = r)

r \/(n—l—1)(n—l—2)(n+l+N—1)(n+l+N—2)R£LJ’\lILQ [( N—3) T] _

3,3
(n+553)

on1:2,l1:0

{ [2 (n+ ?) (n+ %) - r] [r%—l—g+ (n+ ?) (n+l+N—2)]

- (n+¥> (n—U)(n+1+N - 2)} Rﬂ)[(n+ ?) r] =

(n+ N“) D) T N=D T N 3R, [<n+ N“) r] .

2 2
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3.3. Numerical analysis of the recurrences. As in the previous case, the radial wave
functions for n and [ large enough, calculated by using the functions (3.1) (by means of the
Laguerre polynomials), behave as an unbounded function, and therefore we can not directly
evaluate these functions for a given r. In figure 3.1 we show the critical values of 1,4, for
a given [ for which the radial functions can be computed using the explicit expression (3.1).
The region where the explicit formula works is the one defined by the two curves in figure
3.1, (it is defined the values | + 1 < n < Nypaz)-

100

80 s
60 | _x
c

40 | P

20 |

F1G. 3.1. We represent with solid line the function n = | + 1 (this line represent the minimum value of n) and
with the stars joint by the dashed line the maximum value of n for a given l for which the radial wave functions can
be calculated using (3.1).

Again we have studied numerically how to obtain the radial wave functions applying the
recurrence relations (RR) of two types: the first ones are represented by the formulas (3.2),
(3.3) and (3.4) and the second ones correspond to the ladder-type RRs (3.10), (3.11) and
(3.12). For the former RRs we observe that

o the relation (3.2) is the most useful one because the initial conditions R;41,; and
Ry 42, can be calculated by using the Laguerre polynomials (notice that in this case
we fix [ and start withn = [ + 2).

e in the relation (3.3) we fix n and increase the value of [ in each step up to its max-
imum value. From figure 3.1 we conclude that for large value of n, we can not use
the initial condition calculated by using Laguerre polynomials (formula (3.1)) and
instead of this we should use the RR (3.2). For this reason, this relation can not be
used alone (the same is true for the RR (3.4)). In addition, notice that the initial
conditions are two radial functions, R, ;_; and R, evaluated at r, whereas (3.2)
gives us the same functions but at nr (this implies a rescaling of the argument).

e From figure 3.2 we observe that the computational time is less when we use the
formula (3.2). Moreover, the formulas (3.3) and (3.4) are numerically unstable at
the vicinity of zero and this region becomes larger when n and [ increases.

e As in the case of the I.H.O. the higher order relation (3.5) and (3.6) are not useful
for numerical evaluation of the Radial functions.

For the ladder-type relations we would like to point out the following remarks

e Notice that the expression (3.12) involves two wave functions evaluated at different
points, so in each step to calculate R, 1;[(n + 1)r/n] we need to know R, ;(r),
but in the previous step we calculate R,,; at nr/(n — 1), not at 7. For this reason
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1.5
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1.0 | ’
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FI1G. 3.2. We represent with pluses, stars and circles the computational time versus | (n = 21 — 1) to compute
the radial wave functions by using (3.2), (3.3) and (3.4), respectively.

this RRs it is not useful for obtaining numerically the radial wave functions.

e Asin the previous case, we can use the ladder-type relations (3.10), (3.12) and (3.11)
together to (3.2), to compute the derivative of the radial wave function. As an exam-
ple see the figure 3.3, where we plot the radial wave function and its derivative by
using (3.10) for n = 60 and I = 50.

In general we verify that the ladder-type RRs are not useful in order to compute numeri-
cally the radial wave functions. Nevertheless they can be used, together with (3.2) for finding
the derivative of the radial wave functions.

Programs. For the numerical simulations presented here we have used the commer-
cial program MATLAB. The used source code can be obtained by request via e-mail to
niurka@euler.us.esorranfus.es.
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Appendix. The Laguerre polynomials. The Laguerre polynomials L{ defined by the
hypergeometric series

Lﬁ:<m)=MIE( n w>:<a+1)n i(<_n)k .

n! a+1 nl & (a+ 1)kl
(a)o:=1, (a)g:=ala+1l)---(a+k-1), k=1,2,3,....

These polynomials satisfy the following useful recurrence and differential-recurrence rela-
tions (see e.g. [1, 15, 17])

k

d
(A1) 7 La(@) = —Lihi(2),

(A2) eLy(z) = (n+ a+ 1)Ly (2) — (n + 1)Ly, (),
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0 4 8 12 16

0 4 8 12 16
r(x103)

FIG. 3.3. In the top panel we show the Reg,50(r) computed by using the recurrence relation (3.2), whereas in
the bottom panel we represent the derivative of this function computed from the ladder-type relation (3.10).

(A3) L3t (2) = (n+ @)Ly (z) — (n — z) L3 (),

(A4) LY (z) = LY (z) — LY _, (x),

n

(A.5) (n+ 1)Ly (2) —2n+a+1—z)L(z)+ (n+a)L;_;(x) = 0.
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