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�
Abstract. In this paper a model of an � –stepped bar with variable Cross-sections coupled with foundation by

means of lumped masses and springs is studied. It is assumed that the process of vibrations in each section of the
bar is described by a wave equation. The analytical tools of vibration analysis are based on finding eigenfunctions
with piecewise continuous derivatives, which are orthogonal with respect to a generalized weight function. These
eigenfunctions automatically satisfy the boundary conditions at the end points as well as the non-classical boundary
conditions at the junctions. The solution of the problems is formulated in terms of Green function. By means
of the proposed algorithm a problem of arbitrary complexity could be considered in the same terms as a single
homogeneous bar. This algorithm is efficient in design of low frequency transducers. An example is given to show
the practical application of the algorithm to a two-stepped transducer.
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1. Introduction. Classical models of stepped bar vibrations are based on solution of the
wave equation. Typical models include low-frequency underwater transducers, acoustic horns
and waveguides, stepped shafts and electromagnetic waveguides with variable cross-sections.
Conventional approaches mainly consist of formulating an equivalent electric circuit (Mason,
Redwood, KLM equivalent circuits [1]) or on state flow models [2], for individual segments
with their subsequent integration into the system [3].

Despite of the advantages of these approaches it is necessary to stress the lack of phys-
ical clarity in interpretation of non-classical boundary conditions. These models were sub-
stantially based on the fact that each section is described by the wave equation. However,
these models cannot be easily generalized to more sophisticated, which make use of more
complicated equations models such as Rayleigh and Bishop models [4], whereas our model
can be generalized easily.

The purpose of the paper is to formulate an algorithm based on the analysis of an � –
stepped bar in terms of a single homogeneous bar. To this end the system of boundary con-
ditions was derived, which has an obvious physical interpretation and could be automatically
generalized for a stepped bar with variable cross sections of an arbitrary complexity.

The eigenvalues of this system are determined by solution of a transcendential equa-
tion. The next step consists of derivation of a system of eigenfunctions corresponding to the
eigenvalues, which automatically satisfy the boundary conditions and are orthogonal with a
generalized weight function.

The closed form solution of this system is derived using Green function and an example
of application of the above-mentioned algorithms, is considered for the case of a two-stepped
bar with cylindrical and conical cross-sections.

2. Model of stepped bar with variable cross-sections governing equations and bou-
ndary conditions. Let us consider an � –stepped bar with variable cross-sections (Fig. 2.1)
coupled with foundation by lumped masses and springs. Suppose that the length of each�
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Department of Mathematical Technology, P.B.X680, Pretoria 0001 FIN-40014 Tshwane University of Technol-

ogy, South Africa (igor@techpta.ac.za).�
CSIR Manufacturing and Materials P.O. Box 395, Pretoria 0001, CSIR, South Africa and Department of

Mathematical Technology P.B.X680, Pretoria 0001 FIN-40014 Tshwane University of Technology, South Africa
(mshatlov@csir.co.za).

66



ETNA
Kent State University 
etna@mcs.kent.edu

VIBRATION ANALYSIS OF STEPPED STRUCTURES 67

FIG. 2.1.

section of the bar is much greater than the linear dimension of its cross-section. In this case
the elementary theory of vibration of bars, based on wave equations, describes a longitudinal
motion of the stepped bar.

Suppose that ��� – mass density, 	
� – modulus of elasticity, �������� – area of cross-section
of � th section. By means of lumped masses ���������� and springs with stiffness ������� that
are located at junctions of � th and ��� "!#� th sections the bar is attached to an immovable
foundation.

Equations of motion could be obtained as:�$���%����&� '�(*) �'&+ (-, 	.� '' � / �%�0���� '&) �' �214365 �� +87 �&� 7 �29�: ;<�>=?� 7 ;<�>@ 7 �� 3 ! 7BAC7*D�D*D>7 �E�
(2.1)
with the following system of boundary conditions:� 3GF�H 	 � � �  F � )�I�  F 7�+ � ,"J � �CK) �  F 7�+ �L M� � ) �  F 7N+ �PO 3GFCQ� 3 ;R� H ) ��S;R� 7N+ � , ) �����TU;<� 7N+ � 34FCQ �� 3 ! 7VAW7*D�D*D>7 � , !#�	.���
��U;<�X� )�I� S;R� 7N+ � , 	.�������
�����$U;<�X� )�I����� S;<� 7�+ � YJZ�[����� K) �����TU;<� 7�+ �L \������� ) ������S;<� 7�+ � O 3GF]Q� 3 ;_^ H 	�^`�`^aU;_^b� )�I^ U;_^ 7N+ � YJZ�c^
��� K) ^aS;d^ 7�+ �? \�e^
��� ) ^fS;d^ 7�+ � O 3GF]Q
(2.2)

and initial conditions:+ 3gF�H ) � S� 7 F � 3gh � S�&� Q i) � S� 7 F � 36j � S�&�k�� 3 ! 7BAC7*D�D*D87 �[� D(2.3)

Let us introduce the following notation for system (2.1):�&S�&�l�a���� '�(X)'&+ ( , '' �nm 	eS�&�N�o���� '&)' �.p 34q �� 7N+ � 7 �29�: ;sr 7 ; ^ @ D(2.4)

In this equation we suppose that) 3 ) S� 7N+ � 3 ^t��u�� ) � S� 7N+ �sv�wfx � ��&� 3 ^t��u��&y � ��&�sv�wfx � ����<v{z>|W}LS~U� + �
S~ ( 3 , !#� Q
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68 I. FEDOTOV, S. JOUBERT, J. MARAIS, AND M. SHATALOVwfx � ���� 3 xM�� , ; �>=?� � , x\�� , ; � � Qx\���� 3�� ! 7 if ��� FF 7 otherwise (Heaviside function) Q������ 3 ^t��u�� � � ��&�RvXwfx � ��&� Q 	e���� 3 ^t��u�� 	 � S�&�<v#wfx � S�&� Q�a��&� 3 ^t��u�� �
�0S�&�<v#wfx���S�&� Q�5  +87 �&� 3 ^t��u�� 5 �$ +87 ���Rv�wfxo������ D
We have to solve (2.4), satisfying boundary conditions (2.2) and initial conditions (2.3),

written as:) �� 7 F � 3gh S�&� 3 ^t��u�� h � ��&�RvXwfx � Q i) �� 7 F � 34j S�&� 3 ^t��u�� j � S�&�RvXwax � D
To solve problem (2.4) – (2.2) – (2.3) the Fourier method is used. For each section we

represent solution (2.4) as the sum of y ��S�&�_vLz>|W}LS~�� + � , where � – eigenvalue and y ������ –
eigenfunctions of the problem, satisfying the equation:

y I I�  � I� ��&�� � ��&� y I�  � (� (� y � 3GF 7 � � � 3�� 	.�� ���(2.5)

and satisfies boundary conditions for � th section. Let us suppose that ����S�&� 3� �%v��� ,�� �X�l�T� , where ��� – real number. In this case the eigenfunction of � th section is

y � S�&� 34� �?��� �V�0�� ���� � v�S� ,�� �X���S� ,�� �X� � �>�0��  M� ���.� �V�0�� �$�� � v��� ,�� �����S� ,�� �X� � �>�0�� 7
(2.6)

where � � � �0�� ���� � v�S� ,�� �X� � , � � � �0�� ���� � v�S� ,�� �X� � – Bessel functions of the first and second

kinds of order �T� ={�( .
In the particular case of cylindrical cross-section S� � 36Fo  � � ���� 3 � � 3 �>¡ �L¢ + � the

solution (2.6) could be represented as:

y ��S�&� 3G� �?£*¤�¥ m �� � v�S� , ;<�>={�*� p  M�B�{¥�¦Z§ m �� � v�S� , ;<�>={�*� p 7
where ; �>=?� – coordinate of junction of “� , ! ” and “� ” – sections.

For a conical cross-section ( � � 3 A   � � ���� 3 � (� S� ,c� � � ( , where � � – vertex of � th –
cone) solution (2.6) could be transformed into

y � ��&� 3g� � £>¤0¥ ���� � v��� ,¨� �X� �S� ,�� �X�  ©� � ¥N¦�§ ���� � v��� ,¨� �X� �S� ,�� �X� D
(2.7)

Note that the cross-section of arbitrary complexity could be approximated by conical
sections with eigensolutions (2.7) and hence, the methods developed in present report are
applicable for approximate analysis of steeped bars with arbitrary cross-sections.
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The eigenvalues can be obtained by substitution of y � S�&�ªz*|ª}��~�� + � in (2.2) and the char-
acteristic system could be obtained. It is necessary to keep in mind that:y � 34� � y ��� ��&�� M� � y ( � ���� 7

y �������� 3
«¬¬¬¬¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬¬¬¬¬®
£*¤�¥ m �� � v�S� , ;<�>={�*� p 7 if �&� 3gF£*¤�¥ m �� � v�S� ,�� �X� p¯Z° =�± �l² 7

if � � 3 A³ � �V�0�� m �� � v��� ,�� � � p¯Z° =�± � ² � �8�0�� 7
if � � – arbitrary real number

y ( � ���� 3
«¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬®

¥�¦�§ m �� � v0�� , ; �>=?� � p 7 if � � 34F¥�¦�§ m �� � v�S� ,�� � � p�� ,�� � � 7
if �&� 3 A

�.� �>�0�� m �� � v0�� ,�� �X� pS� ,�� � � � � �0�� 7
if �&� – arbitrary real number

and

y I��� S�&� 3
«¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬®

, / �� �]1 ¥N¦�§ m �� � v��� , ; �>={� � p 7 if � � 34F
, / �� �]1 ¥N¦�§ m �� � v��� ,¨� � � pS� ,¨� � � , £>¤�¥ m �� � v�S� ,�� � � pS� ,¨� � � ( if �&� 3 A
, / �� � 1 ��� �B´ �� m �� � v�S� ,¨� � � pS� ,�� � � � � �0�� 7

if �&� – arbitrary real number

y I( � S�&� 3
«¬¬¬¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬¬¬¬®
/ �� �]1 £*¤�¥ m �� � v��� , ;R�>={��� p 7 if �&� 34F/ ��>µ 1 £>¤�¥ m �� � v0�� ,�� �X� p�� ,¨� �X� , ¥�¦Z§ m �� � v�S� ,�� �X� p�� ,¨� �X� ( if � � 3 A Z� 3 ! 7VAW7�D*D*D*7 � , !#�
, / �� �]1 �d��¶ ´ �� m �� � v0�� ,�� � � pS� ,¨� �X� � �8�0�� 7

if �&� – arbitrary real number
D

The resulting system has non-trivial solution if and only if the main determinant of the
system is equal to zero: · ¸�d� 34F D(2.10)



ETNA
Kent State University 
etna@mcs.kent.edu

70 I. FEDOTOV, S. JOUBERT, J. MARAIS, AND M. SHATALOV

This is the system of transcendential equations, which have enumerable solutions –
eigenvalues �R¹.Uº 3 ! 7BAC7*D*D�D � . Let us find eigenfunctions »s¹WS�&� , corresponding to each
eigenvalue � ¹ :

» ¹ ���� 3 ^t��u��
«¬¬ ¬¬® � ¯ ¹ ²� ��� � �0�� m � ¹� � v0�� ,�� � � pS� ,�� �*� � �8�0��  M� ¯ ¹ ²� �d� � �0�� m � ¹� � v�S� ,�� � � p�� ,¨� ��� � �8�0�� ¼ ¬¬½¬¬¾ vXwaxo��S�&� 7

where � ¯ ¹ ²� 3 ! and � ¯ ¹ ²� 7 � ¯ ¹ ²� 7 � ¯ ¹ ²� 7 Z� 3 AW7*D�D*D>7 �E� are derived from the first  A � , !#�
equations of system (2.10) for every particular eigenvalue �s¹ .

It is possible to show that these eigenfunctions are orthogonal on : ;.r 7 ; ^ @ with weight¿ ��&� 3 ^t��u�� � � � � � ����Nwfx � ����L ©� � vXÀW�� , ; �>=?� � �  ©� ^
��� v�ÀWS� , ; ^ � 7
where ÀWS�&� – Dirac delta function.

3. Solution of the problem. Transforming equation (2.4) as follows:' ( )'�+ ( , � ( m ' ( )' � (  !�oS�&� ' �o����' � '&)' �_p 3 q S� 7�+ ��ª�o����\Á 5 S� 7�+ � 7 / � ( 3 	 �b1(3.1)

one can obtain solution of the problem as follows:) S� 7N+ � 3ÃÂt¹ u�� ) ¹  + �<vX» ¹ ��&� 7(3.2)

where
) ¹W + � – unknown functions. The force of excitation in the right hand side of equation

(3.1) is

5 S� 7N+ � 3 Ât¹ u�� 5 ¹  + �<v*» ¹ S�&� 7(3.3)

where

5 ¹  + � 3 !Ä »R¹ Ä ( v�Å]ÆÇ r ��SÈC� 5 �È 7�+ �l» ¹ �ÈC� � È D
After substitution of (3.2) – (3.3) into (3.1) we obtain:K) ¹  c� (¹ ) ¹ 3G5 ¹  + �(3.4)

with initial conditions (at
+ 34F ):) ¹  F � 3 !Ä »R¹ Ä ( v�Å]ÆÇ r ¿ �ÈC� h �ÈC�l» ¹ �ÈC� � È Q i) ¹  F � 3 !Ä »R¹ Ä ( v�Å]ÆÇ r ¿ SÈW� j SÈC�l» ¹ SÈW� � È(3.5)

where
) �� 7 F � 3Éh ��&� 3 ÂÊ¹ u�� ) ¹ª F �<v�»R¹WS�&� ; i) �� 7 F � 3Gj ���� 3 ÂÊ¹ u�� i) ¹W F ��v�»R¹WS�&� .



ETNA
Kent State University 
etna@mcs.kent.edu

VIBRATION ANALYSIS OF STEPPED STRUCTURES 71

The solution of the problem (3.4) – (3.5) is) ¹  + � 3 ) ¹  F ��vL£>¤0¥*�� ¹ + �? !� ¹ai) ¹  F �<v?¥�¦Z§L�� ¹ + �? !� ¹ vYËÇ r 5 ¹ �Ì]�sv?¥N¦�§ J � ¹  + , Ì]� O � Ì
3 !Ä » ¹ Ä ( Å]ÆÇ r ¿ �ÈC� h �ÈC�N»<¹]�ÈC�W£*¤�¥*��<¹ + � � È� !Ä » ¹ Ä ( Å]ÆÇ r ¿ SÈW� j SÈC�l»R¹CSÈW� ¥N¦�§L�� ¹ + �� ¹ � È(3.6)

 !�R¹ Ä »R¹ Ä ( ËÇ r Å ÆÇ r ¿ �ÈC�l» ¹ SÈC� 5 �È 7 Ì]�W¥N¦�§ J � ¹  + , Ì]� O � È � Ì 7
where the square of the norm

Ä » ¹ Ä ( isÄ »R¹ Ä ( 3 Å]ÆÇ r ¿ ����l» (¹ S�&� � � D
Substituting (3.6) into (3.2) yields) �� 7�+ � 3 Å]ÆÇ r '�Í �� 7 È 7N+ �'&+ ¿ �ÈC� h �ÈC� � È� ÎÅ]ÆÇ r Í �� 7 È 7N+ � ¿ �ÈC� j SÈW� � È

 ËÇ r Å]ÆÇ r Í �� 7 È 7N+ , Ì]� 5 SÈ 7 Ì]� � È � Ì 7
where the Green function

Í �� 7 È 7N+ � is:Í �� 7 È 7N+ � 3 Ât¹ u�� !Ä » ¹ Ä ( »<¹C��&� ¿ �ÈC�N»<¹��ÈC� ¥N¦�§
�<¹ +� ¹ D
4. Example. Let us consider a two-stepped bar, consisting of cylinder and cone (Fig. 4.1)

with lumped mass ( � = 0.2 kg) between the sections, attached to an immovable foundation
by a lumped spring ( � = 10 � r Nm ={� ) that is attached to the lumped mass.

FIG. 4.1.

A time dependent force excites the cylindrical section of this bar

5  + � 3ÐÏÏÏÏÏÏÏ
¥�¦Z§ � m ��R� , wo�d�L A v#wo�Ñ + p v +#Ò if FfÓ +.Ô ÑF otherwise

D(4.1)
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TABLE 4.1

Number of section 1 2
Mass density Õ×Ö�ØXÙBÚ`Û>Ü 7850 2700

Modulus of elasticity ( Ý<ÞRß ) 200 70
Length ( Ú ) 0.159 0.141
Radius ( Ú ) 0.04 0.055 - 0.075

where w�à 3ÐF D !`v#�s� ; Ñ 3 AWD ! F =&á sec. that is a finite almost periodic wave packet in the
vicinity of a first longitudinal resonance of the stepped bar (see below).

Suppose that mass densities, modules of elasticity, lengths and radii of the sections are:
In this case the first five eigenvalues of the bar, defined by (2.5) – (2.6) are as follows:��âXã (Bä\åçæ ! F A Hz, � � ã (�äcåYèTé�ê�ê Hz, � � ã (Bä�å ! è�èTë F Hz, ��ì�ã (Bä�å A�í�í�A F Hz, ��îXã (�äcåê�ê�æªè F Hz.
First resonance is a pendulum mode at which the stepped bar vibrates as “rigid” pendu-

lum. All other modes are “longitudinal”. Geometry of the bar was specially chosen so that
vibration amplitude of the junction between the cylindrical and conical sections is small com-
parison to end amplitudes at the second resonance frequency. This is especially important for
transducers, because it is possible to use this junction for suspension of the transducer in the
housing. In this case the mechanical energy of the transducer does not leak to the housing.
Corresponding eigenfunctions for the first five eigenvalues are shown in Fig. 4.2.

The wave packet (4.1), is shown in Fig. 4.3.
Initial conditions are supposed to be zero. Motion of the planes � 3 ;�� and � 3 ; ( 3 ;are shown in Fig. 4.4.
One can see that as the excitation frequency approaches the resonance frequency �
� , the

amplitude of oscillations increases (approximately) linearly. After it has passed through the
resonance frequency at

+ 3ïF D F�F ! s, the amplitude of oscillations decreases. The presence
of additional harmonics in the solution then results in beats, which are evident in Fig. 4.4 forF D F�F ! Ôð+ñÔ F D F�F A s. At

+ 3òF D F�F A s, 5  +87 �&� 3òF and no additional energy is added to
the system. The beats are mainly result of the first and second harmonic superposition. The
oscillations continue until infinity since damping has been neglected.

5. Conclusion. It was shown that vibrations of stepped bar, with various cross-sections
coupled with foundation by means of lumped masses and springs, could be considered in
terms of piecewise continuous eigenfunctions, which are orthogonal with respect to the gen-
eralized weight and automatically satisfy the boundary conditions at the ends as well as the
non-classical boundary conditions at the junctions. The algorithm of calculation was formu-
lated, which is applicable to stepped bars of arbitrary complexity. This algorithm could easily
be generalized for more sophisticated models of bars, which are not described by the wave
equation. An example of application of the algorithm was considered for the case of a near
resonance excitation.
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