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SOLUTION OF SINGULAR ELLIPTIC PDES ON A UNION OF RECTANGLES
USING SINC METHODS

�
MICHAEL H. HOHN

�
Abstract. The numerical solution of problems with singularities presents special difficulties for most methods.

Adjustments to standard methods are typically made for only a special type of singularity, usually known a priori. The
family of sinc numerical methods is natually suited for general singular problems. Here, the methods are extended
and applied to two-dimensional, elliptic first-order systems of mixed boundary value problems with singularities of
the form ��� .
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1. Introduction. The work presented here was motivated by the need for accurate nu-
merical solutions to problems in fracture mechanics. The equations involved are���	��
�������������� ��� � � � ����������
 ���������� ��� � � � � �!�"�!��!� � ��� �$# %�����&��
 ���������� ��� � � � �'���	��
(�������������� ��� � � � � �!�"�)��!� � ��� �$# %
with general mixed boundary conditions. The geometry for the cases of interest can be re-
duced to a union of rectangles in 2D or a union of slabs in 3D.

The difficulty arises from the geometry of these problems: one or more reentrant cor-
ners, usually cracks. For crack problems and other problems with corner or edge singularities
it is common to combine special local solutions with finite elements or finite differences
to handle these singularities. There are many such special-case solutions for very specific
boundary conditions and geometries, but their derivations are very involved. For more com-
plex problems, these special solutions are not available because one does not in general know
the behavior of the singularity a priori.

However, the locations of the singularities are known, and for most problems solved to
date, the singularities are algebraic and have the form *�+!, � � � , %�-/.

, with , � � � a smooth
function. This makes sinc methods natural candidates for the solution of these problems. In
one dimension, this family of methods approximates functions with endpoint singularities
of the form 0 + with an exponential convergence rate 1"243 �5�7698 :;�

. For two and higher-
dimensional problems on a cartesian product grid, corner singularities of the form * + , with *
the radial distance from the corner, are also handled1. Thus, only the location and class of the
singularity are needed, and the solution can be accurately computed.

Mathematically, the class of problems considered here is two-dimensional, linear, variable-
coefficient, elliptic first-order systems of partial differential equations and their boundary con-
ditions, with or without corner and/or edge singularities, defined on a finite connected union
of rectangles. On each rectangle, the unknowns’ coefficients and the solution are assumed to
be smooth; using multiple rectangles, piecewise smooth systems can be solved.<

Received August 31, 2005. Accepted for publication January 29, 2006. Recommended by F. Stenger.�
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1 For a problem specified on a union of bounded rectangles. Semi-infinite regions can also be used, but these

are not further addressed here.
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The method of solution is based on the collocation of a sinc-series representation of the
first-order systems, and is henceforth referred to as the SINC-ELLPDE method. It is based
on one-dimensional results proven in [5], [6]; these were extended for the present class of
problems in [3].

The remainder of this paper proceeds as follows. Basic definitions and a summary of rel-
evant one-dimensional properties of sinc series are presented, followed by a full description of
the collocation algorithm, illustrated using a simple abstract example. The theorem justifying
this algorithm for two-dimensional approximation is next, presenting the key idea of uniform
approximation of unbounded derivatives on a subset of the original domain. A numerical ex-
ample is used to demonstrate the numerical convergence properties of the method, including
a standard norm-based error and the uniform error. A practical method for expressing the
uniform absolute error bound is illustrated last.

2. Sinc Method Basics. DEFINITION 2.1 ( =?>�@5=$@BAC@�D ). Pick
6FE %

and define the
strip =G> by = > # HJILKNM/O!P QRI?P - 69S
Given a region = containing a contour T in

M
with endpoints U and V on the boundary of = ,A is a one-to-one conformal map with the properties A O T�WYX , A � 0 � W �[Z

as 0&WYU ,A � 0 � W Z
as 0$W\V and A O =]W^=G>

Define D�_�AC` � ; then the region = is the image= # D � =G> �
The functions A � 0 � # acb � 0 � U �Bde� V � 0 � and D �gf4� # � 1�2e3 �gf4� V � U �Bde� 1�2e3 �gf4���h�i�

map
the interval j U!@BVBk to l and back; they are the ones used in the remainder of this work. Many
other maps are available; see [6], Section 1.7.

DEFINITION 2.2 ( m!@�n + ). For the region op> # HqfLKrMsO?P5t�u�vwf�P - 69S
, the mapm O =xWyo�> is defined as m �gf4� #hz {�|~}��

Notice that for
f�K l , m O T�Wsj % @ Z��

. Given
. E %

,
6�E %

and a region = , denote by n +
the family of all functions � �gf4�

analytic and uniformly bounded in = so that � f?K = ,P � �gf4�"Pe� � P m ��f��JP +P��R� m �gf4�"P � +
for some � E %

.
On l using A ��f�� # f

, this criterion isP � ��f��JP4� � P z } P +P��R� z } P � +
so as

f W Z
,
P � �gf4�"P � � � P z ` + } P and as

f W �[Z
,
P � ��f��JP � � � P z + } P and L + is the class of

exponentially decaying functions.
On j U�@�VBk using A ��f�� # acb �gf(� U ��d � V ��f4�

,P � �gf4�"P4� � ���� f� UV ��f ���� + ���� V ��fV � U ���� � +
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so as
f W�U4��@ P � ��f��JP4� � � P f�� U P + and as

f WyVi`�@ P � ��f��JP4� � � P V �$f�P + @ so algebraic decay
near the endpoints is required of L + functions in this case.

DEFINITION 2.3 ( � + ). Let
. K&� % @ � k and

6�K&� % @�� � . Define , as, #�� ��� � V ��f�� � � U �����gf�� U � � � V �V � U �
Then � + � = � denotes the family of functions � analytic and uniformly bounded in = such
that , K n + � = �

Functions in the � + � = � class may have nonzero values at the endpoints, and this class
is used in the remainder of this work.

Next are the basic elements used for approximation on l .
DEFINITION 2.4 (Approximation on l ). The sinc function is defined by��� b9� � 0 � # ��� b � �(0 ��(0

For a given
:^E %

, the ���g� sinc point is given byf"  # A ` � � �4¡ � # D � �4¡ �
where the sinc spacing parameter is ¡ #£¢ � 6. :
Given

:¤E %
the ¥��g� sinc series term on l is defined by

¦�§ � 0 � #
¨©©©©©©©ª ©©©©©©©«
¬5 � 0 �®� ¯° �± ` ¯ � � ¬5 � �4¡ � o � ��@�0 � ¥ # �7:o � ¥�@�0 � ¥ K��7:²�h��³~³ :´���¬5µ � 0 �®�^¯ ` �° �± ` ¯ ¬5µ � �4¡ � o � ��@�0 � ¥ # :

with ¬5 � 0 � # ��R� zi¶o � ��@�0 � # ��� b9��· 0 � �4¡¡ ¸¬ µ � 0 � # z ¶�R� z ¶
These definitions are used on a contour T via the appropriate conformal map A and the new

functions ¹ § ��f�� , defined as follows.
DEFINITION 2.5 (Approximation on T ). The ¥ ��� sinc series term on T is defined by¹ § ��f�� # ¦�§ � A �gf4���º³
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3. One-dimensional properties of sinc series. As mentioned in the introduction, sinc
series can be used for numerical approximation of many calculus operations. Here, those
theorems relevant for collocation of partial differential equations are repeated. Full proofs
can be found in [6]. In the following, the norm »½¼�» is the maximum norm on T , i.e., for, �gf4�RK T , »J, �gf4� » #h¾ t 2}"¿�À P , ��f��JP
and the

����:r�h�i�
-term approximation error is given by

(3.1) Á ¯ # 8 : z `)Â Ã > + ¯
THEOREM 3.1 (Interpolation). If , K � + � = �

, then there exists a constant � E %
,

independent of
:

, s.t.

(3.2) »J, � ¯° �± ` ¯ , ��f" "� ¹   » � � Á ¯
THEOREM 3.2 (Differentiation). Let , K � + � =?Ä � , let Å be any nonnegative integer and

if Å EÆ�
, let

�5�id A Ä � Ä be uniformly bounded in = Ä . Then there exists a constant ��Ç independent
of
:

such that

(3.3) ÈÈÈÈÈÈÈ
· ¡A Ä ¸ | § �ÊÉË , � ¯° �± ` ¯ , �gf" J� ¹  ºÌÍ | § � ÈÈÈÈÈÈÈ

� � Ç Á ¯
for k = 0,1, . . . , Å .

THEOREM 3.3 (Collocation). Let , K � + � = �
. Let Î # �gÏ ` ¯ @ ³J³"³ @ Ï ¯ ��Ð be a complex

vector such that ÑÒ ¯° �± ` ¯ P , �gf" q�Ê��ÏB �P �JÓÔ ��ÕB� -�Ö
where

Ö E %
. Then

(3.4) »", � ¯° �± ` ¯ ÏB  ¹   » - � Á ¯ � Ö @
with � as in (3.2).

THEOREM 3.4 (Operator Inversion). Given an invertible linear elliptic differential op-
erator n and the linear system n � # ,!@
define the vector operator j � k as j � k # � � �gf ` ¯ � @ ³J³"³ @ � ��f ¯ ����Ð and the matrix j nwk asj n®kØ×   # � n®¹  J���gf × �
Let Ù # j � k , and let Î be a vector satisfyingj nwkÚÎ # j ,�k � j Á�Û�k



ETNA
Kent State University 
etna@mcs.kent.edu

92 M. H. HOHN

with Á Û proportional to the unit-roundoff error. Then»�Ù � Î!» � ÈÈ j n®k ` � ÈÈ
Ü ÈÈ j Á ¯ k ÈÈ � ÈÈ j Á Û k ÈÈ

Ý ³
Thus, for � K

M + and a sufficiently small ÈÈ j n®kÞ` � ÈÈ , the computed vector Î satisfies
Theorem 3.3 and the solution � can be uniformly computed via

(3.5) �$ß ¯° �± ` ¯ Ï   ¹   @
with error bound given by (3.4). In Lemma 7.2.5, Section 7.2 of [6], the bound ÈÈ j nwk�` � ÈÈ #à �g: � � is derived for a one-dimensional, second-order, linear boundary-value problem under
suitable conditions on the coefficients.

4. Collocation Algorithm. This section illustrates the practical collocation procedure
via the simplest possible example, Poisson’s equation. Using the preceeding definitions, all
equations and boundary conditions of a given problem are combined to form a single large
linear system which is then discretized; the resulting matrix is solved in one step. The solu-
tion of the linear system is obtained via a standard linear system solver, and the individual
unknowns’ coefficients extracted. Approximations to the individual unknowns (and their
derivatives) can then be computed at non-grid points.

Referring to the following diagram, the detailed steps in sinc collocation are block con-
version, discretization, solution, and reconstruction.

PDE/BC ui

Lu = f [u]

[L][u] = [f ]

block conversion

discretization solution

reconstruction

Block conversion: For every rectangle, both the PDE and the BCs are written as a collection
of first-order systems; in this collection, every unknown is replaced by a sinc series
of the form

(4.1)
¯®á°× ± ` ¯Êá ¯Câ° �± ` ¯ãâ Ï ×   ¹ã× � 0 � ¹  ��gä �ºå

and the corresponding differential operator is applied to this new form.
Discretization: For every rectangle, the resulting collection of systems is then discretized

via evaluation of these series at the sinc collocation points

(4.2)
f ×   # � D �çæ ¡ � � @�D � �4¡ � ���º³

The discretizations from all rectangles are then combined into one linear systemj nwkèj � k # j VBk
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Solution: This linear system is large and sparse, and is solved using a direct sparse linear
solver. Generally, accuracy of the linear system solution is limited by the condition-
ing of the matrix j n®k , and this conditioning is easily checked by experiment2.

Reconstruction: The sets of coefficients
Ï ×   , for all unknowns on all rectangles, are then

extracted from the resulting solution vector j � k and every original unknown is ap-
proximated using a series of the form of (4.1).

Given an unknown , and its sinc series approximation , from (4.1), the bound for the
absolute error is given in practice by

(4.3) Á ¯ # Ï 8 : 1"243 �5� � 8 :N�
for the function, and by

(4.4) � Á ¯ # Ï�: 1�2e3 ��� � 8 :N�
for scaled first derivatives, from (3.3).

To better illustrate this approach, the four stages of the algorithm are considered in more
detail via an abstract example.

4.1. Block system. As an illustration, a single unknown, single rectangle, second-order
elliptic PDE problem can be written in the form n � # , as

(4.5)

ÑééééééééééÒ
n �"ê ���ë ìn �"ê ���ë�ín �"ê ���ë în ��ê ���ë ïn ��ê ���ë ð

Ó"ññññññññññÔ � �"ê � #
ÑééééééééééÒ
� ê ���ë ì� ê ���ë�í� ê ���ë î� ê ���ë ï� ê ���ë ð

Ó"ññññññññññÔ
where, using indexing for unknowns and directions, the notationæ�P ��@B¥

denotes unknown
æ

in domain � and direction ¥ . Usually,
æ

or ¥ will be absent. Similarly, the
notation æ!ò X
denotes equation

æ
in region X , where X is one of ó~@eô7@�õe@�ö®@)÷ã@ corresponding to the inte-

rior and sides of the rectangle. By introducing the new unknowns �ã���"ê � and ���5�qê � and the
equations � �B�"ê � # �!� �"ê � d � 0� ���qê � # �!� �"ê � d � ä

2The reciprocal condition number was found to be in the range ø�ùûúeü – ø�ùqú!ý�þ for the problems considered; this
is well above the unit-roundoff error for IEEE double precision, ÿ 2.22E-16.
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all occurrences of second-order partials can be replaced with first-order expressions; omitting
blocks of zeroes, the equivalent first-order system then has the form

(4.6)

ÑééééééééééééééééééééééééééééééééééééééééééÒ

n ��ê ���ë ì n �B��ê ���ë ì n ���Jê ���ë ìn ��ê ��Bë ì n �B��ê ���ë ìn ��ê �� ë ì n ���Jê �� ë ìn �"ê ���ë�í n �B��ê ���ë�í n �5�qê ���ë�ín �"ê ���ë�í n �B��ê ���ë�ín �"ê �� ë�í n �5�qê �� ë�ín �"ê ���ë î n �B��ê ���ë î n ���Jê ���ë în �"ê ���ë î n �B��ê ���ë în �"ê �� ë î n ���Jê �� ë în �"ê ���ë ï n �B��ê ���ë ï n ���Jê ���ë ïn �"ê ���ë ï n �B��ê ���ë ïn �"ê �� ë ï n ���Jê �� ë ïn ��ê ���ë ð n �B��ê ���ë ð n ���Jê ���ë ðn ��ê ��Bë ð n �B��ê ���ë ðn ��ê �� ë ð n ���Jê �� ë ð

Ó"ññññññññññññññññññññññññññññññññññññññññññÔ

ÑéééÒ �)�"ê ������"ê ����5�qê � Ó"ñññÔ #

ÑééééééééééééééééééééééééééééééééééééééééééÒ

� ê ���ë ì
� ê ���ë�í
� ê ���ë î
� ê ���ë ï
� ê ���ë ð

Ó"ññññññññññññññññññññññññññññññññññññññññññÔ
or n � # ,
4.2. Discrete block system. The discrete block system structure is visually identical to

that of the block system; the differences in the blocks come from the discretization, which
introduces the unknowns’ coefficients and the regions’ collocation points. Full details on the
ordering of these new parts are not relevant here and a high-level description can proceed as
follows. Let ¥ K j �7: @ : kÞ@ � K j �7: @ : k . Define � _ ��:h�N�

, and let � K j % @�� � ��� k . Define
a discrete one-to-one mapping � O9� ¥)@ � � W � ³
In the following, let

æ
be an enumeration of all collocation points of the current appropriate

region, and � an enumeration of all coefficients of the current appropriate unknown. Define¥   @ �   # � ` � � � �
and form the following discrete matrix blocks:��� ��ê ���ë ì � ×   #
	 n ��ê ���ë ì � � ¹ ê �� ¶§�� ¹ ê �� �� � ��� 0!×B@ ä × � @� 0�×B@ ä × ��K ó
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� � �"ê ���ë î � ×   # 	 n �"ê ���ë î � � ¹ ê �� ¶§�� ¹ ê �� �� � ��� 0�×�@ ä × � @� 0!×B@ ä × ��K õ
� � ��ê ���ë ï � ×   # 	 n �"ê ���ë ï � � ¹ ê �� ¶§ � ¹ ê ��� �� � �"� 0 × @ ä × � @� 0 × @ ä × ��K ö
� � �"ê ���ë ð � ×   # 	 n �"ê ���ë ð � � ¹ ê ��� ¶§ � ¹ ê ��� �� � ��� 0 × @ ä × � @� 0 × @ ä × ��K ÷

j � ê ���ë�� k × # � ê ���ë�� � 0 × @ ä × �
� K j~ó~@Bô7@"õe@Jö®@J÷�k

For consistency, define j � ��ê � k   # Ï ��ê �§�� � �
Then the operator form in (4.5) has the discrete block analogueÑééééééééééÒ

� � �"ê ���ë ì �� � ��ê ���ë�í �� � ��ê ���ë î �� � ��ê ���ë ï �� � �"ê ���ë ð �

Ó ññññññññññÔ j � ��ê � k #
ÑééééééééééÒ
j � ê ���ë ì kj � ê ���ë�í kj � ê ���ë î kj � ê ���ë ï kj � ê ���ë ð k

Ó ññññññññññÔ
or j n®k j � k # j ,�k
Note that while none of the constituent matrix blocks is square, the matrix j nwk is.

By forming discrete matrix blocks for the system of equations (4.6) in the same manner,
the operator form of (4.6) has a discrete block analogue so the large sparse linear systemj n®k j � k # j ,�k
is obtained.
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4.3. Discrete approximation. It is assumed that the PDE system is well-posed, so the
resulting discrete block system is uniquely invertible and numerically nonsingular. Under
these assumptions, any stable solution method obtains a vector j Ï k satisfying

(4.7) j nÊk j Ï k # j ,�k � j Á Û k
with j Á Û k proportional to the unit roundoff error.

The system thus obtained is large, sparse, and poorly conditioned, leading naturally to
the use of sparse direct solvers3.

4.4. Uniform approximation. Formally using Theorem 3.4 for the vectors � and
Ï
, we

see that »ûj � k � j Ï k5» � ÈÈ j nÊk ` � ÈÈ
Ü ÈÈ j Á ¯ k ÈÈ � ÈÈ j Á Û k ÈÈ

Ý
and Theorem 3.3 therefore applies. The coefficients j � × ê   k can thus be extracted from j Ï k and
used to obtain � × ê   � 0C@ ä � for any

� 0p@ ä �?K��R 
via (3.5); by Theorem 3.2, this introduces the

same
à � Á ¯ � error as the discretization steps.

5. Two-dimensional results. The key result needed here is the following theorem. Rect-
angle

æ
is denoted by � ê × and defined as

� ê × # j U ê × � ¶ @BV ê × � ¶ k���j U ê × � � @�V ê × � � k
The projection operators are defined by��� ê × , ê × ��� 0C@ ä � # ¯��  �! "°§ ± ` ¯ �  �! " ¯��  #! $°� ± ` ¯ �  #! $ , ê × � 0 ê ×§ @ ä ê ×� � ¹ ê × � ¶§ � 0 � ¹ ê × � �� �çä �
and with appropriate derivatives for

�#� ê ×¶ , ê × � and
��� ê ×� , ê × �

THEOREM 5.1 (Collocation). Let j � k be computed by the algorithm in Section 4, and
satisfy (4.7). Let � denote the exact solution to n � # , . Then for all

� 0C@ ä ��K � ê × ,��� j � × ê > �%� ê × � × ê > k � 0C@ ä � ��� � z ` Â Ã > + ¯ � � a'& v � : ÈÈ j n®k ` � ÈÈ :N�
(5.1)

Further, let j U ê × � ¶ - U ê × � ¶( - V ê × � ¶( - V ê × � ¶ k(5.2) j U ê × � � - U ê × � �( - V ê × � �( - V ê × � � k(5.3)

and define � ê ×( by

� ê ×( # j U ê × � ¶( @BV ê × � ¶( k���j U ê × � �( @�V ê × � �( k
Then for all

� 0p@ ä ��K � ê ×( ,��� j � × ê >¶ �%� ê ×¶ � × ê > k � 0C@ ä � ��� � z ` Â Ã > + ¯ � � a'& v � : ÈÈ j nwk ` � ÈÈ : � ÕB� �
��� � A ê × � ¶ � Ä � 0 � ���(5.4)

3Here, SUPERLU [2] was used, with the COLAMD ordering algorithm of [1].
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and ��� j � × ê >� �%� ê ×� � × ê > k � 0p@ äe� ��� � z ` Â Ã > + ¯ � � a�& v � : ÈÈ j n®k ` � ÈÈ : � ÕB� �
��� � A ê × � � � Ä �gäe� ���

This theorem states that unbounded derivatives can be uniformly approximated on a
closed subset of the collocation rectangle excluding the edges, and subject to scaling by the
conformal map’s derivative. In practice, this means that for a chosen accuracy Á , increasing:

widens the subregion on which this accuracy is obtained. This is illustrated in the next
section.

6. A concise example. For illustration, the Laplace equation) � � ��ê � # %
with the Dirichlet boundary condition � �"ê � # , � 0C@ ä � on top, left, and right boundaries, and
the Neumann condition ���p�"ê � d � ä # , � � 0C@ ä � on the bottom boundary, is used.

The domain is the unit square j % @ � k*��j % @ � k ; the conformal mapA � 0 � # acb � 0 � U �� V � 0 �
is used in both directions. The inverseD � 0 � # A ` � � 0 � # U � V z ¶z ¶ �h�
is used in (4.2) to compute the collocation grid.

The exact solution is taken to be the real part of
f a~b �gf4�

or, � 0p@ äe� # �� 0 acb � 0 � � ä � �ã��ä�t�u �,+ t b �gä @e0 � @
providing a weakly singular solution and an excellent test for the SINC-ELLPDE method. For
this solution, the partials in 0 and

ä
are, ¶ � 0p@ ä � # �� acb � 0 � � ä � ���h�

and , � � 0p@ ä � # �7t�u �,+ t b �gä @90 � @
respectively. The first-order system form is easily obtained. By defining the additional un-
knowns �����"ê � and �����Jê � as � �B��ê � # �!� �"ê � d � 0� ���Jê � # �!� �"ê � d � ä @
the second-order equation becomes�!� �B��ê � d � 0 � ��� ���Jê � d � ä # %
The two definitions and this equation form the set of interior equations for domain 1, the only
domain (rectangle) for this problem.

To obtain the data for illustration of the sinc convergence rate and general convergence
behavior, the discretization, solution, and reconstruction steps are run several times, each time
varying only

:
.
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6.1. Data examination. The interpretation of these data in light of Theorem 5.1 and in
the presence of the singularity is more complex. To get a simple global view of convergence,
the unbounded derivatives and associated unbounded absolute error are impractical. As the - -
norms of the absolute error,

�(� - - Z
, all weigh the error by area, they avoid this problem.

The common approach of examining the n � norm of the absolute error vs.
:

is therefore
sufficient for a global convergence test. This is used in Section 6.2.

More important is the measure of absolute pointwise error when examining singular
problems or problems with boundary layers. The maximum norm would show very large ab-
solute errors when in fact only small regions have large errors, while normwise convergence
checks give only a global indication of convergence and say nothing about the local quality of
approximation. A direct pointwise examination of the data in Section 6.3 illustrates the prac-
tical implications of Theorem 5.1. Using these observations and Theorem 5.1, the pointwise
error can be expressed using only two numbers, the desired boundary layer width

Ö/.
and the

accuracy Á ¯ obtained on the resulting rectangle � ê × . This is illustrated in Section 6.4.

6.2. Convergence in norm. The error bounds of (4.3) and (4.4) are sharper for large:
. To get uniform vertical scaling, the logarithms of the error bound, z10 �g:;� @ is fitted to the

logarithm of the absolute error,
acb P , � , P . Using a logarithmic scale for (4.3), the error bound

for function approximation becomesz 0 ��:N� # � a'& v!��Ï"�p� a'& v���:N��d��½� � 8 :;��d a�& v!�5� % �
while the scaled derivative error, from (4.4), is bounded byz32 0 ��:N� # � a'& v���Ï"�p� a'& v��g:;�Ê� � 8 :N��d a'& v��5� % ��³

Figures 6.1, 6.2, and 6.3 show the convergence of � , � ¶ and � � , respectively, using thea�& v �54 ��P , � , P � vs.
:

approach. To avoid the mentioned low-
:

inaccuracies, the points: - �76
were purposely ignored in the curve fits of the theoretical error bounds.

The figures show excellent agreement between the theoretical- and computed errors for:98]�:6
, confirming the exponential convergence rate. Further, the theoretical value for � is

given by � # 8 � 6 . ; with the default choices
6 # � d�� and

. # �
, � ß �e³ ���

, which is close
to the computed values of 1.89, 2.28, and 2.20, respectively.

6.3. Pointwise convergence. As seen in (5.1), the pointwise convergence for � is uni-
form across the entire domain.

To provide some insight into the pointwise convergence behavior of � ¶ over different
areas of a given rectangle, the graphs in Figures 6.4 – 6.7 show a paired combination of three-
dimensional surface- and two-dimensional xy-plots. The first figure in each pair displays a
surface view of the unknown; lines on the surface and their projections onto the base show the
location of the xy-slices. The base projections are numbered for cross-reference with the xy-
slices’ graphs. The second figure shows the detail slices’ xy-graphs. Each slice is numbered
according to its position on the area/surface view graph.

From (5.4), one expects a very small error in the interior which increases rapidly near the
boundaries. Further, for increasing

:
, the size of the near-boundary region should decrease.

As can be seen in Figure 6.5, this does in fact happen. On the range used here – all of the
rectangle – the approximation is very good in the interior of the rectangle, but rapidly worsens
near the boundaries. For � #<; , this near-boundary error reaches quite far into the interior,
while for � # �>=

, the error is restricted to a small near-bounary region.
To check this characteristic for increasing

:
, Figure 6.6 provides a closer look at a small

area near
� % @ % � , using larger values of

:
. In Figure 6.7, it is seen that for � # �:=

, good
accuracy is obtained to about 0 # % ³ % � @ and the accuracy again diminishes when moving



ETNA
Kent State University 
etna@mcs.kent.edu

SINC SOLUTION OF ELLIPTIC PDES 99

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0  5  10  15  20  25  30

lo
g1

0(
ab

s.
 e

rr
or

)

N

FIG. 6.1. Absolute error as function of ? for @ . The error is in the A ý sense. The curve is given byB�C ?EDGF>H�IKJML C ?ON , with BMP ù:Q ø�RS and L P øQ ST .

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0  5  10  15  20  25  30

lo
g1

0(
ab

s.
 e

rr
or

)

N

FIG. 6.2. Absolute error as function of ? for @VU . The error is in the A ý sense. The curve is given byB ?WDGF>H�IKJML C ?ON , with BMP ù:Q TRR and L PYX Q X S .

closer to the boundary. Increasing the number of terms from � # �>=
to � #[ZV; shrinks the

inaccurate near-boundary region, as happened on the full rectangle (Figure 6.4) for � #
;and � # �:=
.

Results for � � are similar and shown more compactly in the following.

6.4. Practical Pointwise Convergence. The behavior described in Theorem 5.1 and
observed in the previous section requires a function to describe the uniform error bound; for
the

ä
direction, this error envelope is

(6.1) \ �g: @ äe� # � : � ÕB� 1"243 �5�^] 8 :N� A Ä �gäe�
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FIG. 6.3. Absolute error as function of ? for @1_ . The error is in the A ý sense. The curve is given byB ?WDGF:H�I`JML C ?�N , with BMP ù:Q RaT and L PEX Q X ù:Q
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FIG. 6.4. Graph of @ U and slice locations over the whole b ù:c5øGdfegb ù:c�øGd domain. Slices are shown in Figure 6.5.

The absolute error for � and scaled � � is largest in the center of the domain4; as result,\ ��: @ ä � is a substantial overestimate along most of the curve. Knowing the maximum error
is in the interior, it is trivial to match \ �g: @ ä � to the actual error. This was done in Figure 6.8,
which shows the absolute errors for

: # �>h
and

: # �3i
, and the fitted envelope for each.

Choosing a desired accuracy and distance from the boundary as in Figure 6.9, it is seen

4 It is assumed here that the precise edge behavior of the solution @ is not known. The blind choice j P ø is
a good starting point, but may result in a skewed error distribution, as in this case. If correct values of j and k are
available, they can be used in the calculation of the gridpoint spacing to get a more uniform absolute error.
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FIG. 6.5. Graphs of slices detailing the pointwise error in the approximation of @ U . The locations of these
slices are shown, by index, in Figure 6.4.

that the error envelope rapidly approaches the boundary as
:

increases. More precisely, the
expression for � ä9d � : @ near the singularity and using (6.1) with \ ��: @ ä � #ml and A!Ä �çä � #�id �çä)�5����äe���

is � ä9d � : ß � � : 6� l z ` > Â ¯
so this boundary layer also shrinks at an exponential rate.
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FIG. 6.6. Graph of @ U and slice locations over the b ù:c�ùS�dfegb ù:c�ù:Q an�d subdomain. Slices are shown in Figure 6.7.

The exponential decrease of both error and boundary width thus allows for a simplified
convergence test. By choosing the desired boundary layer width

Ö .
first, a regular convergence

curve can again be used, where the uniform absolute error is \ �g: @ Ö . � .
7. Discussion. Theoretical error bounds for sinc methods tend to be overly pessimistic.

In practice, the error bound of � Á ¯ (3.1) is observed in two-dimensional single- and multi-
domain problems. Also observed is a strong variation of the solution-dependent � . Perhaps
due to coupling effects, � increases with the number of unknowns and number of domains.� also increases for more difficult functions, those with oscillation and stronger singularities.
The effect of this is seen in the minimum number of terms required to get useful accuracy.
For the simplest functions,

: # 6
is sufficient for the approximation to resemble the func-

tion, between 1 and 2 significant digits. For multi-domain, multiple-unknown problems with
corner singularities, 1 to 2 digits of accuracy are not seen until

: # �:h
.

Many details were purposely omitted in the preceding presentation. Among these are the
conversion of input equations, the intermediate data structures encountered in an implemen-
tation of the method, and the full convergence proofs of the method. The manual conversion
from equations and boundary conditions to solver input is quite complicated and error prone
if done by hand. Because the structure of the equations is very regular, fully automatic con-
version from a simple input format to the input to the solver is possible. The details of this
conversion algorithm, including automatic production of TEX equations, are described in [4].

The significantly increased complexity of the full proofs contributes little to this presen-
tation, so the reader is referred to chapter 7 of [3] for full details. That reference also contains
a full description of the intermediate data structures encountered in discretization and matrix
assembly, some discussion of computational effort, and more complex sample problems.

Sinc methods are very broadly applicable; for a concise overview including integration,
initial value problems, and some integral equations, see [7]. For a very comprehensive sinc
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reference, see [6].
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