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Abstract. This paper presents an a posteriori residual error estimator for the mixed FEM of second order
operators using isotropic or anisotropic meshes in ��� , ���
	 or � . The reliability and efficiency of our estimator is
established without any regularity assumptions on the solution of our problem.
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1. Introduction. Let us fix a bounded domain � of �� , ����� or 3 with a polygonal
boundary ( ����� ) or a polyhedral one ( ����� ). In this paper we consider the following second
order problem: For �
����� �!�#" , let $%�%&�'( �)�#" be the unique solution of*,+.- �)/10�$2"3�546� in �87(1.1)

where the matrix /9�:�<;��)�87=>�@?A�B" is supposed to be symmetric and uniformly positive
definite.

The mixed formulation of that problem is well-known [27, 31, 28, 7, 8], and consists in
finding �DC 7=$2" in EGF%H solution of :IJ K�LNM �)/PO ' C "RQTS �VUXW LYM $ *,+.- S � UZ��[\7^]2S ��E_7L Ma` *,+b- C � UZ�c4 L M � ` � Ud7
] ` �_H:7(1.2)

where Ee�f&g� *,+b- 7h�#"<iD�:jNS �lk � � �!�#"nm � i *,+b- S �%� � �)�#"poV7
endowed with the natural normq S q �rtsvuYw x�y MAz iD� q S q �{\|}s M~z W q *\+.- S q �{\|ps MAz 7
and H������ �)�#"�� Since this problem has at most one solution [31, p.16], the unique solution�DC 7�$�" is given by C ��/10�$ , when $ is the unique solution of (1.1).

Problem (1.2) is approximated in a conforming finite element subspace EZ�<FPHg� of E�FH based on a triangulation � of the domain made of isotropic or anisotropic elements. Under
the property

*,+b- E��Z��H�� , the discrete problem has a unique discrete solution �vC �A7�$�� "��E���F�Hg� . We then consider an efficient and reliable residual anisotropic a posteriori error
estimator for the error � �gC 4�C � in the &g� *,+.- 7}�#" -norm and �1�f$�4a$�� in the � � �!�#" -norm.

Anisotropic a posteriori error estimations are highly recommended for problem (1.2)
since the solution presents edge and corner singularities [14, 17, 13, 22, 25] or boundary�
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layers [23, 24], for which the use of such elements is more appropriate than isotropic ones
(see [3, 18] for the treatment of standard elliptic problems). For corner singularities in 2D or
edge singularities in 3D a priori error estimations are available in special geometries [15, 30]
but require the explicit knowledge of the singularities which may require some numerical
efforts.

Isotropic a posteriori error estimators for standard elliptic boundary value problems are
currently well understood (see for instance [32] and the references cited there). The extension
of these methods to anisotropic meshes starts with the recent works [29, 18, 16, 12]. The
analysis of isotropic a posteriori error estimators for the mixed finite element method were
initiated in [6, 2, 8] but the estimator is efficient and reliable in a non-natural norm [6, 2] or
it is efficient and reliable but under the & � -regularity of the solution of (1.1) [8] (which is
often not the case, see also [9] for the elasticity system). Therefore the goal of this paper is
to extend the method from [8] to the case of isotropic or anisotropic meshes in 2D and 3D,
using some techniques from [18], and moreover without any regularity assumptions on the
solution of (1.1).

The organization of the paper is the following: Section 2 recalls the discretization of our
problem, introduces some anisotropic quantities, some mild assumptions on the meshes and
some natural conditions on the finite element spaces. In Section 3 we give some anisotropic
interpolation error estimates for Clément type interpolation and prove the uniform discrete
inf-sup condition. Some examples of elements satisfying our theoretical assumptions are
presented in Section 4. There we further give sufficient conditions on the meshes ensuring
the stability of the scheme. The efficiency and reliability of the error are established in Section
5. Finally Section 6 is devoted to numerical tests which confirm our theoretical analysis.

Let us finish this introduction with some notation used in the whole paper: The � � �)��" -
norm will be denoted by

q Q qY� . In the case �9��� , we will drop the index � . The usual
norm and seminorm of & ' ����" are denoted by

q Q q ' y � and �hQ�� ' y � . The notation $ means that
the quantity $ is a vector and 0�$ means the matrix ���B��$��n" 'p� � y � � � ( � being the index of row
and � the index of column). For a vector function $ we denote by curl $ ��� ' $ � 4�� � $ '
in 2D and curl $ ���)� � $� 14g�¡ �$ � 7h�B �$ ' 4g� ' $2 ¢7h� ' $ � 4�� � $ ' "�£ in 3D. On the other hand
in 2D for a scalar function ¤ we write curl ¤g�¥�)� � ¤d7Y4t� ' ¤2"^£ (note that the curl of a two-
dimensional vector field is a scalar but in order to avoid a multiplicity of notation we denote
it as a vector since no confusion is possible). Finally, the notation ¦X§�¨ and ¦ª©�¨ means the
existence of positive constants « ' and « � (which are independent of � and of the function
under consideration) such that ¦�¬« � ¨ and « ' ¨1¬¦�¬« � ¨ , respectively.

2. Discretization of the problem. The domain � is discretized by a conforming mesh � ,
cf. [10]. In 2D, all elements are either triangles or rectangles. In 3D the mesh consists either
of tetrahedra, of rectangular hexahedra, or of rectangular pentahedra (i.e. prisms where the
triangular faces are perpendicular to the rectangular faces), cf. also the figures of Section 2.2.
The restriction to rectangles, rectangular hexahedra or rectangular pentahedra is only made
for the sake of simplicity; the extension to parallelogram, hexahedra or pentahedra is straight-
forward using affine transformations.

Elements will be denoted by ® , ® � or ®6¯ , its edges (in 2D) or faces (in 3D) are denoted
by ° . The set of all (interior and boundary) edges (2D) or faces (3D) of the triangulation will
be denoted by ± . Let U denote a nodal point, and let ²�³M be the set of nodes of the mesh. The
measure of an element or edge/face is denoted by � ®��¡iD� meas � �´®1" and � °��¡iD� meas �YO ' �)°�" ,
respectively.

For an edge ° of a 2D element ® introduce the outer normal vector by µ ���´µ·¶A7�µ¹¸@"�º .
Similarly, for a face ° of a 3D element ® set µ �5��µ�¶A7�µ¹¸B7�µ¹»N"�º . From now, the word “face”
will denote either an edge in the 2D case or a face in the 3D case. Furthermore, for each
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face ° we fix one of the two normal vectors and denote it by µ ¼ . In the 2D case introduce
additionally the tangent vector ½ �¾µ ¿¾iÀ�Á�^4#µ ¸ 7=µ ¶ "�º such that it is oriented positively
(with respect to ® ). Similarly set ½ ¼ iD�fµ ¿¼ .

The jump of some (scalar or vector valued) function ` across a face ° at a point Â �
°
is then defined asÃ Ã ` ��Â "ÅÄ Ä ¼ iD��Æ Ç +bÈÉVÊÌË ( ` �´Â WgÍdµ ¼ "R4 ` ��Â 4lÍ�µ ¼ " for an interior face ° ,` ��Â\" for a boundary face ° .

Note that the sign of
Ã Ã ` Ä Ä ¼ depends on the orientation of µ ¼ . However, terms such as a

gradient jump
Ã Ã 0 ` µ ¼RÄ Ä ¼ are independent of this orientation.

Furthermore one requires local subdomains (also known as patches). As usual, let Î £ be
the union of all elements having a common face with ® . Similarly let Î ¼ be the union of the
elements having ° as face. By Î>¶ we denote the union of all elements having U as node.

Later on we specify additional, mild mesh assumptions that are partially due to the
anisotropic discretization.

2.1. Discrete formulation. The discrete problem associated with (1.2) is to find �vC � 7�$ � "��E��XF%Hg� such thatIJ K�L M ��/PO ' C �B"RQTS ��� UªW L M $�� *,+b- S �>�VUZ��[\7^]2S �Ï�ZE��\7L Ma` � *,+.- C �Ì� UZ�c4 L M � ` �Ì� Ud7
] ` �ª�_Hg�,7(2.1)

where E�� (resp. H�� ) is a finite dimensional subspace of E (resp. H ).

Recall that the errors are defined by� iD�gC 4ZC �~7>�ÌiD��$�4�$��,�
Therefore subtracting (1.2) with S �eS � and ` � ` � from (2.1) we obtain the ’Galerkin
orthogonality’ relationsÐ

M �)/ O ' � ">Q�S � �VUªW Ð
M � *,+b- S � � U���[\7^]2S � �ZE � 7(2.2)

Ð
M ` � *,+b- � � U��f[A7%] ` �Ï��Hg�A�(2.3)

2.2. Some anisotropic quantities. In our exposition ® can be a triangle or rectangle
(2D case), or a tetrahedron, a (rectangular) hexahedron, or a prismatic pentahedron (3D case).

Parts of the analysis require reference elements Ñ® that can be obtained from the actual
element ® via some affine linear transformation Ò £ . The table below lists the reference
elements for each case. Furthermore for an element ® we define 2 or 3 anisotropy vectorsC � y £ 7=�R�ÔÓ������=�A7 that reflect the main anisotropy directions of that element. These anisotropy
vectors are defined and visualized in the table below as well.
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Element ® Reference
element Ñ® Anisotropy vectors C � y £

Triangle [X¬ ÑUd7 ÑÂÑUªW ÑÂ�¬�Ó C ' y £ longest edgeC � y £ height vector

Rectangle [X¬ ÑUd7 ÑÂ�¬�Ó C ' y £ longest edgeC � y £ height vector

Tetrahedron [X¬ ÑUd7 ÑÂ~7 ÑÕÑUPW ÑÂtW ÑÕ ¬�Ó C ' y £ longest edgeC � y £ height in largest face
that contains C ' y £C   y £ remaining height

Hexahedron [X¬ ÑUd7 ÑÂ~7 ÑÕ ¬�Ó C ' y £ longest edgeC � y £ height in largest face
that contains C ' y £C   y £ remaining height

Pentahedron (Prism) [X¬ ÑUd7 ÑÂ~7 ÑÕ ¬�ÓÑUªW ÑÂ�¬�Ó longest edge in triangle;
height in triangle;
height over triangle (see
figure, vectors ordered by
length)

The anisotropy vectors C � y £ are enumerated such that their lengths are decreasing, i.e. � C ' y £ �¡Ö� C � y £ �¡Ö:� C   y £ � in the 3D case, and analogously in 2D. The anisotropic lengths of an element® are now defined by × � y £ iD�5� C � y £ �
which implies

× ' y £ Ö × � y £ Ö ×   y £ in 3D. The smallest of these lengths is particularly
important; thus we introduce ×~Ø �bÙ y £ iD� × � y £_Ú Èª+bÛ�bÜ 'pÝÀÝÀÝ � × � y £ �
Finally the anisotropy vectors C � y £ are arranged columnwise to define a matrix« £ iD� k C ' y £ 7�C � y £ m·��Þ � ? � in 2D« £ iD� k C ' y £ 7�C � y £ 7)C   y £ m���Þ   ?   in 3D. ß(2.4)

Note that « £ is orthogonal since the anisotropy vectors C � y £ are orthogonal too, and« º£ « £ � diag j × � ' y £ 7��Y���Y7 × � � y £ oV�
Furthermore we introduce the height

× ¼ y £ �Gà £ àà ¼ à over an edge/face ° of an element ® .
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2.3. Mesh assumptions. The mesh has to satisfy some mild assumptions.á The mesh is conforming in the standard sense of [10].á A node U � of the mesh is contained only in a bounded number of elements (uni-
formly in

×
).á The size of neighbouring elements does not change rapidly, i.e.× � y £@â © × � y £ | ]��·�5Ó3�Y�����~7Å]2® '·ã ® �ªä�få\�

Sometimes it is more convenient to have face related data instead of element related data.
Hence for an interior face °5�f® ' ã ® � we introduce× Ø �.Ù y ¼æiD� × Ø �bÙ y £ â W × Ø �.Ù y £ |� and

× ¼æiD� × ¼ y £ â W × ¼ y £ |� �
For boundary faces °èç���® simply set

×�Ø �.Ù y ¼ iD� ×AØ �bÙ y £ ,

× ¼ iD� × ¼ y £ . The last assumption
from above readily implies× ¼ © × ¼ y £@â © × ¼ y £ | and

×AØ �bÙ y ¼ © ×~Ø �.Ù y £¢â © ×AØ �bÙ y £ | �
2.4. Finite element spaces assumptions. We assume that the element spaces EZ�A7hH��

satisfy jTS �Z&g� *,+b- 7}�#"�i S à £ �ék ê ( �´®1"Åm � 7Å]2®��%��oÌç�E��A7(2.5) E��Xç�jNS �%&g� *\+.- 7h�#"�iVS à £ �lk & ' ��®1"nm � 7Å]�®��Z��oB7*,+b- E�����Hg�\�(2.6)

We suppose that the commuting diagram property holds [7, 8]: There exists an interpo-
lation operator ë8��iAìîíïEÏ� , where ìî�c&�� *,+b- 7h�#" ã ��ðN�!�#" , with ñXòÔ� , such that the
next diagram commutes ì uYw xí Hë �Pó óPô¡�E � uYw xí H � 7(2.7)

where ô � is the � � �!�#" -orthogonal projection on H�� . This property implies in particular*,+b- �)õV��4�ë � "=ì÷öfH � 7(2.8)

the orthogonality being in the � � �!�#" -sense and õB� meaning the identity operator.
We further assume that the interpolant satifies the global stability estimateq ë � S q § q S q ' y M 7Å]2S ��k & ' �!�#"nm � �(2.9)

We will see that this assumption added to (2.6) and (2.7) leads to the uniform discrete inf-sup
condition. Even if our further method does not require this condition, it is recommended to
have a robust discrete analysis.

Finally we assume that ë � satisfies the approximation property
Ð
¼ ` � ��S 4�ë � S "RQ�µ ¼é��[\7^]2S �_ìl7 ` � �_H � 7h°è��±Ï�(2.10)

Such properties will be checked in some particular cases in Section 4.
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3. Analytical tools. Since we treat anisotropic elements, some analytical tools which
are known from the standard theory have to be reinvestigated. This is mainly due to the
fact that the aspect ratio of the elements is no longer bounded, as it is the case with isotropic
elements.This leads to the introduction of a so-called alignment measure and a approximation
measure, cf. below. It is important to notice that these measures are not a (theoretical or
practical) obstacle to efficient and reliable error estimation; furthermore for isotropic meshes
they are equivalent to 1.

3.1. Bubble functions, extension operator, inverse inequalities. For the analysis we
require bubble functions and extension operators that satisfy certain properties. We start with
the reference element Ñ® and define an element bubble function ¨�³£ ��«X�~Ñ®1" . We also require
an edge bubble function ¨¹³¼ y ³£ ��«X�~Ñ®8" for an edge Ñ°øçù�ªÑ® (2D case), and a face bubble
function ¨�³¼ y ³£ ��«X�AÑ®6" for a face Ñ°ùçf�ªÑ® (3D case). Without loss of generality assume thatÑ° is on the ÑU axis (2D case) or in the ÑU ÑÂ plane (tetrahedral and hexahedral case). For the
pentahedral case, the triangular face Ñ°8ú is also in the ÑU ÑÂ plane but the rectangular face Ñ°Ìû
is in the ÑU ÑÕ plane.

Furthermore an extension operator ü¡ýnþpÿ6i\«X��Ñ°ª"<í «X�~Ñ®1" will be necessary that acts on
some function ` ³¼ �«X�¹Ñ°�" . The table below gives the definitions in each case. For vector
valued functions apply the extension operator componentwise.

Ref. element Ñ® Bubble functions Extension operator¨2³£ iD���   ÑU ÑÂ��^Ó#4 ÑU�4 ÑÂ\"¨�³¼ y ³£ iD��� � ÑU·�^Ó#4 ÑU�4 ÑÂ\" ü ýnþpÿ � ` ³¼ "�� ÑUd7 ÑÂ\"�iÀ� ` ³¼ � ÑU�"
¨2³£ iD�f� � ÑUd��Ót4 ÑU2" ÑÂ��^Ó#4 ÑÂ\"¨�³¼ y ³£ iD��� � ÑU·�^Ó#4 ÑU2"��^Ó#4 ÑÂ," ü ýnþpÿ�� ` ³¼ "�� ÑUd7 ÑÂ\"�iÀ� ` ³¼ � ÑU�"
¨2³£ iD� � � ÑU ÑÂ ÑÕ ��Ót4 ÑU�4 ÑÂ�4 ÑÕ "¨�³¼ y ³£ iD�f�   ÑU ÑÂ2��Ó#4 ÑU�4 ÑÂ�4 ÑÕ " ü ýnþpÿ�� ` ³¼ "�� ÑUd7 ÑÂ27 ÑÕ "�iD� ` ³¼ � ÑU·7 ÑÂ\"
¨2³£ iD�f��� ÑUd��Ót4 ÑU2" ÑÂ��^Ó#4 ÑÂ\" ÑÕ �^Ó#4 ÑÕ "¨�³¼ y ³£ iD��� � ÑU·�^Ó#4 ÑU2" ÑÂ2��Ó#4 ÑÂ\"��^Ó#4 ÑÕ " ü ýnþpÿ�� ` ³¼ "�� ÑUd7 ÑÂ27 ÑÕ "�iD� ` ³¼ � ÑU·7 ÑÂ\"
¨2³£ iD���   � � ÑU ÑÂ��^Ó#4 ÑU�4 ÑÂ," ÑÕ ��Ót4 ÑÕ "¨�³¼ y ³£ y ú iD�f�   ÑU ÑÂ���Ó#4 ÑU�4 ÑÂ,"��^Ó64 ÑÕ "¨�³¼ y ³£ y û iÀ��� � ÑU·�^Ót4 ÑU�4 ÑÂ¡" ÑÕ ��Ó#4 ÑÕ " ü ýnþpÿ � ` ³¼�� "�� ÑU·7 ÑÂ27 ÑÕ "�iÀ� ` ³¼�� � ÑU�7 ÑÂ\"ü ýnþpÿ � ` ³¼�� "�� ÑUd7 ÑÂ�7 ÑÕ "�iD� ` ³¼�� � ÑUd7 ÑÕ "

The element bubble function ¨ £ for the actual element ® is obtained simply by the cor-
responding affine linear transformation. Similarly the edge/face bubble function ¨T¼ y £ is de-
fined. Later on an edge/face bubble function ¨�¼ is needed on the domain ÎR¼g�f® ' 	 ® � . This
is achieved by an elementwise definition, i.e.¨ ¼ � £�
 iÀ��¨ ¼ y £�
 7 �R�5Ó 7}�,�
Analogously the extension operator is defined for functions ` ¼ �«X�)°�" . By the same ele-
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mentwise definition obtain then üBýnþpÿ�� ` ¼�"<��«X�´Î·¼�" . With these definitions one easily checks¨ £ ��[ on ��®t7 ¨ ¼ �f[ on �~Î ¼ 7 q ¨ £ q ; y £ � q ¨ ¼ q ; y �� �5Ó �
Next, one needs so-called inverse inequalities proved for instance in Lemma 4.1 of [12].
LEMMA 3.1 (Inverse inequalities). Let °÷ç ��® be an edge/face of an element ® .

Consider ` £ �cê ��� �´®1" and ` ¼ �Ôê � â ��°�" . Then the following equivalences/inequalities
hold. The inequality constants depend on the polynomial degree � ( or � ' but not on ® , ° or` £ , ` ¼ . q ` £ ¨ '��h�£ q £ © q ` £ q £(3.1) q 0Z� ` £ ¨ £ " q £ § × O 'Ø �.Ù y £ q ` £ q £(3.2) q ` ¼ ¨ '��h�¼ q ¼ © q ` ¼ q ¼(3.3) q ü ýnþpÿ � ` ¼ "=¨ ¼ q £ § × '��h�¼ y £ q ` ¼ q ¼(3.4) q 0��)ü ýnþpÿ � ` ¼ "�¨ ¼ " q £ § × '��h�¼ y £ × O 'Ø �.Ù y £ q ` ¼ q ¼ �(3.5)

3.2. Clément interpolation. For our analysis we need some interpolation operator that
maps a function from & ' �!�#" to the usual space �#�!�87=�g" made of continuous and piecewise
polynomial functions on the triangulation. Hence Lagrange interpolation is unsuitable, but
Clément like interpolant is more appropriate. Recall that the nodal basis function ��¶ ��#�!�87=�g" associated with a node U is uniquely determined by the condition�R¶ �´Â "����Y¶ y ¸ ]�Â �X²g³M 7
and by the polynomial space of �>¶ � ® :

Finite element domain ® Local space � £ of �R¶ � ®���Ò £
Triangle, Tetrahedron ê ' �~Ñ®1"
Rectangle, Hexahedron � ' �AÑ®6"
Pentahedron span jVÓV7 ÑU¹7 ÑÂ~7 ÑÕ 7 ÑU ÑÕ 7 ÑÂ ÑÕ o

Then �#�)�87h�g" is defined as the space spanned by the functions � ¶ , for all nodes U �
²�³M .
Equivalently, it can be expressed as�#�)�87h�g"<iÀ�Ôj ` �X�%«X� Ñ�6"�i ` ���� £ ��Ò £ � � £ oÔçæ& ' �)�#"�7(3.6)

with � £ as described in the above table.
Next, the Clément interpolation operator will be defined via the basis functions ��¶ ��#�!�87=�g" .
DEFINITION 3.2 (Clément interpolation operator). We define the Clément interpolation

operator !�"�#di & ' �)�#"�í$�#�)�87h�g" by!�"�# ` iÀ�&%¶ ')(+*, Ó� Î ¶ � -
Ð
��. `�/ �R¶ �

The interpolation error estimates on anisotropic triangulations are different to the isotropic
case. The anisotropic elements have to be aligned with the anisotropy of the function in order
to obtain sharp estimates. To this end we introduce a quantity which measures the alignment
of mesh and function.
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DEFINITION 3.3 (alignment measure). For ` �%& ' �)�#" , set0 ' � ` 7=�g"<iD�2143 £ '65 × O �Ø �bÙ y £ q «Pº£ 0 ` q �£�7 '��h�q 0 ` q(3.7)

From that definition we see thatÓa¬ 0 ' � ` 7h��"�¬ È98�:£ '65 × ' y £×AØ �bÙ y £ �
These estimates imply that for isotropic meshes 0 ' � ` 7h��"�©eÓ and consequently for such
meshes the alignment measure disappears in other constants.

For anisotropic meshes the term « º£ 0 ` contains directional derivatives of ` along the
main anisotropic directions C � y £ of ® . Therefore ® will be aligned with ` if long (resp. small)
anisotropic direction C ' y £ (resp. C   y £ ) is associated with small (resp. large) directional
derivative C º ' y £ QT0 ` (resp. C º  y £ QT0 ` ). If all elements are aligned with ` then the numerator
and denominator of 0 ' � ` 7h�g" will be of the same size and consequently 0 ' � ` 7=�æ"�©cÓ . We
refer to [18, 19] for more details.

Finally we may state the interpolation estimates.
LEMMA 3.4 (Clément interpolation estimates). For any ` �%& ' �)�#" it holds%£ '65 × O �Ø �.Ù y £ q ` 4;!�"�# ` q �£ ¬ 0 � ' � ` 7=�g" q 0 ` q �(3.8) %< '>= × <× �Ø �.Ù y < q ` 4?!�"�# ` q �< ¬ 0 � ' � ` 7=�g" q 0 ` q � �(3.9)

Proof. The proof of the estimates (3.8) and (3.9) is given in [18] and simply use some
scaling arguments.

At the end for S �lk &�'@�)�#"Åm � we introduce its approximation measure

¦2��S 7=�g"�iD�@1�3 £ '65 × O �Ø �bÙ y £ q S 4lë � S q �£�7 '��h�q S q ' y M �(3.10)

Roughly speaking this quantity measures the alignement of the mesh � with S . For
isotropic meshes it is then bounded from above by 1 (see Section 4).

3.3. Surjectivity of the divergence operator. Here we focus on the surjectivity of the
divergence operator from k & ' �!�#"nm´� to � � �)�#" . This result will be used in the next subsection
as well as in Subsection 5.3.

LEMMA 3.5. Let A be an arbitrary function in � � �!�#" , then there exists ` �:k & ' �)�#"nm´�
such that *,+.- ` ��A in �87(3.11) q ` q ' y M § q A q �(3.12)

Proof. Consider a domain � with a smooth boundary such that Ñ��ç�� . We extend A by
zero outside � to get BA in ���V����" . Let C��%&�'( ����" be the unique weak solution ofD Cæ�EBA in �_�
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As BA��Z� � �)��" and � has a smooth boundary, C belongs to & � ����" with the estimateq C q � y � § q BA q � � q A q �(3.13)

Therefore ` defined in � by ` ��0FC in �
belongs to k & ' �)�#"Åm � and satisfies (3.11) as well as (3.12) as a consequence of (3.13).

This lemma differs from the classical result on the divergence operator [17] by the fact
that ` is no more zero on the boundary and then allows to leave the zero mean condition onA .

3.4. Uniform discrete inf-sup condition. We end this section by showing that the com-
muting diagram property and the continuity of ëP� from & ' �!�#" into � � �!�#" guarantee the
uniform discrete inf-sup condition.

LEMMA 3.6. If (2.7) and (2.9) hold then there exists a constant G � ò�[ independent of
×

such that for every ` � �%H ��H�IKJL M '>N M L Ma` � *,+b- S �P� Uq S � q r6svu�w x�y M~z Ö�G � q ` � q �(3.14)

Proof. Let us fix ` ����Hg� . It suffices to show that there exists S �X�ZEÏ� such that*\+.- S ��� ` � in �87(3.15) q S � q § q ` � q �(3.16)

Let ` ��k & ' �!�#"nm´� be the solution of (3.11) with Aª� ` � obtained in Lemma 3.5. TakeS ���fë8� ` �
By (2.7) it satisfies (3.15). Indeed by (2.8), we haveÐ

M *\+.- � ` 4�S �B"POt���f[\7^]QOt�ª�_Hg�,7
or equivalently Ð

M � ` � 4 *\+.- S � "RO � ��[A7Å]SO � ��H � 7
which leads to (3.15) since

*\+.- S � belongs to H�� by the assumption (2.6).
The estimate (3.16) directly follows from (2.9) and (3.12).

4. Examples. In this section we present a list of finite element pairs fulfilling the theo-
retical assumptions of the previous sections. For an easier readibility, since our a posteriori
error analysis from section 5 is independent of the choice of the elements, the reader not
interested in all the details from this section may skip the remainder of this section.

For any element ®ø� � , we describe in the next table the finite dimensional spaces� � �´®8" and H � �´®8" , where ���UT , for the Raviart-Thomas elements (in short RT), the Brezzi-
Douglas-Marini elements (BDM), and the Brezzi-Douglas-Fortin-Marini elements (BDFM).
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Name Element H � ��®1" � � ��®1"
RT Triangle/Tetra V8® � iD�5k ê � m´��WgU Wê � ê �
RT Rectangle ê � Ë ' y � FZê � y � Ë ' � �
RT Hexahedra ê � Ë ' y � y � FZê � y � Ë ' y � FZê � y � y � Ë ' � �
RT Pentahedra V8® ( �´U ' 7�U � "<FZê ' �´U~ N" ê (
BDM Triangle/Tetra k ê � Ë ' m´� ê �
BDFM Triangle/Tetra jTS �lk ê � Ë ' m´�Pi S Q�µ �YX � �)��®1"}o ê �

Here ê � Ë ' y � y � means the space of polynomials of degree �ªWcÓ in U ' and of degree �
in U � and U~  , Wê � means the space of homogeneous polynomials of degree � , while X � �)�~®8"
denotes the space of functions defined in ��® which are a polynomial of degree at most � on
each edge/face of ® . With these sets we may defineH � iD�:j ` � �%H i ` � à £ ��� � �´®1"�7Å]�®�����oB7(4.1) E � iD�:j=C � ��EGi�C � à £ �%H � ��®1"p7^]�®�����oV�(4.2)

For these element pairs �´E��A7hHg�B" , except the pentahedral case, the assumptions (2.6),
(2.7) and (2.10) are checked in Section III.3 of [7]. The case of pentahedra is proved similarly
by using the standard degrees of freedom

Ð
¼ S Q�µ 7Å]2°è��±Ï7=°�çæ��®t�

We now show that the stability estimate (2.9) holds in some particular situations.
We start with a general result.
LEMMA 4.1. If the elements ®:��� satisfy× � ' y £ § ×AØ �bÙ y £ 7(4.3)

then (2.9) holds.
Proof. Using the affine transformation U �f/ £ U W[Z ( which maps the reference elementÑ® to ® and Piola’s transformation S � U "3�f/ O '£ S �´U "p7

which preserves the degree of freedom, we haveq S 4lë1�VS q �£ �è� ®�� Ð ³£ � / £ � S 4�Ñë S "Y� �¬c� ®�� q / £ q �
Ð
³£ � S 4�Ñë S � �§è� ®�� q / £ q �

Ð
³£ � 0 S � �§ q / £ q �

Ð
£ � 0Z�)/ O '£ S "^/ £ � �§ q / £ q � q / O '£ q � Ð £ � 0�S � � �

Since by Lemma 2.2 of [18] we have
q / £ q © × ' y £ and

q / O '£ q © × O 'Ø �bÙ y £ , the above estimate
and the assumption (4.3) yields q S 4�ë8� S q �£ § Ð

£ � 0ªS � � �
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The sum of this estimate on ®:�Z� leads to the conclusion.
For boundary layer meshes

× Ø �bÙ y £ �]\ × and

× ' y £ � ×
, where \�©_^ �¢� Ç Û ^ �¢� , the

thickness of the layer being ^ � (see [3, 18, 20]), therefore the assumption (4.3) becomes then
× ¬`\ and could be too restrictive. Similarly for refined meshes along edge singularities, then
× Ø �bÙ y £ � × âa and

× ' y £ � ×
, where b_òæ[ is the smallest edge singular exponent [4, 3, 18, 5],

in that case (4.3) reduces to b�Ö Ó4c@� . Again this condition is too restrictive for strong
edge singularities ( b is always Ö Ó�c � for the Laplace equation, but for general transmission
problems ( / piecewise constant), b could be as small as we want [14, 22, 25, 26, 11]). These
considerations motivate the use of finer arguments to get (2.9), namely adapting the arguments
of Sections 4 and 5 of [1], we can prove the following results.

LEMMA 4.2. Assume given a 2D triangulation � made of triangles ® which satisfy× ' y £ § H +.Ûed Øef ¶ y £ 7(4.4)

where
d Øef ¶ y £ is the maximal angle of ® . Assume that �´E��\7}Hg� " corresponds to the Raviart-

Thomas element of order 0 (i.e. defined by (4.1)-(4.2) with �Ï�f[ ). Then (2.9) holds.
Proof. By Lemmas 4.1 and 4.2 of [1] for any ®��%� , we haveq S 4lë � S q £ § × ' y £H +bÛed Øef ¶ y £ q 0ªS q £ �

The assumption (4.4) directly yields the desired estimate.
Remark that the assumption (4.4) is much weaker than (4.3). Indeed it is satisfied for

any tensor product meshes, for any meshes satisfying the maximal angle condition (i.e. there
exists g ��h2i such that

d Øjf ¶ y £ ¬kg � ), while such meshes may not satisfy (4.3). The
condition (4.4) is weaker than the maximal angle condition since it is equivalent toi � ¬ d Øjf ¶ y £ ¬ i 4ml × ' y £ 7
for some l8ò�[ and then allows

d Øef ¶ y £ to tend to
i

.
In a similar manner we prove the
LEMMA 4.3. Assume given a 3D triangulation � made of tetrahedra ® satisfying× ' y £ §5� *onqp Hc" � 7(4.5)

where H is a matrix made of three vectors ` � , �t�ùÓV7h�\7=� , where ` � are the direction of the
edges sharing a common vertex and such that � ` � �,��Ó . Assume that �´E � 7}H � " corresponds
to the Raviart-Thomas element of order 0 (i.e. defined by (4.1)-(4.2) with ����[ ). Then (2.9)
holds.

Proof. By Lemmas 5.1 and 5.2 of [1] for any ®��%� , we haveq S 4lë � S q £ § × ' y £� *onqp Hc" � q 0ªS q £ 7
and we conclude with the assumption (4.5).

Note that the regular vertex property introduced in [1] implies (4.5), note furthermore that
Theorem 5.10 of [1] implies that (2.9) holds under the maximal angle condition introduced
by Krizek [21] and quite often used for anisotropic meshes [4, 3].

Let us now pass to rectangular meshes.
LEMMA 4.4. Assume given a 2D triangulation � made of rectangles such that the edges

of the elements are parallel to the U ' or U � axis. Assume that �´E��\7}Hg�B" corresponds to the
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Raviart-Thomas element of order 0 or 1 (i.e. defined by (4.1)-(4.2) with �
��[ or 1). Then
(2.9) holds.

Proof. Denote by ° ' , °t  the edges of ® parallel to the U ' axis. Then by definition of the
interpolant ë8�VS of S we remark that S ' 4���ë8� S " ' has a mean zero on ° ' and S � 4æ��ë1�VS " �
has a mean zero on ° � , therefore by a standard scaling argument we haveq S 4�ë8� S q £ §r%�=Ü ' y � × � q � � ��S 4�ë8� S " q £ 7(4.6)

where

× � means here the length of °<� , �X�èÓV7h� . It then remains to estimate
q �V�Yë1�VS q £ . For

that purpose we distinguish between the cases �Ï�f[ and �X�5Ó .
For �X�f[ we shall prove that q 0ªë1�VS q £ § q 0�S q £ 7(4.7)

while for �Ï�ÔÓ , we shall prove thatq � � ë � S q £ § q � � S q £ W × O '� q S q £ �(4.8)

In both cases these estimates yieldq S 4lë � S q £ § × ' y £ q 0ªS q £ W q S q £ �
and the conclusion follows by summing the square of this estimate on ®��%� .

In the case �Ï�f[ , we remark thatë1�VS �´U2"��]s ¦ ( Wg¦ ' U '¨ ( W�¨ ' U �ut 7
for some real numbers ¦,��7}¨p�^7=�R��[A7�Ó . Consequently we get� ' ë � S ��¦ ' s Ó[ t 7h� � ë � S ��¨ ' s [ Ó t �
Now by Green’s formula, the fact that the edges of ® are parallel to the axes and the interpo-
lation properties, we may successively write

Ð
£ � ' ��ë1�VS " ' �

Ð v £ µ ' ��ë1�VS " ' �
Ð
¼ |�w ¼Qx µ ' ��ë1�VS " '� Ð

¼ |�w ¼Qx ë8� S Q�µ_� Ð
¼ |�w ¼Qx S Q�µ� Ð

¼ |�w ¼Qx µ ' S ' �
Ð
£ � ' S ' �

By the fact that � ' ��ë � S " ' is constant and by Cauchy-Schwarz’s inequality we obtain� � ' ��ë � S " ' �¡¬Ô� ®ª� O '��h� q � ' S ' q £ �
Integrating the square of this estimate on ® we arrive atq � ' ��ë8� S " ' q �£ ¬ q � ' S ' q �£ �
Since a similar argument yields q � � ��ë8� S " � q �£ ¬ q � � S � q �£ 7
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we have proved (4.7) (recalling the form of � � ��ë � S " ).
For �Ï�ÔÓ , ë � S has the formë � S ��U�"��ys ¦ ( W�¦ ' U ' Wg¦ � U~�' W�¦   U � Wg¦ � U ' U � W�¦�z�U~�' U �¨ ( W�¨ ' U � Wæ¨ � U �� Wæ¨p �U ' Wæ¨ � U ' U � W�¨ z U ' U �� t 7

for some real numbers ¦,��7}¨p�^7=�R�f[\7�QYQ�Q�7�{ . Consequently we get� ' ë � S �]s ¦ ' W�� ¦ � U ' Wg¦ � U � Wæ�@¦ z U ' U �¨p �W�¨ � U � Wæ¨ z U �� t �
For the estimation of � ' ��ë1�VS " ' , applying Green’s formula and the interpolation properties
we have

Ð
£ � � ' �)ë � S " ' � � �54 Ð

£ ��ë � S " ' � �' �)ë � S " ' W
Ð v £ µ ' ��ë � S " ' � ' ��ë � S " '�54 Ð

£ ��ë � S " ' � �' �)ë � S " ' W
Ð
¼ |�w ¼Qx µ ' �)ë � S " ' � ' ��ë � S " '�54 Ð

£ ��ë8� S " ' � �' �)ë1�VS " ' W
Ð
¼ |�w ¼Qx �)ë1�BS "RQ�µ¹� ' �)ë1�BS " '�54 Ð

£ ��ë8� S " ' � �' S ' W
Ð
¼ ||w ¼Qx S Q�µ¹� ' ��ë8�BS " '� Ð

£ � ' �)ë1�VS " ' � ' S ' �
By Cauchy-Schwarz’s inequality we obtainq � ' �)ë � S " ' q £ ¬ q � ' S ' q £ �
By symmetry we actually haveq � � ��ë8�VS "n� q £ ¬ q � �YS � q £ for ���5Ó 7h�\�(4.9)

For the estimation of � ' ��ë8�BS " � , recalling that it is constant we may start with� ' ��ë � S " �
Ð
£ U ' � × ' 4�U ' "��

Ð
£ � ' �)ë � S " � U ' � × ' 4�U ' "�7

where ��U ' 7=U � " are local Cartesian coordinates such that ° � is a subset of the U � axis and ° �
is a subset of the line U ' � × ' . In the above right-hand side, applying Green’s formula we
get � ' ��ë8� S " �

Ð
£ U ' � × ' 4�U ' "3�54 Ð

£ ��ë8� S " � � ' k U ' � × ' 4�U ' "nmn7
since the boundary term is zero. Using the interpolation properties we obtain� ' ��ë � S " �

Ð
£ U ' � × ' 4�U ' "3�c4 Ð

£ ��ë � S " � � × ' 4é�¢U ' "�c4 Ð
£ ��ë � S "RQ�s [× ' 4l�@U '}t�c4 Ð
£ S Q s [× ' 4é�¢U ' t�c4 Ð
£ S � � × ' 4l�@U ' "p�
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This proves the identity � ' �)ë1�VS " � �Ô4 L £ S � � × ' 4l�@U ' "L £ U ' � × ' 4�U ' " �
Cauchy-Schwarz’s inequality and direct calculations yield� � ' �)ë1�VS " � � § × O '' � ®�� O '��h� q S � q £ �
Integrating the square of this inequality on ® leads toq � ' �)ë1�VS " � q £ § × O '' q S � q £ �
Exchanging the role of Ó and 2, we have proved thatq � � ��ë8�BS " � q £ § × O '� q S � q £ for � ä�~�2�(4.10)

The estimates (4.9) and (4.10) immediately give (4.8).
Obviously the above result is still valid for a 3D triangulation made of rectangular hexa-

hedra with V8® ( or V8® ' .
Let us go on with the case of pentahedra.
LEMMA 4.5. Assume given a 3D triangulation � made of rectangular pentahedra ®f�® ' FZõ , where õ is a real interval and ® ' is a 2D triangle, which satisfies× ' y £ § H +.Ûed Øef ¶ y £¢â �(4.11)

Assume that ��E��A7hHg�B" corresponds to the Raviart-Thomas element of order 0 (i.e. defined by
(4.1)-(4.2) with �X��[ ). Then (2.9) holds.

Proof. Arguments like Lemmas 4.1 and 4.2 of [1] yieldq S ��4��ë8� S "�� q £ § × ' y £H +.Ûed Øef ¶ y £@â q 0Z��S 4�ë8� S " q £ for �R�5Ó 7}�,7q S  <4��ë8�BS "�  q £ § × ' y £ q 0Z��S 4�ë8� S " q £ �
The assumption (4.11) then yieldsq S 4lë1�VS q £ § q 0Z��S 4�ë8� S " q £ �(4.12)

It then remains to estimate
q 0ªëa� S q £ . Remarking thatë � S �´U�"��2�� ¦ ( Wg¦ ' U '¨ ( W�¦ ' U �l ( W�l ' U  u�� 7

for some real numbers ¦ � 7}¨ � 7|l � 7=�R��[\7�ÓV7h� , we see that� ' ë1�VS ��¦ ' �� Ó[[ �� 7h� � ë1�BS ��¦ ' �� [ Ó[ �� 7=�¡ �ë8� S �´U2"��~l ' �� [[ Ó �� 7
which in particular imply

*,+b- ë8�BS ���@¦ ' W�l ' .
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Denote by ° � 7=�P�eÓ 7}� the two faces of ® perpendicular to the U   axis. As before by
Green’s formula and the interpolation properties, we may successively write

Ð
£ �B V��ë8� S "^ 8� Ð v £ µ¹ V��ë8� S "^ 8� Ð

¼ â w ¼ | µ¹ V��ë8� S "^ � Ð
¼ â w ¼ | ë8� S Q�µ_� Ð

¼ â w ¼ | S Q�µ� Ð
£ �B YS  @�

By the fact that �,  �)ë1�VS "�  is constant and by Cauchy-Schwarz’s inequality we obtain� �¡ V�)ë1�VS "� B�,¬:� ®�� O '��h� q �¡ �S   q £ �
Integrating the square of this estimate on ® we arrive atq �¡  �)ë1�VS "�  q �£ ¬ q �B YS   q �£ �

A similar argument leads to q *,+.- ë1�BS q �£ ¬ q *,+b- S q �£ �
By the form of �¡�h��ë8� S " , the two above estimates imply thatq 0Z��ë1�BS " q �£ § q 0�S q �£ �

This estimate in (4.12) gives q S 4lë1�BS q £ § q 0ªS q £ 7
which leads to the conclusion.

We end this section by showing that the approximation measure ¦ is bounded from above
by 1 for isotropic meshes:

LEMMA 4.6. For any isotropic mesh � and the above finite element spaces,¦2��S 7=�g"3§5Ó 7^]2S �ék & ' �!�#"nm � �
Proof. By the proof of Lemma 4.1, we haveq S 4lë1�VS q �£ § q / £ q � q / O '£ q � Ð £ � 0ªS � � �

Since for an isotropic mesh we have
q / £ q © × ' y £ and

q / O '£ q © × O 'Ø �bÙ y £ © × O '' y £ , we get× O �Ø �bÙ y £ q S 4lë1�VS q �£ © × O �' y £ q S 4�ë8� S q �£ § Ð
£ � 0ªS � � �

We conclude by summing this estimate on ®:��� .
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5. Error estimators.

5.1. Residual error estimators. For C � ��E � we define the jump of /�O ' C � in the
tangential direction across a face ° by� ¼ y � �vC � "#iÀ��� Ã Ã /PO ' C �PQ�½ ¼ Ä Ä ¼ in 2D,Ã Ã /PO ' C �ÏF�µ ¼ Ä Ä ¼ in 3D.

In 2D,
� ¼ y � �DC �B" is a scalar quantity, but for shortness we write it as a vector, allowing us

to treat the 2D and 3D cases in the same time.
DEFINITION 5.1 (Residual error estimator). For any ®¥�� , the local residual error

estimator is defined by� �£ iD� q ��W *,+.- C � q �£ W × �Ø �bÙ y £ q curl �)/ O ' C � " q �£W × �Ø �.Ù y £ Èª+bÛ�|M '6� M q / O ' C �a4é0 ` � q �£ W�%¼�� v £
× �Ø �.Ù y £× ¼ q � ¼ y � �DC �V" q �¼ �

The global residual error estimator is simply� � iÀ�@%£ '65 � �£ �
5.2. Proof of the lower error bound. We proceed as in [8] with the necessary adapta-

tion due to the anisotropy of the meshes (compare with [18, 12]).
THEOREM 5.2 (Lower error bound). Assume that there exists ����T such that �)/�O ' C �B" à £

belongs to ê � , for all ®:�%� . Then for all elements ® , the following local lower error bound
holds: � £ § q � q rtsvuYw x¹y ��� z W q � q £ �(5.1)

Proof. Curl residual By the inverse inequality (3.1) and Green’s formula, one hasq
curl ��/ O ' C �B" q �£ © Ð

£ ¨ £ � curl ��/ O ' C �V"Y� ��54 Ð
£ ¨ £ curl ��/ O ' � "RQ curl ��/ O ' C �B"�54 Ð
£ �)/ O ' � "·Q curl �!¨ £ curl ��/ O ' C � "="¬ q / O ' � q £ q curl �!¨ £ curl ��/ O ' C � "=" q £ �

The inverse inequality (3.2) yields× Ø �bÙ y £ q curl ��/ O ' C � " q £ § q � q £ �(5.2)

Tangential jump Set O ¼�iÀ��üVýnþpÿp� � ¼ y � �DC � "�"=¨p¼#7
which belongs to & '( � Î·¼�" in 2D and to k & '( � ÎR¼�"nm   in 3D. The inverse inequality (3.3) yieldsq � ¼ y � �vC �V" q �¼ § Ð

¼ � ¼ y � �DC �B"RQqO ¼ �Ô4 Ð
¼ � ¼ y � ��� "·Q�O ¼ �
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Elementwise integration yieldsq � ¼ y � �DC �B" q �¼ §�%£ � � 
Ð
£ jB��/ O ' � "·Q curl O ¼ 4 curl ��/ O ' � ">QqO ¼ o� %£ � ��
Ð
£ j¡��/ O ' � "RQ curl O ¼
W curl ��/ O ' C � "RQ�O ¼<o§ q / O ' � q �� q curl O ¼ q �� W�%£ � �� q curl ��/ O ' C �B" q £ q O ¼ q �� �

By the estimate (5.2) we getq � ¼ y � �DC � " q �¼ § q � q �  � q curl O ¼ q �  W × O 'Ø �bÙ y £ q O ¼ q �  "p�
The inverse inequalities (3.4) and (3.5) lead toq � ¼ y � �vC �V" q ¼ § × '��h�¼× Ø �bÙ y £ q � q �� �(5.3)

Element residual The inverse inequality (3.1) and the fact that C �f/10�$ yieldq / O ' C �P4l0�$�� q �£ © Ð
£ ¨ £ ��/ O ' C �a4é0�$2�B"RQ �)/ O ' C �P4é0�$2�B"© Ð
£ ¨ £ ��/ O ' � 4é0��¢"RQV��/ O ' C �a4l0�$��V"��

Using Green’s formula we getq / O ' C �P4é0�$2� q �£ § Ð
£ ¨ £ ��/ O ' � "RQB��/ O ' C �P4l0�$��V"�W Ð

£ � *,+b- �!¨ £ �)/ O ' C �Ì4l0�$��V"="p�
Cauchy-Schwarz’s inequality and the inverse inequality (3.2) lead to× Ø �.Ù y £ q / O ' C � 4é0�$ � q £ § q � q £ W q � q £ �(5.4)

Using the estimates (5.2) and (5.3) and (5.4) provides the desired bound (5.1).

REMARK 5.3. The assumption of theorem 5.2 is not always fulfilled, even if C � is
elementwise polynomial, since /�O ' is not necessarily elementwise polynomial. However, it
holds if / is piecewise constant.

5.3. Proof of the upper error bound. The use of Lemma 3.5 allows to prove the fol-
lowing error bound on � .

LEMMA 5.4. Let ` �ùk & ' �)�#"Åm � be the solution of (3.11) with A� � and satisfying
(3.12), obtained in Lemma 3.5. Then the next estimate holdsq � q § q � q W�¦2� ` 7=�g" � �(5.5)

Proof. By (3.11) we may writeq � q � � Ð
M ��$�4�$2�B" *,+b- ` �
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By Green’s formula and the fact that 0�$��f/�O ' C (recall that $��f[ on ��� ) we getq � q � �c4 Ð
M ��/ O ' C ">Q ` 4 Ð

M $ � *,+b- ` �
Now using the commuting property (2.8) we obtainq � q � �c4 Ð

M ��/ O ' C "·Q ` 4 Ð
M $2� *,+b- ë8� ` �

The discrete mixed formulation (2.1) then leads toq � q � �Ô4 Ð
M �)/ O ' �vC 4ZC � "�"RQ ` 4 Ð

M �)/ O ' C � "RQ � ` 4�ë � ` "��
Since Green’s formula on each element and the properties (2.8) and (2.10) imply that%£ '65

Ð
£ 0 ` �PQ � ` 4lë1� ` "3�f[A7Å] ` ���_Hg�\7

we have shown thatq � q � �c4 Ð
M ��/ O ' �vC 4�C �B"�">Q `4 %£ '65

Ð
£ ��/ O ' C � 4é0 ` � "RQV� ` 4lë � ` "p7^] ` � �_H � �

Now Cauchy-Schwarz’s inequality leads toq � q � ¬ q / O ' �DC 4ZC �V" q q ` qW�%£ '65 q / O ' C �P4é0 ` � q £ q ` 4lë1� ` q £ 7Å] ` �ª�%Hg�A�
Using the definition of the approximation measure ¦ we obtainq � q � ¬ - q / O ' �vC 4�C �B" q W�¦2� ` 7=�g"��Q%£ '65 × �Ø �.Ù y £ q / O ' C �a4é0 ` � q �£ " '��h� / q ` q ' y M 7
for any ` �X�_Hg� . The conclusion follows from the estimate (3.12).

Comparing the above lemma with Lemma 5.2 of [8], we remark that the use of Lemma
3.5 allows to avoid the & � -regularity of the solution of (1.1).

It remains to estimate the error bound on � , which is obtained by adapting Lemma 5.1 of
[8]. We start with a Helmholtz like decomposition of this error.

LEMMA 5.5. There exist Õ ��& '( �)�#" and G ��& ' �)�#" in 2D or G ��k & ' �)�#"nm   in 3D
such that � �f/10 Õ W curl G 7(5.6)

with the estimates q Õ q ' y M § q � q(5.7) q G q ' y M § q � q �(5.8)
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Proof. Firstly we consider Õ ��& '( �)�#" as the unique solution of
*,+b- �)/10 Õ "�� *,+b- � , i.e.,

solution of
Ð
M ��/10 Õ "RQY0�O�� Ð

M � QT0�OÌ7^]QOc��& '( �!�#"p7
which clearly satisfies (5.7). Secondly we remark that � 4�/10 Õ is divergence free so by
Theorem I.3.1 or I.3.4 of [17], there exists G �l& ' �)�#" in 2D or G �k & ' �!�#"nm   in 3D such
that

curl G ��� 4l/10 Õ
with the estimate q G q ' y M § q � 4l/10 Õ q 7
which leads to (5.8) thanks to (5.7).

For the sake of shortness, in the above lemma, we use exceptionally the notation G in 2D
for the scalar function appearing in the decomposition (5.6).

LEMMA 5.6. If Õ and G are from Lemma 5.5 then the next estimate holdsq � q § �^Ó�W 0 ' ��G 7h�g"�" � �(5.9)

Proof. Since Green’s formula yields
Ð
M 0 Õ Q curl G �f[A7

we may write
Ð
M �)/ O ' � ">Q�� � Ð

M �)0 Õ "RQ�� W Ð
M ��/ O ' curl G ">Q curl G �(5.10)

We now estimate separetely the two terms of this right-hand side. For the first one ap-
plying Green’s formula we get

Ð
M �)0 Õ "RQ�� �54 Ð

M Õ *\+.- �
By Cauchy-Schwarz’s inequality we obtain����

Ð
M �)0 Õ "·QY� ���� § q *\+.- � q q Õ q ' y M �

Using finally the fact that
*,+b- C �c46� and the estimate (5.7), we conclude����

Ð
M �)0 Õ "·QY� ���� § q ��W *,+.- C � q q � q �(5.11)

For the second term of the right-hand side of (5.10) we take G � �E! "�# G . By (5.6) and
Green’s formula, we have

Ð
M ��/ O ' curl G "·Q curl G ��� Ð

M �)/ O ' � ">Q curl G �A�
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As curl G � belongs to E � (due to (2.5)), by the orthogonality relation (2.2) the above identity
becomes

Ð
M �)/ O ' curl G ">Q curl G � � Ð

M � *,+b- curl G � ��[\�
This identity allows to write

Ð
M ��/ O ' curl G ">Q curl G � Ð

M �)/ O ' curl G "RQ curl ��G 4;G � "p�
Using the Helmholtz decomposition (5.6) and the fact that C �f/80�$ it becomes

Ð
M �)/ O ' curl G "·Q curl G � Ð

M �)0Z�´$�4 Õ "·4l/ O ' C �B"RQ curl ��G 4?G �B"p�
Green’s formula in � (the boundary term being zero since $�4 Õ ��[ on the boundary) leads
to

Ð
M ��/ O ' curl G "·Q curl G �54 Ð

M �)/ O ' C �B"RQ curl ��G 4;G �B"p�
Now applying Green’s formula on each element ® we get

Ð
M ��/ O ' curl G "RQ curl G �Ô4�%£ '65

Ð
£ curl �)/ O ' C �B"RQ ��G 4;G �B"W %¼ '>=

Ð
¼ � ¼ y � �DC � "·QV��G 4?G � "p�

Continuous and discrete Cauchy-Schwarz’s inequalities yield����
Ð
M ��/ O ' curl G ">Q curl G ���� ¬- %£ '65 × �Ø �bÙ y £ q curl �)/ O ' C �B" q �£ / '��h� - %£ '65 × O �Ø �.Ù y £ q G 4;G � q �£ / '��=�W - %¼ '>= × �Ø �bÙ y ¼ × O '¼ q � ¼ y � �vC �B" q �¼�/ '��h� - %¼ '>= × O �Ø �bÙ y ¼ × ¼ q G 4?G � q �¼�/ '��h� �

By Lemma 3.4 we obtain����
Ð
M ��/ O ' curl G "RQ curl G ���� § 0 ' ��G 7=�g" � q 0�G q �

According to (5.8) we arrive at the estimate����
Ð
M ��/ O ' curl G "RQ curl G ���� § 0 ' ��G 7=�g" � q � q �(5.12)

The conclusion directly follows from the identity (5.10) and the estimates (5.11) and
(5.12).

Using the two above Lemmas and recalling that
*\+.- � �54Ì�)�>W *,+b- C � " we have obtained

the
THEOREM 5.7 (Upper error bound). Let ` �ék &l'@�)�#"Åm � be the function from Lemma 5.4

and G the function from Lemma 5.5. Then the error is bounded globally from above byq � q W q � q r6svuYw xdy MAz §÷�^Ó�W�¦�� ` 7=�g"¹W 0 ' ��G 7h�g"�" � �(5.13)
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5.4. Applications to isotropic meshes. Our results apply to any element pairs from
Section 4 on isotropic meshes. In that case we have

× Ø �bÙ y £ © × £ © × < for all faces Ò of® (recall that

× £ is the diameter of ® ), 0 ' ��Q.7h��"1©¥Ó and ¦2��Q.7h�g"8§�Ó . As a consequence
the above results may rephrased as follows: the local residual error estimator is given by (see
[8]) � �£ iD� q �XW *,+b- C � q �£ W × �£ q curl ��/ O ' C �B" q �£W × �£ ÈX+bÛ��M '6� M q / O ' C � 4l0 ` � q �£ W × £ %¼�� v £ q � ¼ y � �DC � " q �¼ �
With this definition the lower error bound (5.1) holds under the same assumption on C � than
in Theorem 5.2, while the upper error bound (5.13) reduces toq � q W q � q r6svu�w x¹y M~z § � 7
without any regularity assumption on the solution of (1.1).

6. Numerical experiments. In this section, we present two �V� experiments which con-
firm the efficiency and reliability of our estimator. The first example treats the case of a
smooth solution presenting a boundary layer, while the second example considers the case of
a singular solution (not in & � �!�#" ) having an edge singularity. The first example was chosen
to show that the alignment and approximation measures are not an obstacle for the efficiency
and reliability of the estimator, while the choice of the second example is motivated by the
relaxation of the & � -regularity of the solution.

6.1. Solution with a boundary layer. The present experiments consist in solving the
three dimensional mixed problem (2.1) with /���õB� on the unit cube ���è��[A7�ÓT"   . Here, we
use the Raviart-Thomas element V8® ( described in Section 4, on anisotropic Shishkin type
meshes composed of tetrahedra. Each mesh is the tensor product of a 1D Shishkin type mesh
and of a uniform 2D mesh, both with µ subintervals. With \��l��[\7YÓT" being a transition point
parameter, the coordinates �´U � 7�Â � 7 Õ � " of the nodes of the hexahedra are defined by�VU ' iÀ���4\�c¢µ>7��VU � iÀ���\��Ó#4;\A"|cNµ>7 �VÂX�5Ó�cNµ>7÷� Õ �cÓ4cNµ>7I��J ��K U � := �B�VU ' �)[X¬���¬�µ�c@�V"p7U � := \�Wf���d4�µ�c@�V",� U � ��µ�c@�#WfÓP¬æ�3¬�µ�"p7Â � := ���VÂ �)[X¬���¬æµ�"�7Õ � := �<� Õ �)[X¬`��¬�µ�"p�
Each hexahedron is then divided in three tetrahedra, without adding any node (see Figure
6.1).

The discrete problem (2.1) is solved with an Uzawa-type algorithm. The number of
degrees of freedom for the determination of C � is equal to the number of faces �_Ò of the
mesh. The tests are performed with the following prescribed exact solution $ :$R�´Ud7�Â27 Õ " � U·�^Ót4�U�"^Â��^Ó#4lÂ\" Õ �^Ó<4 Õ "^� O .� � �
This allows to have in particular $ à � � [ . Note that

v¡ v ¶ presents an exponential boundary
layer along the line U��f[ that does not converge uniformly towards zero when ¢ goes towards
zero. The transition parameter \ involved in the construction of the Shishkin-type mesh is
defined by \�iÀ� ÈX+.Û jBÓ�c �,7h� ^ ¢A� Ç Û ^ ¢\�Do , which is roughly twice the boundary layer width.
The maximal aspect ratio in the mesh is equal to Ó4c,�!�4\A" .
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FIG. 6.1. Shishkin type mesh on the unit cube with £a�U¤ and ¥t�Y¦¡§ 	©¨ .
Now we investigate the main theoretical results which are the upper and the lower error

bounds. In order to present the underlying inequalities (5.13) and (5.1) appropriately, we
reformulate them by defining the ratios of left-hand side and right-hand side, respectively:á Sqª)«P� �.� �,�.�YW��b� � �b� r6s div y MAz� as a function of �_Ò ,á Sq¬ P®l� È¯84:£ '65 � £�b� � �.� r6s div y � � z W��.� �,�.� £ as a function of �_Ò .

The first ratio S ª�« is frequently referred to as effectivity index. It measures the reliability
of the estimator and is related to the global upper error bound. In order to investigate this er-
ror bound, recall first that the factor ��ÓRW�¦2� ` 7h��"~W 0 ' ��G37h��"=" is expected to be of moderate
size since we employ well adapted meshes (cf. Theorem 5.7). Hence the corresponding ratioSqª)« should be bounded from above. This is actually confirmed by the experiments (left part
of Figure 6.2), where we even notice that the quality of the upper error bound is independent
of ¢ . Thus the estimator is reliable.

The second ratio is related to the local lower error bound and measures the efficiency of
the estimator. According to Theorem 5.2, Sq¬ P® has to be bounded from above. This can be
observed indeed in the right part of Figure 6.2, as soon as a sufficiently resolution of the
boundary layer is achieved (the smaller ¢ is, the larger �_Ò must be). Hence the estimator is
efficient.

6.2. Singular solution. Let us now consider the three dimensional mixed problem (2.1)
with /��èõB� on the truncated cylinder domain � defined in the usual cylindrical system of
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FIG. 6.2. °�±�² (left) and °�³ ´¶µ (right) in dependence of ·¹¸ , anisotropic solutions.

coordinates ��º¢7 d 7 Õ " by : I����J ����K [X¬»º�¬[\�bÓ 7[X¬ d ¬  |¼� 7[X¬ Õ ¬æ[A�.ÓV�
The tests are performed with the following prescribed exact solution $ satisfying the

homogeneous Dirichlet boundary conditions on ��� and defined by :$·��º¢7 d 7 Õ "3�½º | ¾ �)[\�bÓ#4;º@" H +bÛÀ¿ �KÁ ÃÂ Õ ��[A�.Ó<4 Õ "��
This solution $ does not belong to & � �)�#" , and has the typical edge singular behaviour

near the edge º�� [ . Because of this edge singularity, the mesh is refined in the radial
direction near the axis of the cylinder, making it anisotropic (see Figure 6.3). The finite
element and the algorithm are the same as in Section 6.1.

Once again, we plot S�ª)« and S ¬ R® defined in Section 6.1 versus �_Ò . This is done in
Figure 6.4. Each of these two parameters is bounded from above. That confirms that the esti-
mator is actually reliable and efficient, even for a singular solution as theoretically expected.

The tests presented in this section have been performed with the help of the NETGEN
mesh generator (Johannes Kepler University of Linz in Austria) and the SIMULA+ finite
element code (MACS, University of Valenciennes and LPMM, University and ENSAM of
Metz, both in France).
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