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A STUDY OF THE FAST SOLUTION OF THE OCCLUDED RADIOSITY
EQUATION

�
KENDALL ATKINSON

�
AND DAVID CHIEN

�
Abstract. Consider the numerical solution of the radiosity equation over an occluded surface � using a col-

location method based on piecewise polynomial interpolation. Hackbusch and Nowak [Numer. Math., 54 (1989)
pp. 463–491] proposed a fast method of solution for boundary integral equations, and we consider the application of
their method to the collocation solution of the radiosity equation. We give a combined analytical and experimental
study of the ‘clustering method’ of Hackbusch and Nowak, yielding further insight into the method.
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1. Introduction. The radiosity equation is a mathematical model for the brightness of
a collection of one or more surfaces when their reflectivity and emissivity are given. The
equation is

(1.1) � ���	��

� ���	�� ��� � ���	�����������	�����������	�����! #"%$&�'�	�(� �*)+���
with � �'�	� the “brightness” or radiosity at

�
and

$&���	�
the emissivity at

�,)+�
. The function� ���	� gives the reflectivity at

�-).�
, with /10 � ���	�3254

. In deriving this equation, the
reflectivity at any point of

�6)7�
is assumed to be uniform in all directions from

�
; and in

addition, the diffusion of light from all points
�,)+�

is assumed to be uniform in all directions
from

�
. Such a surface is called a Lambertian diffuse reflector. The radiosity equation is used

in the approximate solution of the ‘global illumination problem’ of computer graphics; see
Cohen and Wallace [9] and Sillion and Puech [21].

The function
�

is given by

(1.2)
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In this

I > is the inner unit normal to
�

at
�

, = > is the angle between
I > and

�Q
1���
andI  

and =  are defined analogously; cf. Figure 1.1. The function
���'���R�	�

is a “line of sight”
function. More precisely, if the points

�
and

�
can “see each other” along a straight line

segment which does not intersect
�

at any other point, then
�&�������	��"54BS

and otherwise,�&�������	�T" / . An unoccluded surface is one for which
�.U.4

on
�

; otherwise the surface is
called occluded.

The numerical solution of the unoccluded case by collocation methods has been studied
previously. For example, see [4] for piecewise constant and piecewise linear approximations
over unoccluded piecewise smooth surfaces. For an analysis of the effects of edges and
corners on the solvability of the radiosity equation and its numerical solution, see [14], [15],
and [18]. For a discussion of the numerical integration needed in implementing collocation
methods, see [6] and [19]. Note that

�
need not be connected; and

�
is usually only piecewiseV
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FIG. 1.1. Illustrative graph for defining radiosity kernel (1.2)

smooth. General introductions to the derivation, numerical solution, and application of the
radiosity equation (1.1) from a computer graphics perspective can be found in the books [9]
and [21].

One of the principal problems in solving (1.2) is the very large operations cost in setting
up and solving the large linear systems that arise when discretizing the integral equation. This
is true with both Galerkin methods and collocation methods. The matrix coefficients with
Galerkin methods are four-fold integrals, and those with collocation methods are two-fold
integrals; and near to edges and corners of

�
, the integrands can be nearly singular. In [5] we

proposed and illustrated the use of Hackbusch’s clustering method [12] for the solution of the
linear system arising with the collocation method in the case that the surface

�
is unoccluded.

In that case, the operations cost is WQX'Y[Z :]\B^ Y`_ , where Y denotes the number of elements into
which

�
is sub-divided in the discretization of the integral equation. The present paper is an

analytical and experimental study of the clustering method in the case the surface is occluded.
In particular, it is shown that it is not possible to have as good an operations cost as is possible
with unoccluded surfaces.

There has been a great deal of work done by researchers from the computer graphics
community on rapid methods of solution of discretizations of the radiosity equation. For
examples of this, see [10] and [13]. Their perspective is different than that of numerical
analysts, who are usually interested in asymptotic rates of convergence regarded as a function
of the discretization parameter, and this results in a different way of analyzing operation
counts. We comment on this later when our methods are illustrated numerically.

We often write (1.1) in the simpler form

(1.3) � �'�	�K
 �a�cb �������	� � ���	�����! #"d$��'�	�e� �*)f�g�
b �'�����h�i" � �'�	�� ���'�����h�j�k�'�����h�e�

or in operator form as

(1.4)
�'lh
nm	� � "%$ P

For a discussion of general stability and convergence results for the collocation solution of
this equation, refer to the papers cited above. We note that in general the integral operator

m
is not compact for most surfaces

�
of practical interest, and this has made more difficult the

mathematical analysis of collocation methods.
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We discuss the triangulation of
�

and the definition of the collocation method in o 2.
The clustering method is introduced in o 3, and in o 4 the error analysis from Hackbusch and
Nowak [12] is specialized to the radiosity equation over polyhedral surfaces. In o 5 the surface�

and true solutions � used in our experiments are introduced, and a very brief description
is given of the programs and computing equipment used in the experimental study. In o 6
we give our experimental results, discussing the cost as a function of the parameters of the
numerical scheme.

2. Triangulation and collocation. We limit our presentation to polyhedral surfaces.
The treatment of more general surfaces requires certain nuances which we do not want to
consider here; and the problems and methods in which we are interested are illustrated well
with polyhedral surfaces. Moreover, many of the surfaces of practical interest are polyhedral.

Our scheme for the triangulation of
�

is essentially that described in [1, Chap. 5] and
implemented in the boundary element package BIEPACK, described in [2]. We subdivide
the surface

�
into closed triangular elements prqtsvu and we approximate � by a low-degree

polynomial over each element. We assume there is a sequence of triangulations of
�

, wyx "pzq@x�{ | C�4 0d}&01Y�u � with some increasing sequence of integer values Y , with Y�~�� . In our
codes the values of Y increase by a factor of 4, due to our method for refining a triangulation.
To refine a triangle q x�{ | , we connect the midpoints of its sides, creating four new smaller and
congruent triangular elements. There are standard assumptions made on the triangulations.
We describe the triangulation process briefly, and the details are left to [1, Chap. 5], [2].

Associated with most surfaces are parameterizations of the surface. We assume the sur-
face

�
can be written as �N"��`�i�k� E ��HLHAHL�f���

with each
� s a closed polygonal region. Triangulate

� s , say aspzq s x�{ | C } "Q4]� P�P�P � Yysvu P
This need not be a ‘conforming triangulation’, in contrast to the situation with finite element
methods for solving partial differential equations. For

�
as a whole, define

w�x " ��s�� �K� q s x�{ | C } "�4B� P�P�P � Yys�� P
Sometimes we dispense with the subscript Y in q s x�{ | , although it is to be understood implic-
itly.

We introduce notation and assumptions regarding the mesh size of the triangulationspLw x u . The mesh size of this triangulation is defined by

(2.1) � U � x "����?��R� s ��� ���v��e� | � x?����� �v���(���A�z� q s x�{ | � P
As noted earlier, the elements of wax are denoted collectively by wax " pzq@x�{ | Cy4 0
}�0%Y�u .
With each increase of Y to �]Y in our programs, the mesh size � decreases to

�E � .
Let � � q � denote the center of the smallest circle (or smallest ball if it is in 3D) containingq ,   � q � its radius, and ¡ � q � its area. Introduce

(2.2) ¢Lx "%���?� pr  � q �¤£ q ) w�xyu P
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We assume there are positive numbers ¥�¦ , ¥¤§ for which

  � q ��¨ ¢Ax¥©¦(2.3)

¡ � q ��¨ ¢ Ex¥ §(2.4)

for all q ) w�x . These assumptions imply the mesh scheme is uniform over wªx in the manner
with which the elements decrease in size as Y�~�� .

For purposes of numerical integration and interpolation over the triangular elements inw x , we need a parameterization of each such triangular element with respect to a standard
reference triangle in the plane, namely the unit simplex« " p ��¬]��­j��£ /@0 ¬]��­e��¬¤®D­ 0 4 u P
Let q@x�{ | ) w�x , and let the vertices of q�x�{ | be denoted by pr¯ �?� ¯ E � ¯v°?u . Define a parameteri-
zation function ±�| £ « �R²��~³ x?´ ³ q@x�{ | by

±+| ��¬B��­j�T" �y¯v° ®7­ ¯ E ®#¬ ¯ �?� ��¬]��­j��) «
with � "Q4�
D¬�
G­ . Using this, we can write� §iµK¶ ���	�����  ",C ·�¸ ±f|t¹ · ´�±+| C ��º ¶ � ±f| ��¬B�j­j����� «
since

C ·�¸ ±+|@¹ · ´»±f| C is a constant function, equal to twice the area of q�x�{ | . This formula
can be used to numerically evaluate the left-hand integral by using numerical integration
formulas developed for the region « ; e.g. see [22].

2.1. Interpolatory projections. To define collocation methods, we need to consider
interpolation over the surface

�
. The centroid of q x�{ | is defined as� | " ±f| X �° � �° _ " �° � ¯ �i® ¯ E ® ¯v° � P

Define the operator ¼ x associated with piecewise constant interpolation over
�

by� ¼ x ¶ ���'�	�©" ¶ �'� | �(�8�.) q | � } "�4B� P�P�P � Y
for ¶ ) ¥ ���i� .We also wish to consider approximations based on piecewise linear approximations over
the triangulation wax . Given ½ ) ¥ ���i� , we define the interpolating function ¼¾xB½ as follows,
basing it on interpolation over the unit simplex « . Let ¿ be a given constant with /@01¿ 2 �° ;
and define interpolation nodes in « by

(2.5) prÀ �z� À E � ÀA°]u " p � ¿ � ¿ �e�L� ¿ �L4c
DÁ ¿ �e�L�j4�
7Á ¿ � ¿ � u P
If ¿ " / , these are the three vertices of « ; and otherwise, they are symmetrically placed
points in the interior of « . Define corresponding Lagrange interpolation basis functions byÂ � ��¬B�j­j�T" � 
 ¿4�
GÃ ¿ � Â E ��¬B�j­j�i" ­K
 ¿4�
NÃ ¿ � Â ° ��¬B��­j�i" ¬�
 ¿4�
NÃ ¿
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for
��¬]��­j�¤) « and � ".4�
N¬c
n­ . The linear polynomial interpolating ¶ ) ¥ � « � at the nodes

of (2.5) is given by

¶ ��¬B�j­j�iÄ °Å Æ � � ¶ � À
Æ � Â Æ ��¬B�j­j� P

For ½ ) ¥ ���i� , define

(2.6)
� ¼�x<½ ��� ±+| ��¬B�j­j���T" °Å Æ � � ½ � ±+| � À

Æ ��� Â Æ ��¬B�j­j�(� ��¬B�j­j�¤) «
for } "Ç4]�RÁ�� P�P�P � Y . This interpolates ½ �'�	� over each triangular element q&|GÈ � , with the
interpolating function linear in the parameterization variables

¬
and

­
. Let the interpolation

nodes in q�| be denoted by¯]|r{ Æ " ±+| � À Æ �(� Ég"�4]�RÁ���Ãa� } "�4]� P�P�P � Y P
Then (2.6) can be written

(2.7)
� ¼ x ½ �����	�T" °Å Æ � � ½ � ¯ |r{

Æ � Â Æ ��¬B��­j�e� ��" ± | ��¬B�j­j��) q |
for } "Ê4]� P�P�P � Y . Collectively, we refer to the interpolation nodes pL¯�|r{ Æ u by pr¯ �z� ¯ E � P�P�P � ¯v°�x�u ,
for ¿7ËÌ/ .

Higher degree extensions can be given of the piecewise constant and piecewise linear
interpolation defined above. We refer to [1, Chap. 5] for some of the tools for this, along with
results given in [17]. In our experimental studies, we have considered only piecewise constant
and piecewise linear interpolation. In the numerical experiments discussed in this paper, we
consider collocation methods based on only piecewise linear interpolation. Moreover, we
assume / 2 ¿ 2 4Ã
which forces all interpolation nodes to be interior to each triangle q�| .

2.2. Collocation. The collocation method for solving (1.3) or (1.4) can be written ab-
stractly as

(2.8)
�'lh
 ¼�x m	� �yx " ¼�x $

with ¼�x an interpolatory projection. Our approximations ��x are generally not continuous
over the boundaries of the triangular elements of our mesh for

�
, in part because our collo-

cation node points are chosen interior to the elements of the triangular mesh wªx we impose
on
�

. This is done, in part, to avoid having node points on edges of the original surface
�

as
the normal

I > in (1.2) is undefined where two edges come together. To render the solution
graphically with standard software, we would need to know values at the corner points of
the triangulation; and that is easily accomplished from the solution we obtain at the interior
points, although we do not consider it here.

Let the number of collocation nodes be denoted by
� x (

� x " Y for the centroid method,� x "�Ã Y for the piecewise linear method), and let p � Æ u denote collectively these nodes. Let
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224 K. ATKINSON AND D. CHIENprÍ Æ C?ÉK"Q4B� PLPAP ��� x u denote the Lagrange basis functions for the interpolation scheme being
used. For the centroid rule,

Í Æ �'�	�i"ÏÎ 4]�Ç�*) q Æ �/ �Ç�ÑÐ) q Æ P
For piecewise linear interpolation, use the basis functions implicit in (2.7), which are again
nonzero over only a single triangular element. We also will writeÍ |���Ò Ó ���	�(� } s�{ Ô "dÃLÕ	
GÃ¾® Â � Â ".4]�RÁ���Ãa�
for the three linear basis functions over the element qts . Also introduce the parameter Ö ",4
for the centroid method, and Ö "5Ã

for the piecewise linear method. These ideas extend
naturally to higher degree collocation functions.

The solution of (2.8) reduces to the solution of the linear system

(2.9) � x �'� Æ �g
M� �'�
Æ �� xÅs�� �,×ÅÔØ� � � x �'� | � { Ô � � §�� ���'�

Æ �R�	������� Æ �R�	� Í | ��Ò Ó ���	�����! #"%$��'� Æ �
with Ù � |���Ò Ó £a4 0 Â 0ÌÖ�Ú the Ö collocation nodes inside q s , for

ÉÛ"Ü4B� PLPAP ��� x . We denote
this system symbolically by

(2.10)
��lÝ
 b x ��Þ x "%ß x �

��Þ x � Æ " � x �'� Æ �(� �'ß x � Æ "%$&�'� Æ �e� É�"�4B� P�P�P � Y P
To set up the linear system requires the evaluation of the integrals in (2.9). These may

be evaluated either analytically (cf. [20]) or by numerical integration (cf. [6]). Note that
for

���R�à)á� s for some
Õ
, we have

���������	��" / ; and this avoids the need to calculate
many of the collocation integrals in (2.9). In particular,

� b x � Æ { Æ " / since
����� Æ �R�	�	U /

over a triangular element containing
� Æ

in its interior; and thus the system (2.10) contains no
singular integrals, although some are likely to be nearly singular when

� Æ
is near to an edge

or corner of
�

. In addition, if
���'� Æ ���h�TU / as

�
varies over q s , the corresponding integral

in (2.9) is zero. For codes evaluating these integrals numerically, see [2] and the discussion
in [6].

For more of a computer graphics perspective on the piecewise linear collocation method,
and for another way to evaluate analytically the needed collocation integrals, see [7], [8].

2.3. Iteration. A standard iterative method of solution of (2.10) is based on a simple
fixed point iteration. Define

(2.11)
ÞTâ |(ã ��äx "�ß x ® b x Þiâ | äx � } " / �A4B� P�P�P �

for some given initial guess
Þ âæå äx . Easily,Þ x 
GÞTâ |eã ��äx " b x3ç Þ x 
GÞTâ | äx.è �

and the method converges if é b x�é 2*4 . In this case, the matrix norm being used is the row
norm, compatible with the maximum norm on êTëRì .
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Examining the elements of
b x in the case of piecewise constant interpolation, the ele-

ments are all non-negative and for the sum of the
É ´'í row, we havexÅs�� � � b x �

Æ { s "î� �'�
Æ �� � � �&��� Æ ���h�����'� Æ ���	�a�<�  P

It is well-known that é b x�éÛ0
é m é
when

m
is regarded as an operator on ï�ð ���i� to ï¤ð ���i� , and this is known to be bounded

away from 1; cf. [6]. This proves the convergence of (2.11), with a rate that is independent of
the size of Y . For piecewise linear interpolation, we need to further assume that the reflectivity� ���	� is sufficiently small, although this assumption is probably an artifact of our method of
proof.

3. Approximation by clustering. In practical problems
� x can be quite large, too large

to set up the system for direct solution by standard Gaussian elimination or standard iteration
methods. For larger values of

� x , it is impractical to set up this system completely, and so-
called ‘fast matrix-vector multiplication methods’ are needed. An example of such is given
in [5] for unoccluded surfaces; and other schemes have been proposed based on the ‘fast
multipole method’ and ‘wavelet compression multi-resolution schemes’ (e.g. [11]). For a
computer graphics perspective in designing such a fast method, see [13].

There are two main practical problems in dealing with the linear system

(3.1)
��lÝ
 b x ��Þ x "dß x

when Y is large. First the setup time for the matrix
b x is proportional to Y E , with a large

constant of proportionality. Second, the cost of the iteration method for solving the system
is also proportional to Y E , even though usually we need only a few iterations. The setup
time seems the greater expense in practice, as some of our timings from [5] suggest. In the
following we propose a method to reduce the cost of both the matrix setup and the iteration
procedure to something less than W X Y E _ . However, the method will not be as rapid as that
given in [5], as we discuss later. The method is based on the work of Hackbusch and Nowak
[12], who developed such a method for solving boundary integral equation reformulations
of Laplace’s equation in ê ° . Following we describe their work and adapt it to the radiosity
equation. To simplify the presentation and notation, we consider the collocation method with
only piecewise constant functions ( Ö "ñ4

in (2.9)), but the central ideas are suitable for
piecewise polynomial approximations of any fixed degree and our numerical examples use
piecewise linear collocation. Based on the results given in [3], it does not seem a worthwhile
idea to look at higher degree collocation methods.

We do not compute
b x explicitly. Rather, for a given vector

Þ
, we compute an approx-

imation to
b x Þ . The cost will be much less than it would be if based on first computingb x and then following it with the matrix-vector multiplication

b x Þ , each of which has an
operations cost of W X Y E _ . This approximation of

b x Þ is under the control of two parame-
ters ± and ò to control the approximation error, and the user specifies these parameters. The
parameter ± is a positive integer and the parameter ò )D� / �A4z� ; they are introduced below.

Recall

(3.2)
� b x ÞK� Æ " xÅs�� � � s � §�� b �'�

Æ ���	�����! �� ÉK".4]� P�P�P � Y P
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For each
� Æ

, we subdivide the elements q s of the triangulation w x into three distinct subsets,
called the near field, the far field, and the gray field.

For each
� Æ

, the gray field for
� Æ

contains those elements q s that contain a ‘visibility
line’, meaning that

���'� Æ �R�	�
is neither identically 0 nor 1 over q s . The line of discontinuity

for
���'� Æ �R�	�

, as
�

varies over q s , is called the visibility line. In the original paper [12,o 3], there was no need to consider such elements. The larger cost of our adaptation of the
clustering method from [12, o 3] is due to the existence of this gray field.

The near field contains those elements q s of the triangulation w x that are not in the gray
field and that are ‘sufficiently close’ to

� Æ
. For elements q s in the near field and the gray field,

the corresponding integrals in (3.2) are computed by standard methods; we want to minimize
the number of such integrations. The remaining elements in wªx , those not contained in either
the near field or the gray field, are said to make up the far field. This separation between
the near field and the far field is associated with a parameter ò under the user’s control. For�

belonging to an element qhs in the far field, we approximate
b ��� Æ �R�	�

based on a Taylor
polynomial of degree ± 
Ì4

and then we carry out exactly and efficiently all integrations of
the Taylor polynomial.

We have a sequence of triangulations wóx � Y " Y å � Y �z� P�P�P � Y`ô with w�x]õ the most current
subdivision of

�
. For simplicity, we assume Y�Ô " � Ô Y å , Â ¨ / . Letw�x Ó " Ù q Ô | £ } "�4]� P�P�P � Y�Ô Ú � Â " / �A4B� P�P�P ��ö P

We refer to this triangulation as being at ‘level
Â
’. The collection÷ " w�xvø �nHAHLHL� w�x]õ

can be regarded as a tree structure of clusters of the elements from the finest subdivision wyx]õ
of
�

, from the various levels of the refinement process. For more on this tree structure and its
properties, see [12, o 3].

Given a collocation point
� Æ

, we say a cluster ù ) ÷ is admissible if

(3.3)   � ù � 0úò C � Æ 
 � � ù �AC
and if

���'� Æ ���	�
is constant as

�
varies over ù . If an element q ) wóx]õ is not admissible

and is not in the gray field of
� Æ

, then we say it is in the near field of
� Æ

. The far field for� Æ
is the closure of the complement in

�
of the union of the near field and gray field for

� Æ
.

As ò decreases, the size of the near field increases, and this generally increases the cost of
approximating

b x Þ . The size of the gray field is independent of ò . For theoretical reasons,
we assume there is a constant ò å )D� / �A4z� and we consider the parameters ò satisfying

(3.4) / 2 ò�0úò å .
In the later theoretical analysis of o 4, it is shown that if ò å is chosen sufficiently small, then
various estimates will be true for all ò satisfying (3.4).

An admissible covering of
�

with respect to
� Æ

is a collectionû " prù �z� P�P�P � ùLüzuÝÈ ÷ � �D" �,ü� ù Æ �
with each ù ) û satisfying ù ) w�x]õ or ù admissible P
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It is shown in [12, Prop. 3.9] that for each
� Æ

, there is a unique minimal admissible covering,
unique in the sense of containing a minimum number of clusters ù .

To evaluate
� b x Þ�� Æ , begin by writing the unique minimal admissible covering of

�
with

respect to
� Æ

by �D" ç q ôÆþý ��HLHAHL� q ôÆþÿ è � F ù �g�nHLHAHL� ù�� J
with each ù Æ an admissible cluster and each q ôÆ � a non-admissible element of the current
triangulation w x õ (meaning q ôÆ � belongs to either the near field or the gray field of

� Æ
). Then

(3.5)
� b x Þ�� Æ " üÅs�� � �

Æ � � § õ� � b ��� Æ ���	�a�<�  ® �Ås�� � � � � ��x ���	� b �'� Æ �R�	�����  P
The function ��x ���	� is the piecewise constant function over waxBõ with values determined fromÞ

. The first integrals (over the near field and gray field) are evaluated by traditional means,
by analytic or numerical integration, and this is discussed at greater length in [6], [20]. For
a gray field integral over an element q ) waxBõ , it is important to determine accurately the
location of the visibility line that intersects q , thus allowing an accurate numerical or exact
integral to be computed. For the the remaining integrals over the far field, we proceed as
follows.

3.1. The far field integration. For the integral over ù(s in (3.5), we use Taylor poly-
nomial approximations of

����� Æ �R�	�
and then perform the remaining integration exactly. We

now explain how to do this with some efficiency. This follows ideas in [12].
Let ù ) ÷ . Using a Taylor approximation in

�
of degree ± 
ú4 about � � ù � , write

(3.6)
F ���

G�	�(H I > JC �M
N��C O Ä Å�����
	 � � �'�	�����M
 � � ù ��� � � �*) ù

with � � ù � the center of the circumscribing circle for ù , as introduced earlier. The set
l
�

consists of all multi-integers ¿ ",� ¿ �?� ¿ E � ¿ ° � with¿ � � ¿ E � ¿ ° ¨ / � ¿ � ® ¿ E ® ¿ ° 2 ± P
As customary, if

�á"î����� ò ���B�e� then
� � "�� � ý ò ��� � ��� . We often refer to ± as the order of

the Taylor polynomial approximation.
From (3.6), we can obtain an analogous approximation of

���'���R�	�
:

(3.7)
F ���M
N�	�eH I > J F ����
D�	��HLI  JC �M
N��C O Ä Å�����
	 � � �'�	�����M
 � � ù ��� � P

Note that
I  

is constant over any ù ) ÷ . More important in obtaining (3.7) from (3.6), the
quantity

�'�*
1�h�¤HvI  
is constant over an element ù . To see this, decompose

�*
1�
into

components perpendicular and parallel to ù . All variation in
�

7�

takes place parallel to ù
as
�

varies over ù , and the part perpendicular to ù remains constant. Forming the dot product
with

I  
, the portion parallel to ù is zero, and the result follows that

�'�Ì
��	�!HRI  
is constant

over ù .
Next, expand and rearrange the terms in (3.7) into the form

(3.8)
���������	�TÄ Å�����
	 � � �'��� � � ù ���j� � � �.) ù P
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Return to (3.5), to the approximation of� � � � x ���	������� Æ ���h���<�� P
Recalling that

���'� Æ ���	�iU.4
for
�

in a far field element, use (3.8) to write� � � � x ���	� b ��� Æ ���	�a�<�! 7Äî� ��� Æ �� Å����� 	 � � ����� � � ù �j� � � � � x ���	��� � ���! P
The integrals

(3.9)
� � ��x ���h�j� � ���  � ù ) ÷ � ¿ )+l��

can be evaluated explicitly, and they can be obtained in a preprocessing step before beginning
the iterative solution of (3.1).

What is the operations cost of calculating these integrals? The cost of producing (3.9)
is independent of

�
and of the center of expansion � � ù � , and thus these integrals can be

obtained in W � Y � steps. For unoccluded surfaces
�

, this will result in there being only W � Y �
such integrals to be evaluated.

In greater detail, let ù ) ÷ . Then we can writeù " q ôÆþý ��HAHLHr� q ôÆ µ
for some elements q ôÆ � ) w x õ . Then

(3.10)
� � � x ���	��� � ���! 7" |Ås�� � � x ���	� � § õ� � � � ���! 

since ��x ���h� is constant over each element in wóx]õ . Produce the integrals over the elements
of w�xBõ , and then extend those to the remaining clusters ù ) ÷ using (3.10). Since we are
working with

�
a polyhedral surface, the integrals on the right side of (3.10) can be evaluated

explicitly. Again the cost is W � Y � operations.
Following Hackbusch and Nowak [12], it can be shown that with appropriate choices ofò " ò � Y � and ± " ± � Y � , the quantity

b x Þ x can be approximated, say by �b x Þ x with

(3.11)
��� b x Þ x 
 �b x Þ x ��� ð " W � ��� � é Þ x é ð � Þ x ) ê ëRì

with � the order of the underlying numerical scheme being used. If we assumed sufficient
regularity in the unknown solution � , then � is the order of the collocation approximation
method being used. For piecewise constant collocation, � "�4

and for piecewise linear
collocation, � "*Á . The derivation of (3.11) is discussed in detail in o 4.1. The result (3.11)
also assumes the near field integrals in (3.5) are evaluated with an error consistent with the
right side; in some cases they can be evaluated exactly. For notational purposes, we write�b x Þ x "��b x �Þ x
with

�b x a square matrix of order
� x . We never produce this matrix

�b x explicitly, but it is
useful when giving a theoretical analysis of the approximation.
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The cost of evaluating the portion of �b x Þ x associated with the far field is shown in [12]
to be W � Y[Z :B\<^ Y � operations. Unfortunately, we have the additional cost of evaluating the
collocation integrals in (2.9) for the elements qhs in the gray field for

� Æ
. With a uniform

triangulation of
�

, as assumed in (2.3)-(2.4), even a single visibility line for a field point
� Æ

cutting across a face of
�

will lead to W �! Y � elements intersected by such a line and thus to
an additional operations cost of W �  Y � . When looking at the cumulative effect of W � Y � such
points

� Æ
, we have an additional operations cost of size

(3.12) W � Y  Y � P
Thus the total operations cost cannot be brought below W � Y  Y � for most occluded surfaces
of practical interest, even when we retain the efficiency of the approximations in [12] for the
near and far fields. This result is an improvement on the cost of W � Y E � for the standard setup
and iterative solution, but not what we would have liked.

The near-optimal performance of the clustering method in [12] cannot be matched when
applied to the radiosity equation. Moreover, we do not see how any fast matrix-vector mul-
tiplication method can avoid this problem, due to the W �  Y � elements intersected by each
visibility line for W � Y � collocation points.

4. Theoretical error analysis . In this section, we discuss the error caused by the ap-
proximation of the far field integrations. The numerical integration of integrals over elements
in the near field and the gray field is discussed at greater length in [6].

As we mentioned in o 2.2, the collocation method for solving (1.3) or (1.4) can be written
abstractly as (2.8), ��l	
 ¼ x m	� � x " ¼ x $
The solution of this equation reduces to the solution of the linear system (2.9), or symbolically
as in (2.10), ��l	
 b x ��Þ x "�ß x Pb x is then approximated by

�b x using the method described in o 3.1. Instead of solving the
above system, we solve the system

(4.1) " l	
 �b x�# �Þ x "%ß x P
Using standard perturbation theory, we can guarantee the unique solvability of this new
approximation for Y chosen sufficiently large.

From the theoretical error analysis for the original collocation method, it is known that�'lh
 b x � ²!� exists and is uniformly bounded for all sufficiently large Y , say for Y ¨�$
. In

addition, if � is sufficiently smooth, then

(4.2) é Þ+
NÞ x é ð " W � � � �!� Y ¨%$
with � defined following (3.11); cf. [6]. From (3.11) (or from Theorem 4.1 given below)
we have that

��� b x 
 �b x ��� is sufficiently small for all large values of Y . Using standard

perturbation theory, we have that
�'l3
 �b x � ²�� also exists and is uniformly bounded in Y .

Then the system in (4.1) is uniquely solvable for all large values of Y .
Write Þ�
 �Þ x "Q��Þ+
NÞ x � ®%��Þ x 
 �Þ x �



ETNA
Kent State University 
etna@mcs.kent.edu

230 K. ATKINSON AND D. CHIENé Þ+
 �Þ x é ð 0Qé Þ�
GÞ x é ð ® é Þ x 
 �Þ x é ð P
Using the identity

(4.3)
Þ x 
 �Þ x ".��l	
 �b x � ²�� � b x 
 �b x �jÞ x

we have é Þ x 
 �Þ x`é ð 0�é ��lÝ
&�b x � ²!� é H é � b x 
&�b x ��Þ x�é P
When combined with (3.11) and (4.2), we haveé Þ�
 �Þ x é ð " W � � � ��� Y ¨%$ P

We note an implicit assumption to this work and to that of Hackbusch and Nowak [12].
We want to choose the approximation

�b x in such a way that the operations count for calcu-
lating �b x Þ x is minimized while simultaneously maintaining the rate of convergence of the
original collocation solution in (4.2). This is the reason for desiring the result (3.11), as it
leads via (4.3) to the desired rate of convergence and to the operation counts that we obtain.
In contrast, many fast methods used in the computer graphics community ask only that the
error

b x Þ x 
 �b x Þ x be smaller than something related to the pixel size of the display de-
vice; e.g., see [13]. Both of these perspectives are reasonable, but they can lead to markedly
different interpretations of the phrase ‘optimal operation counts’.

4.1. The error in clustering. We follow the development in [12] to boundé � b x 
 �b x ��Þ x é
and to bound the numbers of elements in the near and far fields of the triangulation. We do so
in the context of all our sub-surfaces being polygonal and planar, and of

m
being the radiosity

integral operator. In this case, more precise results can be obtained and some steps in the
proof are simplified. As notation, recall the definition of ¢ x in (2.2) and let ¢ U ¢ x õ , with Y ô
the index for the current finest level mesh w x õ .

THEOREM 4.1. Let ± be the order of the Taylor expansion of the kernel. Let
b x and�b x be described as above. Then

(4.4) é � b x 
 �b x �jÞ x`é 0d¥ �¾²��?��Á ò � � é Þ x�é ð ¡ ���i� ò Eå ¥ E¦¢ E �j4¤® ò Eå �
where ¥ � ²!� " ��4©® ò å � O Á °��4c
 ò å � � ã O P

Proof. Define } ��'`�)(a�i" �*(h
+'y�gH Y-,C '�
.(�C O �
where

'
,
(

, and Y , are vectors in ê ° . Let } � ²!�v�*' �/(�� be its Taylor expansion of degree± 
14 around
( å ) ê ° . There exists

­¤)G� / ��4z� such that the remainder  � ²!�v�*'&
+( å �)(h
+( å �" } �*' �0(a�K
 } � ²!� �*' �0(a�i" 4±.132 ��]­54 � �*( å ®D­(��(h
+( å �g
.'���H Y-,Cæ��'&
+( å ��
G­(�*(t
.( å �AC O" 4±.162 ��]­�4 � 
	���*'&
+( å �K
G­(�*(@
+( å ����H Y ,Cæ��'&
+( å ��
G­(�*(@
+( å �LC O P
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Define 7 � ­j�©" 
	��� 
G­0�]��H Y ,C � 
G­0�óC O � ­�) ê �8������� Y , ) ê ° P
The analytic continuation 7 ��9��T" 
	���Û
:9;�]�KH Y ,C �Û
:9;�óC O
is holomorphic in

C 9yC�2M4?Ð ¿ with

¿ " ¿ �*���6�B�T" C �ªCC �óC 0úò å 2M4 P
Cauchy’s integral formula yields4±.1 7 â ��ä � ­j�i" 4Á � É=<> ?
> �-@

7 ��9����A9��9	
n­j� � ã � for
C ­AC�2CBt2 4¿ P

Since C 7 �D9<�LC]" C��*�[
:9A�B�KH Y , CC �[
+9;�óC O 0 C �[
+9;�óC�C Y , C�C 9(:B;a= CC �[
:9A�ªC O 0 4C �[
:9A�ªC ° 0 4C�C �óC?
dC 9�C!C �óCþC °" 4C �óC °FEEE 4�
+B > G
>> HI> EEE ° " 4C �óC ° C 4�
+B ¿ C ° for
C 9�C]"%B

and C 9Ý
n­AC�¨JBÛ
14
for / 21­©2M4Ý2CBÝ",C 9yC , we haveEEEE 4±.1 7 â ��ä � ­j� EEEE " EEEEEEE 4Á � ÉK<> ?
> �-@

7 ��9�����9��9Ý
G­j� � ã � EEEEEEE 0 4Á � <> ?
> �-@ C
7 �D9<�LC�� C 9�CC 9	
n­AC � ã �

0 4Á � 4C �óC ° Cæ4�
+B ¿ C ° Á � B��BÛ
14r� � ã � " BC �óC ° Cæ4�
.B ¿ C ° �*B[
14r� � ã � P
For BÝ" 4Á 2 4©® 4¿ 4 " ¿ ®%4Á ¿ ) 2 4B� 4¿ 4 �
the above equation becomesEEEE 4±+1 7 â ��ä �'­j� EEEE 0 � ¿ ®d4z�Á ¿ C �óC ° EEEE 4�
 ¿ ®%4Á EEEE ² ° 2 Á ¿4�
 ¿ 4 � ã �" 2 ¿ ®%44�
 ¿ 4 4C �óC ° 2 Á4�
 ¿ 4 ° 2 Á ¿4�
 ¿ 4 �0 2 4©® ò å4�
 ò å 4 4C �óC ° 2 Á4�
 ò å 4 ° 2 Á ¿4�
 ò å 4 � " 2 4©® ò å4�
 ò å 4 2 Á4�
 ò å 4 � ã�° ¿ �C �óC ° P
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The estimate C �[
L�óCC �óC " EEEE �C �óC 
 �C �óC EEEE 0 EEEE 4�
 C �óCC �óC EEEE 0 4©® ¿70 4©® ò å
implies that 4C �óC 0 4©® ò åC �[
L�óC P
Thus, C   �¾²��?�������]�LC]" EEEE 4±+1 7 â ��ä �'­j� EEEE 0 2 4©® ò å4�
 ò å 4 2 Á4�
 ò å 4 � ã�° C �óC ² ° ¿ �0 2 4©® ò å4�
 ò å 4 2 Á4�
 ò å 4 � ã�° ¿ � 2 4©® ò åC �[
:�ªC�4 ° P(4.5)

For
�Ý"M'&
+( å , �h"%(t
.( å , �Û
L�h"N'�
+( , with

C (h
+( å C 01ò C '&
+( å C , whereòk0úò å �
and define ò " òO 4©® ò E P
Now, (4.5) becomesC } ��'`�P(a�K
 } � ²!�v�*' �P(a�AC]"*C   � ²!�v�*'&
+( å �Q(h
+( å �LC0 2 4©® ò å4�
 ò å 4 2 Á4�
 ò å 4 � ã�° ¿ � 2 4T® ò åC �[
:�ªC*4 °" 2 4©® ò å4�
 ò å 4 2 Á4�
 ò å 4 � ã�° 2 C (t
.( å CC '&
+( å C 4 � 2 4T® ò åCæ��'&
.( å ��
Ì�*(t
.( å �AC 4 °0 2 4©® ò å4�
 ò å 4 2 Á4�
 ò å 4 � ã�° ò � 2 4©® ò åC '&
+(�C 4 ° " �j4©® ò å � O Á ° ��Á ò � ���4�
 ò å � � ã O C '&
+(�C °" ¥ � ²��?��Á ò � � C '�
+(�C ² ° P

For the radiosity kernel,} �'���ª�h�i"ÇF ���M
N�	��HLI > J F �'�

D�	�KHAI  JC ��
D�&C O P
Let } � ²!� be the Taylor expansion of degree ± 
ú4 about

� å forF ���

N�	�KHLI > JC �

D�&C O P
The error isC } �����ª�	��
 } �¾²��?�����y�	�LC]".C F ���

N�	�gHAI  J C EEEE F ���M
G�	�gHAI > JC �M
N��C O 
 } � ²!�]�'���T�	� EEEE0 C �

N�&C ¥ � ²��v��Á ò � �C ��
D�&C ° 0 ¥ � ²!�?��Á ò � �C �

N��C E P
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Given any point
�*)f�

.
û �'�	�

is an admissible covering of
�

w.r.t.
�

. LetR ���	�T" � pLù ) û ���	�¤£ ù is admissible with respect to
� u P

For every ù ) R ���	� ,   � ù � 0 ò H dist
�'��� ù � , which implies

��� ; �z�'��� ù ��¨   � ù ��Ð ò P
For every ù Ð) R ���	� ,   � ù � Ë ò H dist

�'��� ù � , which implies

��� ; �z�'��� ù ��2   � ù ��Ð ò P
Note, ù Ð) R ���	� means that ù is a panel in near field. For every ù ) R ���	� , ù is either a

panel in w x õ or a cluster which contains several panels. Therefore,

  � ù ��¨   � q � Ë ¢¥ ¦ for some q ) w x õ P
For every ù ) R ���	� ,

��� ; �r����� ù ��¨   � ù �ò Ë ¢¥ ¦ ò P
Thus, R �'�	� È �LS b @ �'�	�
where b @ �'�	�i" p �&CLC ��
N�&C 0 B u
and BÝ" ¢¥ ¦ ò P

Since
'�T  4T®J' E is increasing for

'+) F / ��4 J ,
ò " òO 4©® ò E 0 ò åO 4©® ò Eå P

Then, BÝ" ¢¥ ¦ ò " ¢¥ ¦ U � ã U � ¨ ¢¥ ¦ U ø � ã U �ø " ¢ O 4i® ò Eåò å ¥ ¦ " ¥ � ¢
where

¥ � " O 4©® ò Eåò å ¥¤¦ P
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The additional error caused by the Taylor expansion of the kernel isEEE b Þ x �'�	�K
 �b Þ x �'�	� EEE
0 EEEEEEE �V â > ä � } �'���¤�	�K
 } � ²!�v�'���©�	����Þ x �'�	�����  EEEEEEE0Ì¥ � ²!�v��Á ò � � é Þ x�é ð ���W8XZY�[�\ ���  C �

D�&C E
0Ì¥ � ²!�v��Á ò � � é Þ x�é ð ���W8XZY [ \ ò Eå ¥ E¦ ���! ¢ E �j4©® ò Eå �" ¥ � ²!� ��Á ò � � é Þ x é ð ¡ ���i� ò Eå ¥ E¦¢ E ��4©® ò Eå � P

Thus the proof is completed.

4.2. The number of clusters. We give an estimation of the number « �*'�� of clusters in
the minimum admissible covering

û ��'y�
with respect to

'
and the number of non-admissible

triangles in
û �*'��

.
Recall the definitions of ¢ and ¥�¦ in (2.2) and (2.3), respectively. Since

�
is the union of

planes,

(4.6) ¡ � b @ ��9��^]f�i� 0 � B E for all
B@¨ / �_9�) ê ° P

We begin with the following lemma.
LEMMA 4.2. The condition (4.6) implies

(4.7) Y�¢ E ¨ ¡ ���T�� Ë1/
and ¡ � q � 0 �   � q � E for all q ) w x õ P

Proof. Since qÏÈ ba` â § ä � � � q �j�b]f� ,¡ � q � 01¡ � bc` â § ä � � � q ���b]f�i� 0 �   � q � E P
Then, ¡ ���T�i" Å§ ��d ì õ ¡ � q � 0 � Å§ ��d ì õ   � q � E 0 � Å§ ��d ì õ ¢ E " � Y�¢ E P

Before we prove the next theorem, we assume the following condition. This condition
describes how a limited part of

�
is covered by a part

û_e
of an admissible covering. An upper

bound of number of elements in
û_e

is given by (4.9), provided the clusters in the admissible
covering all have the size   � ù � 0 B .

CONDITION 4.3. For any point
9+)D�

and   ¨fB Ë
/ there is an admissible covering
with respect to

9
for which there exists a subset

ûbe È ÷ with�g] b ` ��9�� È � pAù ) û e u  � ù � 0 B for all ù ) û e S w�x]õ(4.8) h û e 0 Áa�   Ð5B?� E P(4.9)
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THEOREM 4.4. Let Y be the number of elements and ò be the ratio. The number « �*'��
of cluster in the minimum admissible covering

û ��'y�
w.r.t.

'
is bounded by the following

inequality:

(4.10) « �*'y� 0Ì¥ º 2 4ò 4 E Z :B\ ��Á ® ò E Y � for all
'�)+� P

Proof. Let the size of
�ú) ÷

is � "   ���i� . First we assume thatC '&
 � ���i�AC 0 � implying
� È b ` ��'y� for   "�Á � P

In later step, we consider the case of
C '�
 � ���i�LC Ë � .

In this step, we calculate how many clusters each annulus contains. For all i " / ��4]� PAPAP �
we apply the condition (4.3) with

9t"N'
,   "  kj "�Á �R² j � , andB	"NB j "  kj ò� P

There are coverings
û j with�g] b ` ��'y� È � Ùvù j ) û j Ú �h û jK0 Á 2   jB j 4 E "�Á 2   j  j ò Ð � 4 E "MÁ 2 �ò 4 E � i " / ��4B� PLPAP(P

Let b j " b `-l �*'��mS ba` lon E �*'y�
and define

û ej È û j by û ej " Ù ù j ) û j £ ù ] b j6p" 7 Ú P
Note that

b j is an annulus, and
ûbej contains clusters which covers

b j . If ù ) û-ej is not a panel,
it satisfies   � ù � 0 B j "   j ò� �
by (4.8). Since

C (t
+'KC�¨   j Ð]Á for any
(�) ù ] b j p" 7 ,

dist
�*' � ù �©" �rq�sH � � C '&
+�óC�¨ �rq�sH � � p C '&
+(�Cz
dC (t
.�óC u ¨  kjÁ 
+B j "  kjÁ 
  kj ò�Ë  tjÁ 
  tj� "  tj� " B jò ¨   � ù �ò P

Thus,   � ù � 0 ò H dist
�*'`� ù � . We can conclude that ù is admissible w.r.t.

'
for any ù ) û ej .

Hence,
û-ej is an admissible covering of

b j ]f� w.r.t.
'

. We haveX b j ]k� _ È ��� pLù ) û ej u �
and ù )D� û-ej S w�x]õ � is admissible w.r.t.

'
. The number of elements in the set

û_ej ish û ej 0 h û j 0 Á 2 �ò 4 E P
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Let ï ¨ / be the first integer withBvu�"   u ò� " Á �e² u � ò� 0 ¢¥ ¦ P
( ¢ Ð ¥¤¦ is fixed from (2.3) and

B j ’s are getting smaller when i ’s are getting larger.) Then noù ) û u can satisfy   � ù � 0 BIu ; hence by (4.8), all ù ) û u are panels, i.e.,
û u È1w x õ . Letû e " û eå � û e� �nHAHLHL� û eu ²!� � û u P

Since the clusters of
û e

are not disjoint, we restrict
û e

toû " pLù e ) û e C there is no ù ) û e with ù ebw ù�u Pû
satisfies � pAù ) û u " � prù ) û e u" u ²���j � å ��� prù ) û ej u ���G��� pLù ) û u u �3xÌ�g]Ky u ²!��j � å b j � b E ý!z�{�| �*'��~}"%�g] b ` ø �*'��T"M� P

Thus,
û

is a covering of
�

. If ù ) û , then ù ) û_ej for some i 2 ï or ù ) û u . In the former caseù is admissible. In the latter case ù ) w x õ holds. Therefore, all ù ) û S w x õ are admissible
w.r.t.

'
. The number of clusters in

û
is estimated inh û 0 h û e 0 u ²��Å j � å h û ej ® h û u 0 uÅ j � å h û j 0 uÅ j � å Á 2 �ò 4 E",� ï ®%4r�jÁ 2 �ò 4 E 0Ì¥ 2 4ò 4 E Pï is the first integer such that the following relation is true,Á �e² u � ò� 0 ¢¥ ¦ "-� Á ² u 0 Á ¢� ò�¥ ¦ "-� ï ¨ Z :B\ E 2 � ¥¤¦ òÁ ¢ 4 P

Then ïÌ01Z :B\ E 2 � ¥ ¦ ò¢ 4 01Z :]\ E�� � ¥ ¦ ò � ý� Y ý�� ¡ ���T�j�
ý��� (Use (4.7))

" Z :B\ E � � ¥ ¦ � ý�� ¡ ���i���
ý� � ® Z :]\ E " ò�Y ý� # " W X Z :B\ X Ác® ò E Y _r_ P

Now we proof the case of
C '&
 � ���i�AC Ë � . Let�'k"M9 � ® � '&
 � ���i�C '&
 � ���i�AC P

Note that
C �'3
 � ���i�AC 0 � . Let

û
be the admissible covering w.r.t.

�'
as constructed before.

Since dist
�*'`� ù �@¨ dist

� �'K� ù � for all ù ) ÷ , is also admissible w.r.t.
'

. Thus, the estimate
(4.10) is true for all

'+)��
.

THEOREM 4.5. Let Y be the number of panel and ò be the ratio. Assume (4.6). The
number « e �*'y� of non-admissible panels in

û �*'��
is bounded by the inequality:

(4.11) « e �*'�� 01¥ º5� 2 4ò 4 E for all
'�)+� P



ETNA
Kent State University 
etna@mcs.kent.edu

FAST SOLUTION OF THE RADIOSITY EQUATION 237

Proof. Proposition 3.9(b) of [12] states that all admissible coverings w.r.t.
'

have the
same number « e �*'�� of non-admissible panels. Let

û ��'y�
be w x õ . Then,

û �*'��
has « e �*'�� non-

admissible panels w.r.t.
'

.
Let

BN"ÇÁ ¢ Ð ò . For any q ) w x õ and q pÈ b @ �*'y� , it is admissible w.r.t.
'

. This is
because that C '&
 � � q �ACa¨CBÛ
 ¢
for q pÈ b @ �*'�� and ¢ is defined in (2.2). Now,ò C�'&
 � � q �ACa¨ ò �*B[
 ¢ �i"�Á ¢ 
 ò�¢ ¨ ¢ ¨   � q � P
Thus, such q is admissible by (3.3). Therefore, « e �*'y� 0 h û-e whereû e " pzq ) w�x]õ C qîÈ b @ �*'y� u P

With (4.6) and (2.4), we have« e �*'y�iH ¢ E¥ § 0 Å§ ��� � ¡ � q �T" ¡ ��� p � ) û e u � 0#¡ � b @ �*'��-]f�i� 0 � B E P
Thus, « e ��'y� 0 � B E ¥¤§¢ E " � ¥¤§¢ E H 2 Á ¢ò 4 E " ¥ º � 2 4ò 4 E
where ¥ º � " � � ¥¤§ P

5. The experimental problems. For
�

, we use the following 5-piece surface. It consists
of four squares and one rectangular piece, labeled as

���
,
� E , � ° , � O , � ^ . In particular,� �`��" F / � � J ¹ F / � � J in the

'Q(
-plane, facing upward;� � E and

� ° are the bottom and top, respectively, of F / ��� J ¹ F / ��� J in the plane
9t"�4

;� � O " F / � ¥ J ¹ F / � ¥ J in the plane
9@"%Á

, facing downward;� � ^ " p ��' � � ��9��¤£ /@0 ' 0Ì� � /�0 9 0 4 u � using the side that is visible from
� �v��� E �

and
� O .

We choose the parameters � ���&� ¥ to satisfy

(5.1) ¥ 2%�&� Á��á2 � P
This surface

�
is illustrated in Figure 5.1. In all of our examples, we use

� � ���&� ¥ �G"�D�a��Á��L4r�
.

A surprising number of phenomena can be studied with the use of this quite simple
surface.� � contains ‘shadow lines’. More precisely,

���
has shadow lines along the bound-

aries of the squares F / �RÁ��Ê
 ¥ J ¹ F / ��Á��*
 ¥ J and F / ��Á�� J ¹ F / �RÁ�� J ; cf. Figure.
5.2. Therefore one can study the effects of ‘discontinuity meshing’ (cf. [16]). For
an analysis of this with examples for both piecewise constant and piecewise linear
collocation; see [6].
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(A,A,0)

(A,A,1)

x

(0,B,1)

(0,C,2)

z

FIG. 5.1. The 5-piece surface �

(A,A,0)

(A,A,1)

x

(0,B,1)

(0,C,2)

z

FIG. 5.2. The 5-piece surface � with shadow lines showing� � is an occluded surface. For example,
� ° cannot be seen from any portion of either� �

or
� ^ , and only portions of

� �
can be seen from

� O . Therefore, there will be
visibility lines cutting through a number of elements.� There will usually be singular behaviour in the radiosity solution along the common
edge of

� �
and

� ^ . See [18] for an analysis of this singular behaviour. There is also
singular behaviour associated with vertices of

�
, as with the endpoints of

���Z]�� ^ ;
cf. [14].� For collocation points

�
near to the common edge of

���
and

� ^ , the collocation in-
tegrals are nearly singular for those triangular elements near to the collocation point,
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but on the opposite sub-surface. Examples are given in [6] along with a numerical
scheme for the accurate and efficient evaluation of such integrals. Analytic methods
for evaluating these integrals are discussed at length in [19], [20].

We could use more complicated and physically realistic surfaces, but our surface
�

is suffi-
cient for studying the principal mathematical questions we have in regard to the cost of the
clustering method. To use a physically realistic surface would have required constructing a
visibility complex for the surface, a nontrivial task that would have greatly complicated our
programming without adding any additional insight on the questions we are studying.

5.1. Test solutions. We have carried out tests for a variety of true solutions � . In these
cases, we calculate the emissivity

$
using highly accurate numerical integration. Then the

collocation procedure is applied to find the approximate solution � x � which is then compared
to the known true solution � . In this paper we report on only two cases.� � is constant over each sub-surface

� s , Õ3"64B� PAPLP ��� . The collocation error is zero
and thus we have the exact solution of the discretized linear system (2.9). We can
compare it to the solution obtained using the clustering method, thus measuring the
effect of various approximations involved in clustering.� The significance of the shadow lines in

�K�
is that the first partial derivative of � is

often discontinuous when the derivative is in a direction perpendicular to the shadow
line. This affects the accuracy of the approximation ¼¾x�� Ä � . To study this phe-
nomena, we use the following true solution � :
(5.2)

� ��'`��(y��9<�g"���������� ��������
��� ��'`��(���� " '� # E ® " (� # °��¹�� ��Á���
.'�� ã ��Á���
+(�� ã���� � ��'`�0(���9<�©)�� �

4]� �*' �0(���9��¤)+� E �f� ° �f� O/ � �*' �0(���9��¤)f� ^ �� � �*'`��(a�T"M� ² � â E�� ² , ä â E�� ²� Aä P
The function

���
is used to decrease the size of � ��'`��(y� / � away from the shadow

line on the boundary of F / �RÁ�� J ¹ F / �RÁ�� J . The quantity
� ¶ � ã is equal to ¶ if ¶ ¨/ � and it equals zero if ¶ 2 / . The exponent ¡ ¨ / . With ¡ "�4

, we have
a continuous nonlinear function which has bounded, but some discontinuous first
order partial derivatives along the boundary of F / �RÁ�� J ¹ F / �RÁ�� J . With ¡ " �E , we
have an algebraic singularity along this boundary, and we can study the effects of
different types of triangulations for such a solution function. We choose � U / on
both

� ^ and on the subset of
� �

outside of the square F / �RÁ�� J ¹ F / ��Á�� J . We have
also forced the function � to be non-symmetric over

� �
, to lessen any special effects

associated with the symmetry of the various sub-surfaces.
In all cases we use � U%ö£¢ Y ¬A­ � Y ­ 0 4 . Choosing � "Q4 does not present a problem, as we still
have é m é 2,4 due to

�
not being a closed surface. The cases we present here are sufficient

for illustrating the fast matrix-vector multiplication method of this paper. Additional studies
on the accuracy of piecewise constant and piecewise linear collocation are given in [6].

5.2. Computing. We use the basic framework of [1, o 5.1]; and to implement it we use
the software given in [2], with the addition of codes to implement the fast matrix-vector
multiplication described in o 3.1.
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The timings were done on a Dell PowerEdge 6650 workstation. This computer has four
2.0Ghz/2MB Cache Xeon processors with 12 GB RAM. The computer was networked, but
otherwise was restricted to only the given program being timed, except that we might run the
program for up to three data sets simultaneously. Based on the clustering method described
in o 3, three lists of triangles are created: far field, gray field, and near field. These lists are
very large, along with the lists of integrals for the gray and near fields. Our computer RAM
memory cannot hold all of them, so a cache scheme is used to store the lists for rapid retrieval
during the iteration phase.

6. Experimental results. The central questions involve the cost of our method for the
radiosity equation on an occluded surface. We begin by looking at the number of quantities
in the near field, gray field, and far field. Let « �'� Æ � denote the number of admissable clusters
in the far field for the point

� Æ
, and « V "Ì���?�> � « �'� Æ � P

Define «m¤ and «m¥ similarly, for the near field and the gray field as
� Æ

ranges over the collo-
cation nodes. From Theorems 4.4 and 4.5,

(6.1) « V 0Ì¥ V ò ²m¦ Z :B\ F Ác® ò ¦ Y J
(6.2) «m¤ 0d¥ ¤ ò ²�¦
with constants ¥ V , ¥ ¤ that are independent of ò and Y . From (4.10) and (4.11) we know§ 0 Á ; below we examine its size empirically. Note that these formulas depend on ò , not on
the degree of the Taylor expansion used in approximating

�
in the far field. In addition for a

uniform triangulation scheme (as we are using), it is straightforward to show that

(6.3) «m¥ 0Ì¥ ¥  Y P
The constant ¥ ¥ is independent of ò .

We give empirical results for (6.1)-(6.3) as both ò and Y vary, beginning with the gray
field. Table 6.1 contains results for «m¥ , and as we noted the results do not depend on ò .

TABLE 6.1
Values of ¨�© for varying ªY 10 40 160 640 2560 10240 40960 163840« ¥ 2 6 14 28 60 118 248 508

In Figure 6.1, we give a log-log graph of Y vs. «�¥ , together with a linear least squares fit to
determine experimentally the value of = in«Q¥ "%ö Yb« P
The value obtained with a fit to the values

4v¬ /@01Yn0 4v¬BÃ�­ �</ is = P" P �a4v® , which is consistent
with the theoretically expected value of 0.5 from (6.3).

For the near field, we give values of «�¤ for varying Y and ò in Table 6.2, and a log-log
graph of «m¤ vs. Y is given in Figure 6.2. The upper bound in (6.2) is independent of Y ; and
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FIG. 6.1. Gray field values of ¨�© and linear fit to log-log graph of values.

TABLE 6.2
Values of ¨�¯ for varying ª and °«m¤Y ò " P 4rÁ�� ò " P / ¬<Á�� ò " P / Ãó4rÁ��

10 6 6 6
40 16 24 24

160 70 78 96
640 128 300 334

2560 232 508 1206
10240 262 922 2022
40960 262 1044 3700

163840 262 1044 4184

for the larger values of Y (with ò " P / ¬BÁ�� and ò " P / Ãa4zÁ�� ), we have that «�¤ is independent
of Y as well.

A table of values « V for the far field are given in Table 6.3. To look at the values
graphically, we consider the theoretical formula of (6.1). We graph the values of Z :]\ Y vs.ò ¦ « V , as then the theory would sayò ¦ « V Ä ¥ V Z :]\ F Ác® ò ¦ Y JÄ ¥ V F § Z :B\ ò ® Z :]\ Y J(6.4)

and the graph should be linear. The graphical results are shown in Figure 6.3 with § "*4 P ���
rather than the theoretical value of § "
Á . The results do show straight lines, approximately,
for larger values of Y , and they are parallel for varying values of ò , as would be predicted by
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FIG. 6.2. The near field values of ¨ ¯ for varying ª and °
TABLE 6.3

Values of ¨�± for varying ª and °« VY ò " P 4rÁ�� ò " P / ¬BÁ�� ò " P / Ãó4rÁ��
10 2 0 0
40 8 8 0

160 60 32 32
640 248 256 128

2560 670 972 1034
10240 1116 2686 3860
40960 1824 4464 10878

163840 2598 7242 17754

(6.4). To determine the experimental value of § ",4 P ��� , we observed the variation of « V vs.ò for Y " 4I¬]Ã�­ �B/ and we attempted to fit it based on the Hackbush model of (6.1) with a
suitable value of § . The results, using a log-log scale, are shown in Figure 6.4 for § ",4 P ��� .
and there is close agreement for smaller values of ò .

6.1. Testing the program. By using a solution � that is constant or linear over each
sub-surface

� s , the true collocation solution �!x equals � , and the true error in the numerical
method based on o 3.1 satisfies

(6.5) � 
 ���x " �yx 
 ��yx P
This allows testing the effects of the other sources of error in the numerical method. In this
case the remaining error in solving the radiosity equation using the collocation method with
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FIG. 6.3. The number of elements in the far field, normalized by °I² .

the fast matrix-vector multiplication method of o 3 is due to the following.� The approximation
b x Ä �b x .� Numerical integration errors for the near field and the gray field collocation integrals

(cf. (2.9))

(6.6)
� §�� �&���

Æ �R�	������� Æ ���	� Íg| ��Ò Ó ���	�a�<�  P� Integration errors in computing the right hand emissivity function

(6.7)
$&�'�	�T" � ���	��
 � �'�	�� � � � ���	�����������	���&�������	�����  � �*)����

for the given known solution � . Of course, in actual graphics computations this is
not a difficulty since

$
is given explicitly.

The numerical integration errors for (6.6) and (6.7) can be quite difficult to control, especially
when integrating over a sub-surface

� s with the field point
�6)D� | , } p"%Õ , and

�
near to a

common edge joining
� s and

� | . The numerical integration methods used here are discussed
in [6].

To illustrate the effects of these possible errors for our numerical method, we used the
true solution

(6.8) � ��'`�0(���9<�g"&³ 4]� ��'`�0(���9<�¤)+� � �/ � ��'`�0(���9<�¤)+� E �3� ° �f� O �f� ^ P
In order to study the effect of the fast matrix-vector multiplication method of o 3.1, the inte-
grations of (6.6) and (6.7) were carried out to very high accuracy. Thus the only source of
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FIG. 6.4. The model (6.1) with ´�µ.¶�· ¸�¸I¹ and its comparison with the graph of ° vs. ¨�± .

TABLE 6.4
The errors º�¯ for (6.8) with °»µ½¼I· ¸�$ ¤Y ¢
B?�A�vBh"MÁ ¢
B?���IBh" � ¢
Bz�A�IBh"M¬�B/ ¬ P � � E 
 /v� 4 P 4v¬ E 
 /v� Á P � 4 E 
 / �4I¬ / Ã P Ã�® E 
 / Ã Ã P Á]Á E 
 /v� Á P¿¾ � E 
 / �¬ �B/ Á P Ã�� E 
 / Ã Ã P 4 ¾ E 
 /v� Ã P ��® E 
 / �Á���¬ / Á PÀ¾�¾ E 
 / Ã Ã P 4LÃ E 
 /v� � P Á�­ E 
 / �4 / Á �B/ Á P ­a4 E 
 / Ã Ã P 4v­ E 
 /v� � P Á ¾ E 
 / ��B/ ®�¬ / Á P ­a4 E 
 / Ã Ã P 4v® E 
 /v� � P Á�­ E 
 / �4v¬]Ã�­ �</ Á P ­BÁ E 
 / Ã Ã P 4v® E 
 /v� � P Á�­ E 
 / �

error in the quantity �!x 
 ���x of (6.5) is the approximation
b x Ä �b x , which depends on

both the Taylor order ± and the far-field parameter ò . Tables 6.4-6.6 give the maximum for��x 
 ���x at the collocation nodes for three values of ò and for orders ± "MÁ�� � ��¬ . Because the
region is symmetric in

��'`�0(a�
and the solution is also symmetric (being constant), the numer-

ical results for orders ± "á4]��Ãa���
are the same as those for orders ± "QÁa� � ��¬ , respectively.

In the tables,

(6.9)
�$ ¤ " ���?�Æ � � {¿Á¿Á¿Á { °�x C �yx ��� Æ ��
 ��yx �'� Æ �AC

with p � Æ C�4 0 É 0 Ã Y�u the interpolation nodes for the triangulation and ��x the true colloca-
tion solution of (6.8). This type of example gives some idea of the error to be expected when
dealing with an unknown function � .
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TABLE 6.5
The errors º_¯ for (6.8) with °»µÂ¼I·¿¶0Ã�¸�$ ¤Y ¢
B?���IBh"MÁ ¢
B?���IBh" � ¢
B?�A�IB	"Ä¬�B/ ® P ­�­ E 
Ý4v¬ ® P ­�­ E 
Ý4v¬ ® P ­�­ E 
Ý4I¬4I¬ / Á P ­ ¾ E 
Ý4I� Á P ­ ¾ E 
Ý4I� Á P ­ ¾ E 
Ý4
�¬ �B/ � P 4 ¾ E 
 / � 4 P ®�­ E 
 / ¾ 4 P¿¾ ­ E 
 / ®Á���¬ / 4 P ­]Ã E 
 /v� ­ P / ¬ E 
 / ¾ Á P ® / E 
 / ®4 / Á �B/ 4 P Á�� E 
 /v� ¾�P ��­ E 
 / ¾ Ã P Ãó4 E 
 / ®�B/ ®�¬ / 4 P Á ¾ E 
 /v� ¾�P � ¾ E 
 / ¾ � P �B� E 
 / ®4I¬]Ã�­ �B/ 4 P Á�® E 
 /v� ¾�P ¬ / E 
 / ¾ � P Ãó4 E 
 / ®

TABLE 6.6
The errors º ¯ for (6.8) with °3µg¼I· ¼�ÅI¶0Ã�¸�$ ¤Y ¢
B?���IBh"MÁ ¢
B?���IBh" � ¢
B?�A�IB	"Ä¬�B/ ® P ­�­ E 
Ý4v¬ ® P ­�­ E 
Ý4v¬ ® P ­�­ E 
Ý4I¬4I¬ / Á P ­ ¾ E 
Ý4I� Á P ­ ¾ E 
Ý4I� Á P ­ ¾ E 
Ý4
�¬ �B/ Á P ¬�­ E 
Ý4I� Á P ¬�­ E 
Ý4I� Á P ¬�­ E 
Ý4
�Á���¬ / � PÀ¾ / E 
 / ® ¾�P Ã]Ã E 
Ý4rÁ ¬ P ¬�­ E 
Ý4
�4 / Á �B/ Ã P 4 � E 
 / ¬ ¬ P ¬�® E 
Ý4 / Ã P¿¾ 4 E 
Ý4rÃ�B/ ®�¬ / 4 P 4]4 E 
 / � Ã P 4 / E 
 / ® � P �]Ã E 
Ý4rÃ4I¬]Ã�­ �B/ ¾�P � ¾ E 
 / ¬ Á P ­�® E 
 / ® ¬ P ­�¬ E 
Ý4rÃ

We want to illustrate and confirm experimentally the result (4.4) in Theorem 4.1, looking
at the error

� b x 
 �b x �jÞ x when it is regarded as a function of the parameter ò for various
values of the Taylor order ± P Let Y " 4I¬]Ã�­ �B/ , and consider using the orders ± " Á�� �
(degrees ± 
%4�" 4]��Ã<�

for our Taylor expansion in the far field. The numerical results are
given in Table 6.7, and empirically they imply

(6.10) é Þ x 
 �Þ x é ð " W � ò � ��� ± "�Áa� � P
From Theorem 4.1, fixing both Y � the number of elements, and ± 
�4 , the degree of the Taylor
expansion,

(6.11) é � b x 
Æ�b x �jÞ x`é ð " W �j��Á ò � � � P
When we combine (4.4) and (6.10), we have that the theoretical rates of convergence to zero
of � x 
 �� x agree with the experimental results given in Table 6.7 and (6.10).

In order for (6.11) to be consistent with the earlier bound (3.11), the value of ò must be
chosen so that

��Á ò � � " W � � � � . This results in a relation between ò , Y , � , and ± ,ò " W�"LY ² � n E � # S
cf. [12, Lemma 5.2]. Our experimental results imply that it is probably better to experiment
with various choices of ± and ò for cases in which the solution is known. Then choose values
of ± and ò so as to give sufficient accuracy while also minimizing the operations cost. We
further illustrate this in the following subsection.
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TABLE 6.7
The error (6.5) as a function of °¢
B?�A�vBh"MÁ ¢
B?�A�IBÝ" �ò é Þ x 
 �Þ x é Ratio é Þ x 
 �Þ x é Ratio/ P � Á P ­<Á E 
cÃ Ã P 4I® E 
 �/ P Á�� � P ­�® E 
 � � PÀ¾ ® 4 P Ã � E 
t� ÁvÃ P ­/ P 4zÁ�� 4 P Á�® E 
 � � P � ¾ ¾�P ¬ / E 
 ¾ 4 ¾�P ¬/ P / ¬BÁ�� Ã P / Ã E 
t� � P Á�¬ � P ¬�® E 
8­ 4v¬ P Á/ P / Ãa4rÁ�� ¾�P � ¾ E 
8¬ � P /]/ Á P ­�® E 
8® 4v¬ P Á

101 102 103 104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

E
n

n

FIG. 6.5. Maximum errors in linear collocation solution.

6.2. Convergence results. We consider the numerical solution of the radiosity equation
when the true solution � is chosen as in (5.2) with ¡ " 4B��Ç#" 4 P � , and � " / P 4 . We have
chosen a smaller value of � in order to accelerate the convergence of the iteration in (2.11);
but the average cost of the individual iterates is not affected by this choice of � . We begin
with the uniform triangulation of the surface. leading to the number Y of triangles as listed in
the preceding Tables 6.1-6.3. With this triangulation of the sub-surface

� �
, the shadow lines

of Figure 5.2 will intersect with some of the triangular elements. As in (6.9), we evaluate the
error at the collocation nodes; define$ ¤ " ���v�Æ � � {¿Á¿Á¿Á { °�x C � �'� Æ ��
 ��x �'� Æ �AC P
These maximum errors are given in Table 6.8, and they are illustrated graphically in Figure
6.5. Note that for a given number Y of elements, the order of the approximating linear system
equals

Ã Y .
Although the ratios by which the errors decrease show a great deal of variation, the
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TABLE 6.8
Maximum errors in linear collocation solutionY $ ¤   � ­ØÉ
¢�B/ 4 P Ã / E 
cÃ4I¬ / ® P �]Ã E 
t� 4LÃ P ¬¬ �B/ 4 P / ­ E 
 � / P ­�­Á���¬ / Ã P / ­ E 
t� Ã P ��44 / Á �B/ � P Á�­ E 
8¬ ¾�P Á /�B/ ®�¬ / 4 P ÃBÃ E 
8¬ Ã P Á]Á4I¬]Ã�­ �B/ � P ­ � E 
 ¾ Á PÀ¾ �

TABLE 6.9
Errors for °Fµ½¼I· ¸$ ¤ Iteration time (seconds)Y ¢
B?���IBh"�4 ¢
B?���IB	"%Ã ¢
B?�A�IB	"Ä� ¢
B?�A�vB	".4 ¢
B?���IBh"dÃ ¢
B?�A�IB	"f��</ 4 P Ã�­ E 
 / Ã 4 P Ãa4 E 
 / Ã 4 P Ã / E 
 / Ã P /B/ Á / P /]/ Á�� P /]/ ÃA�4I¬ / 4 P 4 ¾ E 
 / Ã Á P / 4 E 
 /v� ® P ¬ ¾ E 
 / � P / 4rÁ�� P / 4 �B/ P / Á]Á /¬ �B/ 4 P � 4 E 
 / Ã Á P ¬�® E 
 /v� 4 P ¬ � E 
 /]� P / ¬�¬ / P / ¾ ��� P 4LÃa4
�Á���¬ / 4 P �B/ E 
 / Ã Á P ¬ ¾ E 
 /v� Á P ÃBÃ E 
 /]� P � ¾ Á / P ¬ / ­�� PÀ¾ / ¾ /4 / Á �B/ 4 P � 4 E 
 / Ã Á PÀ¾ ® E 
 /v� Á P¿¾ 4 E 
 /]� Ã P � � Á P �a4v¬ � P 4v¬�­�B/ ®�¬ / 4 P � 4 E 
 / Ã Á P ® / E 
 /v� Á P ­ / E 
 /]� 4v® P � Á 4I¬ P ­ � Á ¾�P ­A�4I¬]Ã�­ �B/ 4 P � 4 E 
 / Ã Á P ® � E 
 /v� Á P ­�¬ E 
 /]� 4]4 / P ¬ 4zÁ�4 P � 4LÃBÃ P ­

overall trend is more uniform, as is indicated in Figure 6.5. If we use the values of
$ x forY ¨�¬ �</ � we obtain an empirical rate of convergence of$ x " W X Y ² � _

with È P".4 P /]/ ¾ . From (2.1)-(2.4), Y ²!� " W X � E _ , and this leads to$ x Ä W X � E _ P
This is the expected rate of convergence for a linear collocation method, even though � is not
continuously differentiable over

� �
. For a further discussion, see [6].

The error é Þ�
 �Þ x é varies with Y , ò , and ± . To give some insight, we give values in
Tables 6.9-6.11 for $ ¤ " ���?�Æ � � {¿Á¿Á¿Á { °�x C � �'� Æ ��
 �� x ��� Æ �AC
for selected values of the far field parameter ò and the Taylor order ± . We also give the
average time (in seconds) for each iteration (as described in o 2.3).

The case with parameter values of ò " P / Ãó4rÁ�� and order ± "îÃ
(degree ± 
%4�"ÏÁB�

give completely sufficient accuracy up through Y " 4v¬BÃ�­ �</ . Using an order ± Ë Ã gave
essentially no additional accuracy. For smaller values of Y , we can use larger values of ò .
For example, with Yd0 4 / Á �B/ , we can have essentially the same accuracy with ò " P / ¬BÁ�� ,
although we do not give those values here for reasons of space.

To look at the cost, we show in Figure 6.6 the average iteration time as a function of ò ,
for varying values of Taylor approximation order ± . This is done for Y ".4v¬BÃ�­ �B/ , and there
are similar graphs for smaller values of Y . Experimentally, the time É U É � ò S ± � Y � satisfies

(6.12) É ÄdövÊ ´�Ë � ± � Y � ò ² �
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TABLE 6.10
Errors for °FµÂ¼I·¿¶0Ã�¸$ ¤ Iteration time (seconds)Y ¢
B?�A�vBh".4 ¢
B?���IB	"%Ã ¢
Bz�A�IBh"Ä� ¢
B?�A�IBÝ".4 ¢
B?���IBh"dÃ ¢
B?���IB	"Ä��B/ 4 P Ã / E 
 / Ã 4 P Ã / E 
 / Ã 4 P Ã / E 
 / Ã P /B/ Ã ¾ P /]/]�B/ P /]/ Ã ¾4I¬ / 4 P / � E 
 /v� ® P �vÃ E 
 / � ® P �]Ã E 
 / � P /]� 4 ¾ P /v� Á / P /v� Ã ¾¬ �B/ 4 P / Á E 
 /v� 4 P / ­ E 
 /v� 4 P / ­ E 
 /]� P Ã �]�</ P Ã ¾ Ã]Ã P � Á ¾ /Á���¬ / ¾�P 4]4 E 
 / � Ã P 4]4 E 
 / � Ã P 4 / E 
 / � Á P 4]4 ¾ Á P Ã ¾�¾ Á P ® / �4 / Á �B/ ¾�P 4 � E 
 / � ­ P ��­ E 
 / ¬ ­ P ¬�¬ E 
 / ¬ 4 / P ¬A� 4zÁ P 4v® 4
� P � /�B/ ®�¬ / ¾�P 4 � E 
 / � 4 P / ® E 
 / � 4 P 4 / E 
 / � ��4 P Á]Ã ��­ P ��¬ ¾ � P / ¬4v¬]Ã�­ �</ ¾�P 4 � E 
 / � 4 P / � E 
 / � 4 P / ¾ E 
 / � Á���® P ® Á�® � P � Ã�¬ � P ¬

TABLE 6.11
Errors for °3µg¼I· ¼�Ì�Ã�¸$ ¤ Iteration time (seconds)Y ¢
B?�A�vBh".4 ¢
B?���IB	"%Ã ¢
Bz�A�IBh"Ä� ¢
B?�A�IBÝ".4 ¢
B?���IBh"dÃ ¢
B?���IB	"Ä��B/ 4 P Ã / E 
 / Ã 4 P Ã / E 
 / Ã 4 P Ã / E 
 / Ã P /B/v�</ P /]/]�B/ P /]/]� Ã4I¬ / ® P �vÃ E 
 / � ® P �vÃ E 
 / � ® P �]Ã E 
 / � P / ��®BÃ P / ¬ / Ã P / ¬ó4 /¬ �B/ 4 P / ­ E 
 /v� 4 P / ­ E 
 /v� 4 P / ­ E 
 /]� P ­ó4 �</ P ­ / ®]Ã P ­BÁ��vÃÁ���¬ / Ã P 4]4 E 
 / � Ã P / ­ E 
 / � Ã P / ­ E 
 / � 4 / P / � 4 / P 4I� 4 / PÀ¾ 44 / Á �B/ � P Ã ¾ E 
 / ¬ � P Á�­ E 
 / ¬ � P Á�­ E 
 / ¬ ­ ¾�P ¬BÃ ®�® P Ã � 4B4rÁ P Á�B/ ®�¬ / � P �]� E 
 / ¬ 4 P Ã]Ã E 
 / ¬ 4 P ÃBÃ E 
 / ¬ ¬BÁBÁ P � ¾ � ­ P¿¾ ­�®a4 P Á4v¬]Ã�­ �</ � P � � E 
 / ¬ � P ­ � E 
 / ¾ � P ­ � E 
 / ¾ ÃBÃ / 4 Ã�®<ÁvÃ � ­�® �

with the experimental value È P"*4 P ­�­ . This is consistent with the sizes for « V and «m¤ given
in (6.1) and (6.2), and of course, «m¥ depends on only Y and is independent of both ± andò . In the graph we also see that the time increases as the order ± increases, which is to be
expected. The large increases in calculation time are associated with decreasing the size of ò
rather than with increasing the order ± .

In Figure 6.7 we show the growth of time as a function of Y for varying values of ò . From
this log-log graph it is clear that that the rate of increase is a power law in Y for larger values
of Y . Using the case of ò " / P / Ãa4rÁ�� , we obtain that

(6.13) É Ä�ö x ³ ë Ê�¸ � ò � ± � Y ü
with À P"Q4 P 4I® . This is better than the worst case scenario of (3.12) which predicted an overall
cost of W X Y � Á ^ _ . For our values of Y and ò , it appears that the cost arising from treating the
far field and near field is much larger and more significant than is that for the gray field.

Summary. We have examined the cost of the clustering method of Hackbusch and Nowak
[12], both analytically and empirically. The empirical results agree with the form of the
theoretical growth formulas given in o 4, while experimentally these formulas have somewhat
smaller exponents as regards the cost; this is illustrated in ( 6.12) and (6.13). The experimental
timings also show that it is important to determine adequate values of ± and ò , for example,
by proceeding as we did in subsections 6.1 and 6.2 with known true solutions. Too small a
value of ò or too large a value of ± will lead to unnecessary calculation and greatly increased
computation times, as is illustrated in Tables 6.9-6.11.

The clustering method allows the setup and solution of the discretized radiosity equation
with a very large number of elements. In our examples, the number of equations to be set up
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FIG. 6.6. Time as a function of ° , for varying values of Taylor approximation order.

and solved is
Ã Y , with Y the number of elements being as large as

4v¬BÃ�­ �B/ in our examples,
i.e. � ®ó4I�BÁ / equations. We believe this illustrates the potential importance of this method.
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