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PARAMETER-UNIFORM FITTED MESH METHOD FOR SINGULARLY
PERTURBED DELAY DIFFERENTIAL EQUATIONS

WITH LAYER BEHAVIOR
�

M.K. KADALBAJOO
�

AND K.K. SHARMA �
Abstract. Boundary value problems for singularly perturbed differential difference equations containing delay

with layer behavior are considered. There are a number of realistic models in the literature where one encounters
BVPs for singularly perturbed differential difference equations with small delay, such as in variational problems in
control theory and first exit time problems in modeling of activation of neurons. In some recent papers, the terms
negative shift for ‘delay’ and positive shift for ‘advance’ are used. In this paper, a numerical method based on the
fitted mesh approach to approximate the solution of these types of boundary value problems is presented. In this
method the piecewise-uniform meshes are constructed and fitted to the boundary layer regions to adapt singular
behavior of the operator in these narrow regions. Both the cases, layer on the left side boundary and layer on
the right side boundary, are discussed. It is shown that the method composed of an upwind difference operator
on the piecewise uniform mesh is parameter-uniform by establishing a robust error estimate. The effect of small
delay on the boundary layer solution is shown by plotting the graphs of the solution for different delay values for
several numerical examples. Numerical results in terms of maximum absolute error are tabulated to demonstrate the
efficiency of the method.

Key words. Fitted mesh, finite difference, singular perturbation, differential-difference equation, delay, bound-
ary layer, action potential
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1. Introduction and examples. Boundary value problems for singularly perturbed dif-
ferential difference equations are ubiquitous in the mathematical modeling of various prac-
tical phenomena in biology and physics, such as in variational problems in control theory
and first exit time problems in the modeling of the determination of expected time for the
generation of action potentials in nerve cells by random synaptic inputs in dendrites.

In 1965, Stein [12] gave a realistic model for the stochastic activity of neurons. Stein’s
model contains assumptions concerning random synaptic inputs that excitatory impulses oc-
cur randomly and arrive according to the Poisson process � �����
	���
 , each event of which leads
to an instantaneous increase in depolarization V(t) by � � , whereas inhibitory impulses arrive
at event times in the second Poisson process � ������	���
 , which is independent of � ������	���
 and
causes V(t) to decrease by � � . The neuron fires an impulse when V(t) reaches or exceeds a
threshold value � . After each neuronal firing, there is a refractory period of duration

���
, dur-

ing which the impulses have no effect and the membrane depolarization � ����
 is reset to zero,
etc. In ������� , Stein [13] generalized his model to handle a distribution of postsynaptic poten-
tial amplitudes. Various theoretical models of nerve membrane potential in the presence of
random synaptic activations are given and many are discussed in Holden [4]. One avenue of
attack has been through computer simulation, e.g., Segundo et al. (1968) [11], which provides
a useful first step in the light of the analytic difficulties encountered in solving any realistic
model.

The determination of the expected time for the generation of action potentials in nerve
cells by random synaptic inputs in the dendrites can be modeled as a first-exit time problem.
In Stein’s model, the distribution representing inputs is taken as a Poisson process with expo-
nential decay. If in addition, there are inputs that can be modeled as a Wiener process with�
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variance parameter  and drift parameter ! , then the problem for expected first-exit time " ,
given initial membrane potential #%$ � #'& 	 #)( 
 , can be formulated as a general boundary value
problem for the linear second order differential difference equation [8]

 (* ",+ + � # 
.-/� !102# 
 ",+ � # 
3-5476 " � # - � 68
3-94;: " � #<0=� :�
 0 ��4;6>-94;:?
 " � # 
8@ 0A� 	
where the values # @ # & and # @ # ( correspond to the inhibitory reversal potential and to
the threshold value of membrane potential for action potential generation, respectively.  
and ! are the variance and drift parameters, respectively, " is the expected first-exit time and
the first order derivative term 0B#;" + � # 
 corresponds to exponential decay between synaptic
inputs. The undifferentiated terms correspond to excitatory and inhibitory synaptic inputs,
modeled as a Poisson process with mean rates

4 6
and

4 :
, respectively, and produce jumps in

the membrane potential of amounts � 6 and � : , respectively, which are small quantities and
could depend on the voltage. The boundary condition is

" � # 
8CED;	 #9F$ � # & 	 # ( 
HG
This biological problem motivates the study of boundary value problems for singularly

perturbed differential difference equations with delay as well as advance, which was initiated
by Lange and Miura [8, 9], where they introduced the new terminology “negative shift” for
“delay” and “positive shift” for “advance”.

In this paper, we consider the boundary value problems for a certain simpler class of
singularly perturbed differential difference equations where there is only a small delay in the
convection term and there is no term containing advance. The objective of the present paper is
to continue the numerical study for solving boundary value problems for a class of singularly
perturbed differential difference equations which contain small delays (negative shift) in the
convection term, provided the delays are of small order of the singular perturbation parameter�IDKJMLON � 
 , and to provide a more sophisticated and robust numerical scheme to approxi-
mate the solution of such type of boundary value problems which works for a wide class of
problems where the existing numerical schemes fails. Since the delay is of the small order
of the singular perturbation parameter, to tackle the term containing delay, we use Taylor’s
approximation as pointed out by Cunningham [1, p. 222], Lange et al. [9, p. 275] and Tian in
his thesis work [14]. Then we construct three numerical schemes based on finite difference
methods, namely, i) the standard upwind finite difference scheme which is discussed in detail
in [6], ii) the fitted operator finite difference scheme which is discussed in detail in [5], and
iii) the fitted mesh finite difference scheme which is considered in this paper.

The standard upwind finite difference scheme is not robust with respect to the singular
perturbation parameter, while the fitted operator and fitted mesh finite difference schemes
are robust with respect to the singular perturbation parameter. Now it is justified to switch
over from a standard upwind finite difference scheme to the schemes adopting fitted operator
or fitted mesh approachs to achieve parameter uniform convergence. It remains to justify
the need of construction of the fitted mesh method over the fitted operator method or, more
briefly, the superiority of the fitted mesh method to the fitted operator method. There are some
problems for which no parameter uniform numerical scheme can be constructed on a uniform
mesh using the fitted operator approach, while for the same problems, a parameter uniform
numerical scheme is constructed based on the fitted mesh approach [10, 3]. Moreover, the
numerical schemes constructed using the fitted mesh approach are usually simpler than the
numerical schemes based on fitted operators for singularly perturbed differential equations.
These schemes are also easier to generalize to problems in more than one dimension and to
nonlinear problems.
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When the delay is zero, the above boundary value problem reduces to a singularly per-
turbed ordinary differential equation of the convection-diffusion type and the solution of the
differential equation so obtained exhibits layer behavior. The effect of small delay on the layer
behavior of the solution is analyzed by plotting the graphs of the solutions of the considered
examples for different values of the delay.

2. Description of the problem. In this section, we state the boundary value problems
for a class of singularly perturbed differential difference equations of the convection-diffusion
type with small delay L ",+ + � # 
P- � � # 
 ",+ � #102Q 
'-9R?� # 
 " � # 
S@T�U� # 
H	(2.1)

on V @W�IDX	 � 
H	 under the interval and boundary conditions

" � # 
8@MY.� # 
[Z�\ 0=Q^]9#_] DX	
(2.2) " � � 
`@Ea.	
where

L
is a small parameter,

D=JbL_N � and Q is of c �dL�
 satisfying
��L 05Q?� � # 
�
fegD for

all #h$ji DX	 �Hk ; � � # 
 , R?� # 
 , �U� # 
 and
Y.� # 
 are smooth functions and

a
is a constant. For a

function " � # 
 to be a smooth solution to the problem (2.1), (2.2), it must satisfy (2.1), (2.2),
be continuous on V @ i DX	 �Hk and be continuously differentiable on V @l�ID;	 � 
 . It is also
assumed that

R?� # 
 satisfies the conditionRm� # 
 ]M0Bn J9D o #p$ V 	
where n is a positive constant. The boundary value problems for the above class of singu-
larly perturbed differential difference equations contain delay only in the first-order derivative
term. For Q @hD , the problem (2.1), (2.2) is converted into a boundary value problem for the
singularly perturbed ordinary differential equation. The reduced problem corresponding to
the singularly perturbed differential equation obtained by setting

L^@TD
in the problem (2.1),

(2.2) for Q @MD is the problem � � # 
 " + � # 
3-5R?� # 
 " � # 
q@T�U� # 
 . Due to the loss of order of the
differential equation by one, the solution of the reduced problem cannot be made to satisfy
both arbitrary preassigned boundary conditions simultaneously at the boundary points r D;	 ��s
of the domain of consideration V . Thus in general, the solution " � # 
 exhibits boundary layer
behavior at one of the end points of the interval i D;	 �Hk depending on the sign of � � # 
 , i.e., the
boundary layer will be on the left side or on the right side of the interval i D;	 �tk according as� � # 
feuD or � � # 
OJgD throughout the interval i D;	 �tk , respectively. The layer is maintained
for Qwv@gD but sufficiently small. In this paper, we consider both the cases where either the
boundary layer is on the left side or on the right side of the interval i DX	 �Hk . If � � # 
 changes
sign throughout the domain of consideration then the solution can exhibit more complicated
turning point behavior. The problems whose solutions exhibit turning point behavior are not
discussed here.

Throughout the paper, x , y and n denote generic positive constants that are independent
of
L

and in the case of discrete problems, also independent of the mesh parameter z . Where
the value of x may change from result to result but remains constant in each. { G { denotes the
global maximum norm over the appropriate domain of the independent variable, i.e.,

{ � { @/|f}?~��� �=� �U� # 
 � G
3. Construction of numerical scheme. Upon using the Taylor approximation to the

term containing the delay, the boundary value problem (2.1), (2.2) reduces to��L 0=Q?� � # 
�
�� + + � # 
P- � � # 
�� + � # 
P-�R?� # 
��.� # 
S@T�U� # 
�	(3.1)
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`@/Y7��	�Y7��@TY.�ID�
H	
(3.2) �U� � 
`@5aUG
Since "�$bx ( i D;	 �Hk and the delay argument is sufficiently small, the solution

�U� # 
 of the
problem (3.1), (3.2) provides a good approximation to the solution " � # 
 of the problem (2.1),
(2.2). We denote by �S� the differential operator for the above problem (3.1), (3.2) which is
defined for any function �W$_x ( � V 
 as

� � � � # 
8@W�dL 02Q?� � # 
�
 � + + � # 
3- � � # 
 � + � # 
.-�Rm� # 
 � � # 
�G
3.1. Layer on the left side. Here, we assume that � � # 
q� y e�D

and
�dL 0�Q?� � # 
�
Be5D

throughout the interval i DX	 �Hk , where y is a positive constant. In this case, the solution of the
problem exhibits layer behavior on the left side of the interval i DX	 �Hk .

3.1.1. Analytical results.

LEMMA 3.1. (Minimum Principle [2]) Suppose � is a smooth function satisfying � ��D�
S�D
, � � � 
��5D . Then �8��� � # 
 ] D for all #%$_V implies � � # 
B�9D for all #%$ V .

Proof. Let # � $ V be such that � � # � 
�@b|O��\ ��� � � � # 
 and assume that � � # � 
�J�D .
Clearly # � F$>r DX	 ��s , therefore � + � # � 
`@TD and � + + � # � 
��5D .
Now consider

� � � � # � 
8@W�dL 02Q?� � # � 
�
 ��+ + � # � 
3- � � # � 
 ��+ � # � 
'-9R?� # � 
 � � # � 
e5DX	
which is a contradiction. It follows that � � # � 
��5D and thus � � # 
q�5Dqo #%$ V .

LEMMA 3.2. Let
�.� # 
 be the solution of the problem (3.1), (3.2), then we have

{ � {�]9nX� & { � { -�|f}?~'� � Y � � 	 � a � 
HG
Proof. Let us construct the two barrier functions ��� defined by

� � � # 
8@ n � & { � { -�|f}m~�� � Y � � 	 � a � 
'���U� # 
�G
Then we have

� � ��D�
`@ n,� & { � { -�|f}m~�� � Y � � 	 � a � 
'���U�ID�
@ n,� & { � { -�|f}m~�� � Y � � 	 � a � 
'��Y � 	���� \;¡H¢B�U�ID�
£@TY ���DX	
� � � � 
`@ n � & { � { -�|f}?~'� � Y � � 	 � a � 
'�w�U� � 
@ nX� & { � { -�|f}?~'� � Y � � 	 � a � 
'��aU	���� \;¡H¢B�U� � 
£@�a�5D;	

and

�`��� � � # 
8@��dL 02Q?� � # 
�
t� � � � # 
�
 + + - � � # 
H� � � � # 
�
 + -9R?� # 
 � � � # 
@MR?� # 
H� n,� & { � { -w|O}m~'� � Y � � 	 � a � 
�
3� �`� �U� # 
@MR?� # 
 i n,� & { � { -w|f}?~'� � Y � � 	 � a � 
 k ���U� # 
�	
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since
Rm� # 
 ]¤0Bn J¥D

, so we have
Rm� # 
 n � & ]¤0A� . Using this inequality in the above

inequality, we get

� � ��� � # 
 ] � 0¦{ � { ���U� # 
�
P-�R?� # 
§|f}m~�� � Y7� � 	 � a � 
] D¨o #p$_V 	£��� \;¡t¢ { � { ���U� # 
HG
Therefore by the minimum principle, we obtain �¦� � # 
^��D for all #9$ V , which gives the
required estimate.

THEOREM 3.3. Let
�

be the solution of the problem (3.1), (3.2). Then for © @ � 	 * 	�ª
{ �P« ¬�­ {®]�x ��L 0�Qmy 
 � ¬�G

Proof. Let #9$�V and construct a neighborhood z � @¯�I°?	�°�-h��L 0wQX{H��{ 
�
 , where c is
a positive constant chosen so that #=$�z � and z �1± V . Then by the Mean Value Theorem,
there exists a point ²f$pz � such that

� + � ² 
`@ �U�I°`-/��L 0=Qmy 
�
 0 �U�I°t
�dL 02Qmy 

and so

� �dL 02Qmy 
�� + � ² 
 � ] * { � { G(3.3)

Integrating the differential equation (3.1) from ² to # we get

�dL 0=Qmy 
�� + � # 
 0 ��L 0=Qmy 
�� + � ² 
`@M³ �´ ��� 02� ����
�� + ����
 0 R?�I��
��U����
�
�µ���	
taking modulus on both sides and using the fact that the maximum norm of a function is never
smaller than the value of the function over the domain of consideration, we get�dL 02Qmy 
 � � + � # 
 � ] �dL 02Qmy 
 � � + � ² 
 � - { � { � #O0=² �(3.4) -=³ �´ � � ����
�� + ����
 � µ��P- { R {�{ � { � #¶02² � G
We have ³ �´ � ����
�� + ����
�µ��`@ � �I��
��U����
 � �´ 0 ³

�
´ ��+ �I��
��U����
�µ���G

Once again taking modulus on both sides and using the fact that the maximum norm of a
function is always greater than the value of the function over the domain of consideration, we
get

³ �´ � � ����
�� + ����
 � µ�� ] � * {t��{ - {H�§+�{ 
 { � { G(3.5)

Using inequalities (3.3), (3.5),
D ] � #20M² � ]·� and Lemma 3.2 for the bound on

�
in

inequality (3.4), we get

� � + � # 
 � ]5x ��L 0=Qmy 
 � & 	
which gives { � + {�]�x ��L 0=Qmy 
 � & , where x @ { � { -/� * - * {H��{ - {t� + { - { R { 
t� n � & { � { -|f}?~'� � Y � � 	 � a � 
�
 is independent of

L
. Similarly one can easily find out the bounds on

� + + and
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�

and
� + .

These bounds for derivatives of
�

were first obtained by O’Riordan et al. [10], using
techniques based on Kellogg et al. [7]. However in order to prove that the numerical method
is
L 0 uniform, one needs more precise information about the behavior of the exact solution

of the problem (3.1), (3.2). This is obtained by decomposing the solution " into a smooth
component ¸ and a singular component ¹ as follows�K@ ¸ - ¹
where ¸ can be written in the form ¸ � # 
q@ ¸ �§� # 
P-M�dL 0�Qmy 
 ¸�& � # 
P-M�dL 0�Qmy 
 ( ¸m( � # 
 and¸ ��� # 
 , ¸�& � # 
 and ¸m( � # 
 are defined respectively to be the solutions of the problems

� � # 
 ¸§+� � # 
3-9R?� # 
 ¸ � � # 
8@T�U� # 
H	 #%$_V 	 ¸ � � � 
`@E�U� � 
(3.6) � � # 
 ¸§+& � # 
3-9R?� # 
 ¸ & � # 
8@ 0 ��L 0=Q?� � # 
�
 ¸§+ +� � # 
 F ��L 0=Qmy 
�	 #%$_V 	 ¸ & � � 
`@TD(3.7) �8��¸ ( � # 
8@ 0 �dL 02Q?� � # 
�
 ¸�+ +& � # 
 F �dL 02Qmy 
H	 #_$pV 	 ¸ ( �ID�
`@ED;	 ¸ ( � � 
8@ED;G(3.8)

The smooth component ¸ � # 
 is the solution of

� � ¸ � # 
8@T�U� # 
H	 #_$pV 	 ¸ �ID�
8@ ¸ �§�ID�
'-/��L 0=Qmy 
 ¸�& �ID�
�	 ¸ � � 
S@��U� � 

and consequently the singular component ¹ � # 
 is the solution of the homogeneous problem

�`��¹ � # 
�@/D;	 #_$pV 	 ¹ �ID�
S@��U�ID�
 02¸ �ID�
H	 ¹ � � 
`@TDXG(3.9)

LEMMA 3.4. The bounds on ¸ � and its derivatives for
D ]�©1] ª satisfy

{�¸ « ¬�­� {�]�x G
Proof. The problem (3.6) can be written as

¸�+� �I��
3-%º.����
 ¸ ���I��
8@/�U�I��
 F?� �I��
�	 ¸ �§� � 
`@EaU	(3.10)

where
ºP�I��
8@/Rm����
 Fm� ����
�G

The problem (3.10) is a first order linear differential equation in ¸ � . Therefore to obtain
the solution of the problem, we multiply (3.10) by

¢H~,»'��¼�ºP����
�µ���

, and simplification yields½ ¢H~,» ½ ³�ºP����
�µ���¾ ¸ � ¾ + @M�U����
,¢H~,» ½ ³hº.����
�µ���¾ Fm� �I��
�G(3.11)

Now integrating (3.11) from # to � , for some #%$ ��DX	 � 
 , we obtain½ ¸ � ����
§¢t~§» ½ ³hºP�I��
�µ���¾¿¾ &À�Á � @M³
&� i �U����
§¢t~§»

½ ³ÂºP�I��
�µ���¾ F?� ����
 k µ���	
which on simplification reduces to

¸ � � # 
8@�a�Ã F?Ä � # 
 0 ³ &� i �U����
§¢t~,»
½ ³hºP�I��
�µ�� ¾ F?� �I��
 k µ�� FmÄ � # 
�	(3.12)

where
ÃÅ@u¢t~§»ÇÆ�¼®º.����
�µ���È � À�Á & and Ä � # 
�@b¢t~§»ÇÆ�¼®ºP�I��
�µ���È � À�Á � . Now since � ����
 and

R?�I��

are sufficiently smooth, i.e., bounded for all

� $�i D;	 �tk and we have � ����
�� y e�D®o)� $2i DX	 �Hk ,
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i.e., � ����
 v@jD for all
� $/i DX	 �Hk , therefore

ºP�I��
®@uR?�I��
 F?� �I��
�JWD is bounded for all
� $/i D;	 �tk

and also
�U����


is bounded for all
� $�i D;	 �tk . Thus combining all the facts, we conclude thatÃ

, Ä and the second term on the right side of equation (3.12) are bounded which implies the
required result that ¸ � is bounded. Again from equation (3.6), we have

¸�+� � # 
S@T�U� # 
 F?� � # 
 0 ºP� # 
 ¸ � � # 
�	
and the boundedness of ¸ � implies that ¸ +� is bounded. Using the boundedness of ¸ � and ¸ +�
and differentiating the differential equation (3.6) successively, we obtain the bounds on ¸ + +�
and ¸ + + +� . Thus for

D ]5©1] ª , we have

{�¸ « ¬�­� {®]Ex G
THEOREM 3.5. Let

�
be the solution of the problem (3.1), (3.2) and let

�%@ ¸ - ¹ . ForD ]5©1] ª and for sufficiently small
L
; ¸ , ¹ and their derivatives satisfy the following bounds

{H¸ «É¬�­ {®]�x ��L 0�Qmy 
 ( � ¬ 	
� ¹ « ¬H­ � # 
 � ]5x ¢H~,»�� 0�yÂ#�F ��L 0=Qmy 
�
�	 #%$ V G(3.13)

Proof. Since ¸ & is the solution of the first order linear differential equation (3.7) and¸ + +� � # 
 , �dL 0hQ?� � # 
�
 F ��L 0�Qmy 
 , � � # 
 and
R?� # 
 are bounded on i D;	 �Hk therefore the right

side of equation (3.7) is bounded. Thus using similar steps as we have used in the proof
of Lemma 3.4, we obtain

{�¸ & {�]5x 	
where x is a constant. Now using this bound on ¸ & and the differential equation (3.7), we get{�¸ +& {�]5x . After differentiating the (3.7) successively and using the bound on ¸ & and ¸ +& , one
can easily obtain the bounds on ¸ + +& and ¸ + + +& .

The quantities ¸ + +& and
��L 0=Q?� � # 
�
 F ��L 02Qmy 
 are bounded by a constant independent ofL

, so the right side of equation (3.8) is bounded independently of
L
. Thus ¸�( is the solution

of a boundary value problem similar to the problem (3.1), (3.2). Hence by Theorem 3.3, we
have for

D ]5©1] ª
{�¸ « ¬�­( {�]Ex �dL 02Qmy 
 � ¬§	

which gives the required estimate for the regular component ¸ . Now to obtain the required
bounds on the singular component ¹ and its derivatives we consider the two barrier functions��� defined by

� � � # 
8@�� � �U�ID�
 � - � ¸ � � 
§¢H~,»3� 0B#)y/F ��L 0=Qmy 
�
'� ¹ � # 
�G
Then we have

� � �ID�
`@ � �U�ID�
 � - � ¸ � ��D�
 � �/�I�.��D�
 02¸ � ��D�
�
��5D;	� � � � 
`@W� � �.��D�
 � - � ¸ � �ID�
 � 
,¢H~,»P� 0�y �dL 0=Qmy 
 � & 
q�5DX	
and

�`��� � � # 
8@W�dL 02Q?� � # 
�
 � � � # 
3- � � # 
 � � � # 
3-9R?� # 
 � � � # 
@W� � �.��D�
 � - � ¸ � �ID�
 � 
 i y ( �dL 02Qmy 
 � & 0=� � # 
 y �dL 0=Qmy 
 � & -9R?� # 
 kÊ ¢t~§»P� 0B#)y ��L 0=Qmy 
 � & 
'� �`��¹ � # 
] DXG
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Therefore by the minimum principle, we have

� � � # 
8@�� � �U�ID�
 � - � ¸ � � 
,¢H~,»3� 0B#�y/F ��L 0=Qmy 
�
3� ¹ � # 
q��DX	 #_$ V 	
which on simplification gives

� ¹ � # 
 � ]Ex ¢t~,»3� 0B#�y �dL 0=Qmy 
 � & 
H	 #_$ V 	
where x @�� � �U�ID�
 � - � ¸ � ��D�
 � 
 .

Now to find out the bounds on the derivatives of the singular component ¹ of the solution" , we use the same technique as we did in the proof of Theorem 3.3. For #2$�V , construct a
neighborhood z � @W� # 	 # -5�dL 0�Qmy 
�
 . Therefore by the Mean Value Theorem, there exists
a point ²O$%z � such that

¹�+ � ² 
`@ ¹ � # -/��L 0=Qmy 
�
 02¹ � # 
�dL 02Qmy 
 	
which implies that

� �dL 02Qmy 
 ¹ + � ² 
 � ] * {�¹¶{ G(3.14)

Now we have ³ �´ ¹ + + �I��
�µ��8@ ¹ + � # 
 02¹ + � ² 
�	
i.e.,

¹ + � # 
8@ ¹ + � ² 
'- ³ �´ ¹ + + ����
�µ��HG
Using equation (3.9) for ¹ + + �I��
 in the above equation, we obtain

¹�+ � # 
8@ ¹®+ � ² 
'-5³ �´ 0 �dL 02Q?� ����
�
 � & i � ����
 ¹®+ �I��
3-9R?����
 ¹ ����
 k µ��tG
Taking modulus on both sides, we obtain

� ¹�+ � # 
 � ] � ¹®+ � ² 
 � - � ³
�
´ �dL 02Q?� ����
�
 � & � � �I��
 ¹�+ �I��
3-�Rm����
 ¹ ����
�
;µ�� �

] � ¹®+ � ² 
 � -T�dL 02Qmy 
 � &
½
� ³
�
´ � �I��
 ¹�+ �I��
�µ�� � -5³

�
´ � R?�I��
 ¹ �I��
 � µ�� ¾(3.15)

] �dL 02Qmy 
 � & ½ � ³
�
´ � �I��
 ¹ + �I��
�µ�� � - { R {�{�¹^{ � #O0=² � ¾=G

We have, by integration by parts,³ �´ � �I��
 ¹�+ �I��
�µ��£@ � ����
 ¹ ����
 � �´ 0 ³
�
´ �§+ �I��
 ¹ �I��
�µ���G

Using the fact that the maximum norm of a function is always greater than the value of the
function over the domain of consideration and the inequality

D1J � #10=² � ]�� followed by a
simplification yields

� ³
�
´ � ����
 ¹�+ ����
�µ�� � ] � * {H��{ - {H�§+�{ 
 {�¹¶{ G(3.16)
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Using inequalities (3.14) and (3.16) in the inequality (3.15), we obtain

� ¹ + � # 
 � ]�x ��L 0=Qmy 
 � & {�¹¶{ G(3.17)

For #%$%z � , we have

{�¹^{ @¤��ËX»�m��ÌUÍ � ¹ � # 
 � ]Ex ¢H~,»3� 0B#)y/F ��L 0=Qmy 
�
HG
Using this value of ¹ in inequality (3.17), we obtain

� ¹�+ � # 
 � ]�x �dL 02Qmy 
 � & ¢t~,»3� 0B#�y/F �dL 02Qmy 
�
�	
which gives the required result. The estimate for ¹ + + can be easily obtained from the differ-
ential equation and the bounds on ¹ and ¹ + G

3.1.2. Standard finite difference method. To discretize the boundary value problem
(3.1), (3.2), we place a uniform mesh of size Î @ �
F�z on the interval i DX	 �tk G Denote # �®@Ï Î 	£���3@/�.� # �Ð
�	 � �P@ � � # �Ð
�	8RH�P@TRm� # �Ð
2}m\;Ñb�?�P@M�U� # ��
H	 Ï @TDX	 � 	tG�GtG z G In the problem
(3.1), (3.2), we approximate

� + + � # 
 and
� + � # 
 by central difference and forward difference,

respectively.

� Ì &ÓÒ Ô @���L 0=Q?� � # �Ð
�
�Õ<Ö`Õ � �)�;- � � # ��
�Õ<ÖU�)�)-�R?� # �Ð
����3@T�U� # �Ð
�	
�.��D�
£@MY � 	�.� � 
£@Ea.	

where
Õ Ö Õ � ���3@������ � & 0 * �)�;-w��� Ö & 
 F�Î ( , Õ Ö ���3@��I�)� Ö & 0 �)�Ð
 F�Î andÕ � ���3@������ 0 ��� � & 
 FmÎ , which on simplification gives a three point difference scheme

� Ì &ÓÒ Ô @T×¿�I��� � & 0=Ø �����;-wÙA���)� Ö & @TÚO��	(3.18)

where ×¿�P@��dL 02Q?� �Ð
 FmÎ ( 	Ø �.@ * �dL 0=Q?� ��
 FmÎ ( - � � FmÎO0 R���	ÙA�P@��dL 0=Q?� ��
 FmÎ ( - � � FmÎ 	ÚO�P@/�?��	 Ï @ � 	 * 	tGtG�G z¯05� G
The difference equations (3.18) form a tridiagonal system of zÛ0Ü� equations withz - � unknowns

� � 	�� & 	tGtG�G�� Ì . The zÝ0�� equations together with the given two boundary
conditions are sufficient to solve the system. The stability and convergence analysis of the
scheme is discussed in [6].

3.1.3. Fitted mesh finite difference method. In this section, we discretize the bound-
ary value problem (3.1), (3.2) using the fitted mesh finite difference method composed of a
standard upwind finite difference operator on a fitted piecewise uniform mesh, condensing in
the boundary layer region at # @WD . The fitted piecewise-uniform mesh V Ô Ì on the intervali DX	 �tk is constructed by partitioning the interval into two subintervals i DX	�Þ k , i ÞX	 �tk , where the
transition parameter is chosen such that

ÞK@M|O� \ i D;G ßX	 x ��L 0�Qmy 
§à \ zpk with x @ �
F
n . It is
assumed that z @ * ¬

, where © � * is an integer, which guarantees that there is at least one
point in the boundary layer region. On each of these subintervals, a uniform mesh is placed.
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A fitted finite difference method for the problem (3.1), (3.2) on the piecewise uniform meshV Ô Ì is defined by

� Ì(tÒ Ô �)�3@M�U� # ��
H	 # � $_V ÌÔ 	(3.19)

� � @/Y � 	
(3.20) � Ì @Ea.	
where the discrete operator � Ì(HÒ Ô is defined as

� Ì(tÒ Ô ���3@W��L 0=Q?� � # ��
�
�Õ � ���7- � � # �Ð
�Õ Ö �)�;-9R?� # ��
��)��	
with Õ � � � @ * ��Õ<Ö.� � 0 Õ � � � 
 F � Î � - Î � Ö & 
H	`Õ � � � @W�I� � 0 � � � & 
 F�Î � 	Õ Ö @W����� Ö & 0 ����
 FmÎ � Ö & 	 V ÌÔ @ r�# � � �A] Ï ]�zÝ05�ms 	 V Ô Ì @ r�# � � D ] Ï ]5z=s 	

# �P@gá Ï Î � â�Z�ã`D ] Ï ]�zfF * 	Þ¦-T� Ï 02z<F * 
 Î �·â�Z�ã z<F * - ��] Ï ]9z 	
Î �3@ á * Þ F�z â�Z�ã8D ] Ï ]9z<F * 	* � �B0 Þ;
 FHz â�Z�ã z<F * - �A] Ï ]�z G

Discrete Minimum Principle. Assume that � � �gD and � Ì �gD . The � Ì(HÒ Ô � � ] D ,��] Ï ]9zä05� implies that � �£�5D for all
Ï
,
D ] Ï ]5z .

Proof. Let © be such that � ¬ @E|O� \ �tå � å Ì � � and suppose � ¬ J�D . Then � ¬ 0K� ¬ � & ]D
, � ¬ Ö &�0w� ¬ ��D and we have

� Ì(tÒ Ô � ¬ @��dL 02Q?� � # ¬ 
�
�Õ � � ¬ - � � # ¬ 
�Õ<Ö � ¬ -9R?� # ¬ 
 � ¬@ * ��L 0=Q?� � # ¬ 
�
 ½ � � ¬ Ö & 0w� ¬ 
Î ¬ Ö & 0 � � ¬ 0w� ¬ � & 
Î ¬ ¾ F � Î ¬ - Î ¬ Ö & 
- � � # ¬ 
H� � ¬ Ö & 0w� ¬ 
 F�Î ¬ Ö & -�Rm� # ¬ 
 � ¬e�DX	
which contradicts the hypothesis that � Ì(tÒ Ô � � ] D , �A] Ï ]9zg0=� . Therefore � ¬ �9D and we
have chosen © fixed but arbitrary, so � �U�5D for all

Ï
,
D ] Ï ]�z .

LEMMA 3.6. Let æ � be any mesh function such that æ �>@ æ Ì @çD
. Then for all

Ï
,D ] Ï ]9z

� æ � � ]9n,� & |f}m~& å;èHå Ì � & � � Ì(HÒ Ô æ è � G
Proof. Let us introduce two mesh functions � �� defined by

� �� @ nX� & |f}?~& åXèHå Ì � & � � Ì(tÒ Ô æ è � � æ � G
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� �� @ nX� & |f}?~& åXèHå Ì � & � � Ì(tÒ Ô æ è � � æ �A�9DX	���� \;¡H¢ æ �®@EDX	
� �Ì @ n � & |f}?~& åXèHå Ì � &3� � Ì(tÒ Ô æ è � � æ Ì �5D;	é��� \;¡H¢ æ Ì @/D;	

and for �A] Ï ]�zÝ05�
� Ì(HÒ Ô � �� @��dL 0=Q?� � # �Ð
�
�Õ � � �� - � � # �Ð
�Õ<Ö � �� -�Rm� # �Ð
 � ��@MR?� # ��
 n � & |f}?~& åXèHå Ì � & � � Ì(HÒ Ô æ è � � � Ì(HÒ Ô æ �] DX	[��� \;¡t¢�R?� # � 
 n � & ]Â0A� G

Therefore by the discrete minimum principle, we have

� �� ��Dêo Ï 	£D ] Ï ]5z
which gives the required estimate.

THEOREM 3.7. Let
�U� # 
 be the solution of the continuous problem (3.1), (3.2) andë Ì @·ì�� ��í Ì� Á � be the solution of the corresponding discrete problem (3.19), (3.20). The

fitted mesh finite difference method with standard upwind finite difference operator on the
piecewise uniform mesh V Ô Ì , condensing at the boundary layer at # @îD

, is
L
-uniform.

Moreover " and
ë Ì @Wì���� í Ì� Á � satisfy the following error estimate��ËX»��ï � å & { ë Ì 0 � {®]Ex�z=� & ��à \ z 
 ( 	

where x is a constant independent of
L
.

Proof. As in the case of the continuous problem, the solution
ë Ì @·ìI� �Ðí Ì� Á � of the

discrete problem (3.19), (3.20) can be decomposed into regular and singular components.
Thus ë Ì @ � Ì -9ð Ì 	
where � Ì is the solution of the inhomogeneous problem

� Ì(tÒ Ô � Ì � # ��
S@/�U� # ��
ñâ�Z�ã8}mà à # � $pV ÌÔ 	 � Ì �ID�
`@ ¸ �ID�
�	 � Ì � � 
`@ ¸ � � 

and

ð Ì
is the solution of the homogeneous problem

� Ì(tÒ Ô ð Ì � # � 
`@EDòâ�Z�ã`}mà à # � $%V ÌÔ 	�ð Ì �ID�
`@ ¹ �ID�
�	wð Ì � � 
`@ ¹ � � 
�G
Then the error can be written in the formë Ì 0 �K@�� � Ì 02¸ 
3-T��ð Ì 0�¹ 
�G
Thus the errors in the regular and singular components of the solution can be estimated sep-
arately. To estimate the error for the regular component, from differential and difference
equations, we have

� Ì� � � Ì 02¸ 
H� # ��
8@/�U� # �Ð
 02� Ì(HÒ Ô ¸ � # ��
@�� � � 02� Ì(HÒ Ô 
 ¸ � # � 
(3.21) @���L 0=Q?� � # 
�
 ½ µ (µ # ( 0 Õ � ¾ ¸ � # � 
3- � � # 

½ µµ # 0 Õ<ÖU¾ ¸ � # � 
HG
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Let # � $%V ÌÔ . Then for any óE$%x ( � V�Ô 
 ,
� �IÕ Ö 0

µµ # 
 ó � # � 
 � ] � # � Ö &B0�# � 
 {�ó « ( ­ {�F *
and for any ó/$pxAô � V�Ô 
 ,

� ��Õ � 0
µ (µ # ( 
 ó � # ��
 � ] � # � Ö & 0�# � � & 
 {�ó « ô ­ {�F ªXG

For a proof of these results, see [10, Lemma 1, p. 21]. Using these results in (3.21), we obtain

� � ( � � Ì 0�¸ 
H� # ��
 � ] � # � Ö & 02# � � & 

½ �dL 0=Q?� � # �Ð
�
ª {�¸ « ô ­ { - � � # �Ð
* {�¸ « ( ­ { ¾ G

Since # � Ö &q02# � � &�] * z � & and using Theorem 3.5 for bounds on ¸ « ( ­ and ¸ « ô ­ , we obtain

� � Ì(tÒ Ô � � Ì 0�¸ 
H� # � 
 � ]5x�z=� & 	 # � $%V ÌÔ G(3.22)

Now an application of Lemma 3.6 for the mesh function
� � Ì 02¸ 
t� # � 
 gives

� � � Ì 02¸ 
H� # � 
 � ]9n,� & |f}m~& å;èHå Ì � & � � Ì(HÒ Ô � � Ì 02¸ 
H� # è?
 � G(3.23)

Using inequality (3.22) in inequality (3.23), we obtain

� � � Ì 02¸ 
t� # �Ð
 � ]Ex�z=� & G(3.24)

Arguments for the estimation of the singular component of the error � Ì(HÒ Ô ��ð Ì 0>¹ 
 depends
on the value of the transition parameter

Þ
, whether

Þ1@ �
F * or
Þ1@ x �dL 02Qmy 
,à�\ z , wherex @ �
F?n .

Case i) x ��L 0=Qmy 
,à�\ z � �
F * , i.e., when the mesh is uniform
In this case we go through the same arguments as we did in the case of the estimation of the
regular part of the error which gives

� � Ì(HÒ Ô ��ð Ì 02¹ 
H� # � 
 � ]Ex � # � Ö &q02# � � & 
8õ��dL 02Q?� � # � 
�
 {H¹ « ô ­ { - � � # � 
 {H¹ « ( ­ {Hö
Using Theorem 3.5 for bounds on ¹ « ( ­ and ¹ « ô ­ and the fact that

� # � Ö &U0p# � � & 
8@ * z � & for
the uniform mesh, we obtain

� � Ì(tÒ Ô ��ð Ì 0�¹ 
H� # � 
 � ]Ex �dL 02Qmy 
 � & z � & G(3.25)

In this case, we have
��L 0=QX{H��{ 
 � & ] * x à�\ z . Using this inequality in the above inequality

(3.25), we obtain

� � Ì(HÒ Ô ��ð Ì 02¹ 
H� # � 
 � ]5x�z � & �Ià�\ z 
 ( G(3.26)

Now an application of Lemma 3.6 for the mesh function
��ð Ì 0�¹ 
H� # ��
 gives

� ��ð Ì 0�¹ 
t� # �Ð
 � ] � � Ì(HÒ Ô ��ð Ì 02¹ 
H� # ��
 � o # � $%V ÌÔ G(3.27)

Using (3.26) in (3.27), we obtain

� ��ð Ì 0�¹ 
t� # ��
 � ]Ex�z=� & ��à \ z 
 ( o # � $%V ÌÔ G
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Case ii) x ��L 0/Qmy 
§à�\ z J �?F * , i.e., when the mesh is piecewise uniform with mesh
spacing

* Þ F�z in the subinterval i DX	�Þ k and
* � �B0 Þ;
 F�z in the subinterval i Þ;	 �Hk

We give separate proofs for the bounds on the singular component of the error in the coarse
and fine mesh subintervals. First we obtain the bound on the singular component in the outer
region, i.e., in the subinterval i ÞX	 �Hk . Using the triangular inequality, we have

� ��ð 02¹ 
H� # ��
 � ] � ðu� # ��
 � - � ¹ � # ��
 � G
From inequality (3.13), we have

� ¹ � # � 
 � ]Ex ¢H~,»3� 0�yÂ# � F �dL 0=Qmy 
�
(3.28)

for all # � $wi Þ;	 �Hk . Exp
� 0�yÂ# � F ��L 0�Qmy 
�
 is a decreasing function and # � �EÞ . Using these

facts in above inequality (3.28) we have

� ¹ � # �Ð
 � ]�x ¢H~,»'� 0�y Þ F �dL 0�Qmy 
�

In this case we have

Þ��P@ x �dL 02Qmy 
§à \ z . Using this value of
Þ

in the above inequality, we
get

� ¹ � # ��
 � ]Ex�z � & G(3.29)

Now to obtain the bound on
ð Ì

, we construct a mesh function ÷ð Ì� defined as the solution
of the following problem��L 0=Q?� � # �Ð
�
�Õ � ÷ð Ì � # ��
P- y Õ Ö ÷ð Ì � # �Ð
P-�R?� # �Ð
 ÷ð Ì � # ��
`@TDX	
�w] Ï ]äzî0�� 	 under the same boundary conditions as for

ð
. Then an application of

[10, Lemma 5, p. 53] yields

� ð Ì � # �Ð
 � ] � ÷ð Ì � # �Ð
 � 	�D ] Ï ]9z G(3.30)

Applying [10, Lemma 3, p. 51] for ÷ð Ì� gives

� ÷ð Ì � # � 
 � ]Ex�z � & 	 z<F * ] Ï ]5z G
Using this estimate for ÷ð Ì� in inequality (3.30), we obtain

� ð Ì � # �Ð
 � ]Ex�z=� & 	 z<F * ] Ï ]5z G(3.31)

Thus from inequalities (3.29) and (3.31), we obtain the bound on the singular component of
error in the outer region i ÞX	 �Hk

� ð Ì 0�¹ � # ��
 � ]�x�z=� & 	 z<F * ] Ï ]�z G(3.32)

Now it remains to prove the result for # � $ui DX	�Þ k , i.e., in the boundary layer region. ForÏ @/D
, there is nothing to prove. For # � $ ��DX	�Þ;
 the proof follows on the same lines as for the

case i) except that we use the discrete minimum principle on i DX	�Þ k and the already established
bounds

ðu� # Ì£ø ( 
 ]Ex�z � & and ¹ � # ÌUø ( 
 ]Ex�z � & G Thus by using similar arguments as we
have used in the estimation of the regular component of the error, we get

� � Ì(tÒ Ô ��ð Ì 0�¹ 
t� # �Ð
 � ] * Þ z=� & ��L 0=QX{H��{ 
 � ( 	� ð Ì �ID�
 02¹ ��D�
 � @/D;	
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and

� ð Ì � # Ì£ø ( 
 02¹ � # Ì£ø ( 
 � ] � ð Ì � # Ì£ø ( 
 � - � ¹ � # Ì£ø ( 
 � ]�x�z � & G
Now let us introduce comparison functions ó �� defined by

ó �� @W�IÞ 0�# �Ð
 x & �dL 0=QX{H��{ 
 � ( Þ z � & - x ( z � & �/��ð Ì 02¹ 
H� # ��
�	
where xB& and x�( are arbitrary constants. Then we have

ó �� @ xB& Þ z � & �dL 02QX{t��{ 
 � ( - x�(tz � & ��DX	ó �Ì£ø ( @ x�(�z � & �T��ð Ì 0�¹ 
t� # ÌUø ( 
`G
We choose x ( so that the first term dominate the second term on the right of the above
equation which gives ó �Ì£ø ( �9D and consider

� Ì(tÒ Ô ó �� @�Þ z�� & x & �dL 02QX{t��{ 
 � ( � Ì(tÒ Ô ��Þ 02# ��
'-9R�� x ( z=� & � � Ì(tÒ Ô ��ð Ì 0�¹ 
@ 0 Þ z�� & ��L 0=QX{H��{ 
 � ( � � � xB&`ù * 
'-9R � Þ z=� & �dL 02QX{t��{ 
 � ( ��Þ 02# � 
H� xB& - x�( 
�G
Now we choose the constant x¿& so that

� � � xq&�ù * 
®�ÂD , thus all the terms on the right side
in the above inequality are negative which gives

� Ì(HÒ Ô ó �� ] DX	 ��] Ï ]5zfF * 05� G
Then by the discrete minimum principle, we have

ó �� �5DX	�D ] Ï ]9z<F * 	
which on simplification gives

� ��ð Ì 0�¹ 
t� # �Ð
 � ]Ex & �dL 02Qmy 
 � ( Þ ( z=� & - x ( z=� & G
Since

Þ<@ x �dL 02Qmy 
,à�\ z 	 where x @ �
F?n , we obtain

� ��ð Ì 0�¹ 
t� # � 
 � ]Ex�z � & ��à \ z 
 ( G(3.33)

Now combining inequalities (3.32) and (3.33) to obtain the bound on the singular component
of error throughout the interval i D;	 �Hk , we obtain

� ��ð Ì 02¹ 
H� # ��
 � ]5x�z=� & ��à \ z 
 ( 	 D ] Ï ]9z G(3.34)

Now after combining the two inequalities, inequality (3.24) to bound the regular error com-
ponent and inequality (3.34) to bound the singular error component, we obtain the required
error estimate.

3.2. Layer on the right side. Now we assume that � � # 
 ]Ý0�y JuD
throughout the

interval i D;	 �Hk , where y is a constant. This assumption implies that the boundary layer will
be in the neighborhood of � , i.e., on the right side of the interval i DX	 �tk .

3.2.1. Analytical results. As we have established the estimates in section
ª;G � for the

solution of the continuous problem and its derivatives in the case when the solution of the
problem exhibits boundary layer behavior on the left side of the interval i DX	 �Hk , one can easily
obtain similar estimates in this case on the same lines. The key difference is that in this case
we approximate the first derivative by the backward finite difference operator in place of the
forward finite difference operator as we did in case of left side boundary layer.
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3.2.2. Standard finite difference method. We use the standard backward finite upwind
difference scheme to the discretize the continuous problem (3.1), (3.2) and for

Ï @ � 	 * 	�GtGtG z
to obtain

� Ì &ÓÒ ú � � @��dL 02Q?� � 
H��� � � &�0 * � � -�� � Ö & 
 F�Î ( - � � �I� � 0 � � � & 
 FmÎ -9R � � � @M� � 	�)�®@TY7��	� Ì @�aU	
which on simplification gives ×¿���)� � & 02Ø �I���;-�ÙA�I��� Ö & @EÚO��	(3.35)

where ×��P@W��L 0=Q?� ��
 FmÎ ( 02� � FmÎ 	Ø �.@ * ��L 0=Q?� �Ð
 F�Î ( 0=� � F�Î¶0 RH��	ÙA�.@W��L 0�Q?� ��
 F�Î ( 	ÚO�P@M�?��	 Ï @ � 	 * 	tGtG�G z¯09� G
The difference equations (3.35) form a tridiagonal system of zÛ0Ü� equations withz - � unknowns

� � 	�� & 	tG�GtGt	�� Ì . The zj0>� equations together with the given two boundary
conditions are sufficient to solve the system. The stability and convergence analysis of the
scheme is discussed in [6].

3.2.3. Fitted mesh finite difference method. In this case, we discretize the bound-
ary value problem (3.1), (3.2) using the fitted mesh finite difference method composed of
a standard backward upwind finite difference operator on a fitted piecewise uniform mesh,
condensing at the boundary # @ � . The fitted piecewise-uniform mesh V ú Ì on the in-
terval i DX	 �Hk is constructed by partitioning the interval into two subintervals i D;	�� �®0 Þ;
 k andi � �)0 Þ;
�	 �Hk , where the transition parameter is chosen such that

Þ<C/|¶� \ i DXGûß,	 x �dL 0¦Qmy 
§à \ zpk
with x @ �?F
n and it is assumed that z @ * ¬

, where © � * is an integer, which guarantees
that there is at least one point in the boundary layer region. On each of these subintervals, a
uniform mesh is placed. A fitted finite difference method for the problem (3.1), (3.2) on the
piecewise uniform mesh V Ìú , is defined by

� Ì(tÒ ú � � @��U� # � 
�	 #>$pV Ìú 	�7�®@TY;��	� Ì @�a.	
where the discrete operator � Ì(HÒ ú is defined as

� Ì(tÒ ú ���3@W��L 0�Q?� � # ��
�
�Õ � ���7- � � # �Ð
�Õ � ���;-�R?� # �Ð
�����G
Also one can easily show that in this case, the solution of the discretized problem convergesL
-uniformly to the solution of the continuous problem. One can obtain the error estimate in

this case on the same lines as we have done in section
ªXG � G ª for the case of left side boundary

layer.
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4. Computational results. Some numerical examples are considered and solved using
the methods proposed in this paper. The exact solution of the boundary value problem given
by (3.1), (3.2) for constant coefficients (i.e., � � # 
_@ � and

R?� # 
%@üR
are constant), with�U� # 
8@ED is�.� # 
`@ i ��a 0 Y � ¢t~§»'�Iý ( 
�
,¢H~,»3��ý & # 
 0 ��a 0 Y � ¢H~,»3�Iý & 
�
§¢t~§»P��ý ( # 
 kIF ��¢t~,»3��ý & 
 0 ¢H~,»'��ý ( 
�
�	

where ý & @ iþ0¿� -/ÿ � ( 0�� �dL 02�§Q 
�R k�F * �dL 02�§Q 
H	ý ( @ iþ0¿�¦0 ÿ � ( 0�� �dL 02�§Q 
�R k�F * �dL 02�§Q 
HG
� ~X}�|¶»;à�¢ � G � G�L " + + � # 
3- " + � #<02Q 
 0�" � # 
8@TDX	ËX\;ÑX¢tã����X¢¿� \���¢tã��?}màX}m\7Ñ
	)Z�Ë;\;ÑX}mã��^¡tZ�\;ÑX������Z�\;�

" � # 
8@ � 	 0¿Q^]�#_] DX	 " � � 
`@ � G
� ~X}�|¶»;à�¢ � G * G�L " + + � # 
3-w¢H~,»3� 0B# 
 " + � #Ç02Q 
 02#;" � # 
8@/DX	ËX\;ÑX¢tã����X¢¿� \���¢tã��?}màX}m\7Ñ
	)Z�Ë;\;ÑX}mã��^¡tZ�\;ÑX������Z�\;�

" � # 
8@ � 	 0¿Q^]�#_] DX	 " � � 
`@ � G
� ~X}�|¶»;à�¢ � G ª;G�L " + + � # 
 02" + � #<02Q 
 0�" � # 
8@TDX	ËX\;ÑX¢tã����X¢¿� \���¢tã��?}màX}m\7Ñ
	)Z�Ë;\;ÑX}mã��^¡tZ�\;ÑX������Z�\;�

" � # 
8@ � 	 0¿Q¦]9#_] D;	 " � � 
`@ 0A� G
� ~X}�|¶»;à�¢ � G � G�L " + + � # 
 0 � � - # 
 " + � #<02Q 
 0 ¢t~§»P� 0B# 
 " � # 
S@/D;	ËX\;ÑX¢tã����X¢¿� \���¢tã��?}màX}m\7Ñ
	)Z�Ë;\;ÑX}mã��^¡tZ�\;ÑX������Z�\;�

" � # 
8@ � 	 0¿Q¦]9#_] D;	 " � � 
`@ 0A� G
� ~X}�|¶»;à�¢ � G ßXG�L " + + � # 
 0 � � - # 
 " + � #<02Q 
 0 ¢t~§»P� 0B# 
 " � # 
S@ � 	ËX\;ÑX¢tã����X¢¿� \���¢tã��?}màX}m\7Ñ
	)Z�Ë;\;ÑX}mã��^¡tZ�\;ÑX������Z�\;�

" � # 
8@ � 	 0¿Q¦]9#_] D;	 " � � 
`@ 0A� G
TABLE 4.1

The maximum absolute error for Example 
�������������� ��� (Standard Finite Difference Method)

� Number of Mesh Points (N)
64 128 256 512��� �
0.00613354 0.00310678 0.00156363 0.00078441���"!
0.01302363 0.00666864 0.00337691 0.00169922� �$#
0.02558967 0.01339603 0.00686154 0.00347366� �$%
0.04767658 0.02595431 0.01359511 0.00696570� �"&
0.08292925 0.04802051 0.02615483 0.01370389� �$'
0.12457740 0.08321306 0.04820459 0.02626121()�$*
0.11509818 0.12486142 0.08336200 0.04830016� �$+
0.07139804 0.11497041 0.12500829 0.08343839� �$,
0.03927297 0.07071252 0.11490790 0.12508302��� �.-
0.02162100 0.03823164 0.07036844 0.11487702� � �/�
0.01238366 0.02039224 0.03770840 0.07019610� � �0!
0.00765658 0.01105879 0.01977472 0.03744615� � �.#
0.00526520 0.00628303 0.01039297 0.01946520� � �.%
0.00406245 0.00386715 0.00559274 0.01005922��� �0&
0.00345930 0.00265211 0.00316455 0.00524673132
0.12457740 0.12486142 0.12500829 0.12508302
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FIG. 4.1. The numerical solution of Example 4.1 45�6�������879�
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FIG. 4.2. The numerical solution of Example 4.1 45���:��� ���87/�

5. Discussion. A parameter uniform numerical difference scheme based on finite differ-
ence on piecewise uniform mesh is presented to solve the boundary value problems for singu-
larly perturbed differential difference equations of the convection-diffusion type with small
delay. The theoretical analysis is presented to show that the proposed method is parameter-
uniform, i.e., the method converges independently of the singular perturbation parameter

L
.

In support of the predicted theory in the paper and to see how the delay affects the
boundary layer solution of the problem, a set of numerical experiments is carried out in
section � . The proposed difference scheme is compared with the classical finite difference
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TABLE 4.2
The maximum absolute error for Example 
������8�6�:��� ��� (Fitted Mesh Finite Difference Method)

� Number of Mesh Points (N)
64 128 256 512� � �
0.00613354 0.00310678 0.00156363 0.00078441� �"!
0.01302363 0.00666864 0.00337691 0.00169922���$#
0.02813705 0.01589305 0.00709501 0.00347366� �$%
0.03203328 0.02064657 0.01388512 0.01008758� �"&
0.03149705 0.01954023 0.01249807 0.00851910���$'
0.03088492 0.01850837 0.01121125 0.00705171� �";
0.03050696 0.01791699 0.01047647 0.00622051� �$+
0.03030218 0.01760203 0.01009093 0.00579052� �$,
0.03019609 0.01744008 0.00989678 0.00557297� � �.-
0.03014214 0.01735804 0.00979846 0.00546403��� �/�
0.03011495 0.01731675 0.00974899 0.00540920��� �0!
0.03010130 0.01729604 0.00972418 0.00538170� � �.#
0.03009446 0.01728567 0.00971175 0.00536793��� �.%
0.03009104 0.01728048 0.00970554 0.00536104� � �0&
0.03008933 0.01727789 0.00970243 0.00535759132
0.03203328 0.02064657 0.01388512 0.01008758
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FIG. 4.3. The numerical solution of Example 4.2 4<���=�����87/�

scheme via tabulating the maximum absolute error for the considered examples in the Tables
4.1-4.4, where

× Ì @�|f}?~ ��ï � ï & × Ì� , with
× Ì� @�|f}?~ ��å � å Ì � > � � and >

�S@ ��� Ì� 0 �.� # �Ð
�
 .
Tables 4.1 and 4.3 show that the standard upwind difference scheme on the uniform mesh
works nicely till Î JwL but does not behave uniformly with respect to the singular perturbation
parameter

L
, i.e., the method is not parameter uniform; and as the condition Î JwL is violated,

the scheme fails in the sense that the absolute maximum error increases as the mesh parameterÎ decreases. Tables 4.2 and 4.4 show that the proposed fitted mesh method is parameter
uniform and works nicely independent of the mesh parameter Î and the singular perturbation
parameter

L
.

To demonstrate the effect of delay on the boundary layer solution of the problem, the
graphs of the solution for different values of Q are plotted in the form of Figures 4.1-4.8.
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FIG. 4.4. The numerical solution of Example 4.2 45���:��� ���87/�

TABLE 4.3
The maximum absolute error for Example 
�� ?����6�:��� ��� (Standard Finite Difference Method)

� Number of Mesh Points (N)
64 128 256 512���@�
0.00251716 0.00126635 0.00063514 0.00031806���$!
0.00727328 0.00367700 0.00184859 0.00092683� �)#
0.01719480 0.00875821 0.00442065 0.00222089���)%
0.03566613 0.01848879 0.00940797 0.00474620� �$&
0.07013438 0.03726925 0.01924935 0.00979803���)'
0.12705085 0.07188758 0.03820138 0.01973081���$;
0.22136722 0.12938377 0.07284344 0.03870772� �)+
0.27214642 0.22347704 0.13060579 0.07334352� �),
0.20393719 0.27504772 0.22456093 0.13123155���@�.-
0.11285694 0.20663541 0.27652225 0.225110381 2
0.27214642 0.27504772 0.27652225 0.22511038

From Figures 4.1-4.8, we observe that as the delay increases, the thickness of the boundary
layer decreases in the case when the solution exhibits boundary layer behavior on the left
side, while it increases in the case when the solution exhibits boundary layer behavior on the
right side of the interval

��DX	 � 
 .
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FIG. 4.8. The numerical solution of Example 4.5 45���:��� ���879�


