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THE SINC-GALERKIN METHOD FOR SOLVING SINGULARLY-PERTURBED
REACTION-DIFFUSION PROBLEM*

MOHAMED EL-GAMEL'

Abstract. One of the new techniques used in solving boundary-value problems involving partial differential
equations is the Sinc-Galerkin method. In this paper we solve the singularly-perturbed reaction-diffusion problem
using the Sinc-Galerkin method. The scheme is tested on four problems and a comparison with finite element
methods and the method of reduction of order is made. It is show that the Sinc-Galerkin method yields better results.
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1. Introduction. There is a vast literature on numerical solutions of boundary-value
problems involving ordinary and partial differential equations. Some of the well-known tech-
niques used in solving these problems are the finite differences, finite elements, and multigrid
methods.

The Galerkin method is another type of numerical technique used to solve partial differ-
ential equations with boundary or initial conditions. In this method the solution is assumed
to be in a Hilbert space H with inner product (,), and one seeks an approximate solution
to the problem in the form ¢(z) = Zszl apr(z), where {1y, (ac)}kN:1 is a basis for an N-
dimensional subspace of functions, S. The functions ¥ (z),k = 1,2,---, N, are called test
functions and the space S is called the test space.

There are number of hybrids of the Galerkin method that use different types of test func-
tions. In the last decade or so, Sinc functions have been used in many applications, includ-
ing numerical solutions of ordinary and partial differential equations. In the Sinc-Galerkin
method, the test functions are translates of the sinc function, S(z) = sinwz/mz. The sinc
method, which was introduced and developed by F. Stenger more than twenty years ago [23],
is based on the Whittaker-Shannon-Kotel’nikov sampling theorem for entire functions. This
method, which uses entire functions as bases, has many advantages over classical methods
that use polynomials as bases. For example, in the presence of singularities, it gives a much
better rate of convergence and accuracy than polynomial methods.

In recent years, a lot of attention has been devoted to the study of the Sinc-Galerkin
method to investigate various scientific models. The efficiency of the method has been for-
mally proved by many researchers [3, 5, 6, 7, 15, 18, 22, 24]. For more details of the Sinc-
Galerkin method see[ 16, 23] and the references therein.

In this paper, we will consider the Sinc-Galerkin method for the singularly perturbed
elliptic boundary value problem

0?u  0%u .
(L1 _6<@+6—y2> fau=f@y) i Q=(0,1)x (1),
and
(1.2) u=0, on 9%,
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where 0 < € < 1, a is a finite constant and f(x,y) is analytic in 2. We shall assume that the
solution u(x, y) is analytic in 2. For more details about the formulation of this equation, see
Roos [20].

The numerical solution of singularly perturbed boundary value problems has recently
received much attention. In fact, singularly perturbed problems appear in many branches
of engineering, such as fluid mechanics, heat transfer, and problems in structural mechanics
posed over thin domains. For more details see Roos [20]. Theorems that list conditions for the
existence and uniqueness of solutions of such problems are thoroughly discussed in [20]. This
kind of problem has been investigated by many researchers [1, 2, 4, 8,9, 10, 13, 17, 19, 21].

The organization of the paper is as follows. In section 2, we review some basic facts
about the sinc approximation that are necessary for the formulation of the discrete system. In
section 3, the Sinc-Galerkin method is developed for linear second-order singularly perturbed
boundary value problems with homogeneous boundary condition. The Sinc-Galerkin method
is developed for nonlinear second-order singularly perturbed boundary value problems in
section 4. Section 5 addresses singularly perturbed reaction diffusion equations, which will be
solved using the Sinc-Galerkin method. Finally, some numerical examples will be presented
in section 6, followed by the conclusions.

2. Sinc Interpolation. The goal of this section is to recall notation and definitions of
the Sinc function, state some known results, and derive useful formulas that are important for
this paper. First we denote the set of all integers, the set of all real numbers, and the set of all
complex numbers by R, Z and C, respectively.

The sinc function is defined on R by

sin(mz)

sinc(z) = , —oo<zx<oo.
T

For h > 0, the translated sinc functions with evenly spaced nodes are given as

S(k, h)(z) = sinc (’”_h—kh) . k=0,+1,42,....

If f is defined on R, then for A > 0 the series

C(f,h) = i F(hk) sinc <$_Thk)

k=—o0

is called the Whittaker cardinal expansion of f whenever this series converges. The properties
of Whittaker cardinal expansions have been studied and are thoroughly surveyed in [23].
These properties are derived in the infinite strip D4 of the complex plane where for d > 0

Da={¢=¢+in:In<d< T}

Approximations can be constructed for infinite, semi-finite, and finite intervals. To construct
approximations on the interval (0,1) which are used in this paper, consider the conformal

map
o0 = (),

which maps the eye-shaped region,

D:{z:x+z’y:‘arg(1iz)‘<dﬁg},
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onto the infinite strip Dg.

The sinc-Galerkin method requires that the derivatives of composite sinc functions be
evaluated at the nodes. We need the following lemma.

LEMMA 2.1. [23] Let ¢ be a conformal one-to one map of the arbitrary simply con-
nected domain D onto Dg. Then

©) _r15(; L =k
e 5 =18m oo e = { TN
0 ifi =k
W _ 5 d g _IY
(22) 5jk - hd¢ [S(]ah) ° ¢($)] |z=mk - { (—klz’; , lfj 75 kl
and
2
@ . ia lf] =k,
@3) O =W [SG N 0 b@)] lo=ar = Slap
T dg? S ri#k
In equations (2.1)-(2.3) h is step size and xy, is a sinc grid point given by
. ekh
zp = ¢~ (kh) = 11 ehh”

3. Linear Second Order Singularly Perturbed Boundary Value Problem. In this
section, we shall study the Sinc-Galerkin scheme for the singularly perturbed boundary value
problem

3.1 eu” +a(z)u' +b(z)u = f(x) for0<z<1
subject to boundary conditions

3.2) u(0) =0, wu(l)=0.

We assume an approximate solution of the form

N
(3.3) Um(x) = Z ¢; Sj(z), m=M+N+1.
j=—M

where S;(z) is the function S(j, h) o ¢(x) for some fixed step size h. The unknown coef-
ficients {c; }J_VM in (3.3) are determined by orthogonalizing the residual with respect to the

basis functions{S} }szfM, ie.,
(34) <6uIIJSk> + <a($)ulask> + <b(x)u7sk> = <f7 Sk>7 k= _M7"'7N'
The weighted inner product {, ) is taken to be
1
(9(e), 1) = [ 9(o)f@hw(o)ds.
0
Here w(z) plays the role of a weight function which is chosen depending on the boundary

conditions, the domain, and the differential equation. For the case of second order boundary
value problems, it is convenient to take
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A complete discussion of the choice of the weight function can be found in [ 16, 23].

The method of approximating the integrals in (3.4) begins by integrating by parts to
transfer all derivatives from w to S;,. We need the following theorem.

THEOREM 3.1. The following relations hold

(3.5) (eu", S) ~ h Z Z e _ulw;)_ A 8 g2,i(x),

—M i=0

for some functions g, ; to be determined.
Proof. The inner product with sinc basis element is given by

(3.6) (eu",Sk)::JC e (2)Si () w(z)dz.

This expression contains the second derivative of u, but the desired result is the variable u
with no derivatives. Integrating by parts to remove second derivatives from the dependent
variable u leads to the equality,

3.7) (eu"(z), Sk(z)) = B, +/0 u(z) (e Sk(z)w(z))" d,

where the boundary term

1 1
By = |3 _(-1)ul"(e Skw)“)l =0
=0 z=0
Setting
ﬂiwmmy—ﬁm@) 0<n<2
d¢" k ) )

and noting that

by expanding the derivatives under the integral in (3.7), we obtain

2
(3.8) (eu", Sp(z / <Zu S(z) !]2z> dz,

2=

where
g22(x) = ew(¢)?,  gao(z) = ew",
and
g2.1(z) = ew(®)” +2ew'¢.

Applying the Sinc quadrature rule to the right-hand side of (3.8) and deleting the error terms
yields (3.5).0
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The approximation of the last three inner products on the right-hand side of (3.4) has
been thoroughly treated in [16]. We will list them for convenience:

(3.9) (a(z)u', Sk) ~ —h Z

e [ @+ @y

and

(3.10) (G,Sp) ~ h

where G is b(z)u or f, respectively.
Replacing each term of (3.4) with the approximation defined in (3.5), (3.9), and (3.10),
respectively, and replacing u(z ;) by ¢; and dividing by h, we obtain the following theorem.
THEOREM 3.2. If the assumed approximate solution of the boundary-value problem
(3.1)-(3.2) is (3.3), then the discrete Sinc-Galerkin system for the determination of the un-
known coefficients {c; }j-V:,M is given by

N
(4) 92,i (1) (0) (a(z;) w)' )
Mlg%gmmw 2[5 )+ 0 |
(3.11) +b(:ck)w(xk)c _ fzp)w(zr)
Fa) ¢l
k=—M,--- N.

The following notation will be necessary for writing down the system. Let D(g) be the
m X m diagonal matrix

9(z—nm)
9(T—m41)
D(g) =
9(zN)
Define the m x m matrices I?) (see [11]) for0 < p < 2by
= [5](?] , ik=—M,...,N.

Let ¢ be the m-vector with j-th component given by c;, and 1 be an m-vector each of whose
components is 1. In this notation the system in (3.11) takes the matrix form

(3.12) A , =0,

where

2
vy Lyop (i) _ [Lo (Wﬂ)')] <b_“’>
(3.13) A—jz:;]th’D<¢,]) [hllD(aw)—i—D )| TP\ 7 )
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and
wf
(3.14) ©=D (F) 1.
Now we have a linear system of m equations of the m unknown coefficients, namely,
{¢j,j = —M,...,N}. We can obtain the coefficients of the approximate solution by solving

this linear system. This system (3.12) may be easily solved by a variety of methods. In
this paper we use the QR method [12]. The solution ¢ = (¢—1,C—pr415- - - cN)T gives the
coefficients in the Sinc-Galerkin approximation ., (x) of u(z).

4. Non-Linear Second Order Singularly Perturbed Boundary Value Problem. Con-
sider a nonlinear, second order BVP of the form

4.1 eu’ +a(z)u’ + b(z)u + o(z) Q(u) = f(x) for0<z <1,
subject to boundary conditions
4.2) u(0) =0, wu(l) =0,

where (Q(u) may be a polynomial, a rational function, or an exponential. Due to the large
number of different possibilities, our work will be focused mainly on the following forms

Q(u):

1. Qu)=u" n>1,
2. Q(u) = exp(£ u), cos(u), sin(u), sinh(u), cosh(u),...,
3 QW= r : )

1xu)”’ (1£u?)" (u?x1)™’

or any analytic function of u which has a power series expansion.
We start with the case Q(u) = u™, where n is a non-negative integer, or a fraction. The
approximate solution for u(z) is represented by the formula

N
(4.3) um(z) = Y ¢ Sj(x), m=M+N+1.
j=—M

The unknown coefficients ¢; in equation (4.3) are determined by orthogonalizing the residual
with respect to the basis functions, i.e.,

(4.4) (eu”, Sk) + (a(z)u’, Sk) + (b(x)u, Sk) + (ou™, Sk) = (£, Sk) -

We need the following lemma
LEMMA 4.1. [7] The following relations hold

w(xg)u" (zg)o(Tk)

¢' (zk)
Replacing each term of (4.4) with the approximations defined in (3.5),(3.9),(3.10), (4.5), and
replacing u(mj) by ¢; and dividing by h, we obtain the following theorem.

4.5) (o(x)u™,Sk) = h

THEOREM 4.2. If the assumed approximate solution of the boundary-value problem
(4.1)and (4.2) is (4.3), then the discrete Sinc-Galerkin system for the determination of the



ETNA

Kent State University
etna@mcs.kent.edu

THE SINC-GALERKIN METHOD FOR SINGULARLY-PERTURBED REACTION-DIFFUSION 135

. N .
unknown coefficients {c; }j:_M is given by

N 2 N

$ Sapa- 5 i w5
j=—M i=0
*0 bar)u (xk)Ck L o) , _ Soryoton)
¢ (1) ¢'(zx) " ¢ (1)
k=-M,---,N

Proof. Combine Lemma 4.1 and Theorem 3.2 . [

Using the notation in the previous section, let ¢” be the m-vector with j-th component
given by ¢} . The system in (4.6) takes the matrix form

4.7) Ac+Ec" =0,
where

4.8 E=D

@9 ( 72 )

with A and © defined by equations (3.13) and (3.14), respectively.

Now we have a nonlinear system of m = M + N + 1 equations of the m unknown
coefficients, namely, {c; };V:_ - We can obtain the coefficients of the approximate solution
by solving this nonlinear system by Newton’s method [7]. The solution ¢ = (c_ar, .. .,cn)T
gives the coefficients in the Sinc-Galerkin approximation u, (x) of u(z).

5. Singularly Perturbed Reaction-Diffusion Equation. In this section the Sinc-
Galerkin method is given for the approximate solution of the equations (1.1)-(1.2). The
assumed approximate solution takes the form

5.1 umz,my z,Yy) Z z uij Sij (z,9),

— My i=—

where m; = M, + N, + 1, my = M, + N, + 1. The basis functions {S;;(z,y)} for
-M; <i < Np,—M, < j < N, are given as the product of basis functions. In this paper
we take

Sij(z,y) = Si(@)S;(y) =[S, ha) 0 p(2)][S (s hy) © ¥(y)]-

The unknown coefficients {u;;} in equation (5.1) are determined by orthogonalizing the
residual with respect to the functions {Sy;(z,y)}, —M; < k < N, —-M, <1 < N,.
This yields the discrete Galerkin system

(5.2) — {€uzz, SkS1) — (€uyy, SkSi) + {aw, SkSi) = (f, Sk.Si) -

We need the following lemma.
LEMMA 5.1. The following relations hold

N 2
’LL 'nyl
(53) <€uwzasksl) = y ¢2 Z .'L' |:hj él(g‘i) p]:| ’
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Ny 2
w(zTy) u(zr,yi) | 1 ;)
5.4) €Uyy, SESI) = hg hy —— — 8 mj |,
(ettgy, SiSi) A :% W) (B

A w(zk) w(zr, yi) v(y)

5.5 SES;) =ah,
G (e 5,81 = ahe by =0 0 o)
and
w(zk) fr, yr) v(y)
5.6 75 S, =h$h )
G0 U5k 510 = e by =0 ) o)
where
p2:€(¢11)2w: p1:€¢llw+2€¢llwla Pozew”;
and

m =€(¢h)’v, m=edhv+2edhv, no=ev".

Replacing each term of (5.2) with the approximation defined in (5.3)—(5.6) and replacing
u(x,y1) by ug and dividing by h, h, we obtain the following theorem.

THEOREM 5.2. If the assumed approximate solution of the problem (1.1)-(1.2) is (5.1),
then the discrete Sinc-Galerkin system for the determination of the unknown coefficients
{upj, —My < k < N, —M; < j < N} is given by

6.7

w(@e) ulzr, yr) v(y) _ wlzk) f(ze,y) v(y)
¢1(zk) d2(y1) ¢1(zr) 2(y1)

Introducing the notation of Toeplitz matrices in equation (5.7) leads to the matrix form

2

1 . Pj , v
— Zh—]w.I(])D <¢'1—]w) D(¢1)D(w)UD<¢—,2)

Jj=0 t

! . 1 j 4
o (%) UD@)D(gh) |3 - 19D (%)

j=0

w v w v
tab (a) up (@) =P (a) b (@) '

Note that [ ]?, denotes the transpose of the matrix [ ]. Premultiplying by D(¢ (zx)) and
postmultiplying by D(¢%(y;)) yields the equivalent system

(5.8) AX +XB =G,
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where

A=Al+al,

A1 = —D(¢}) i 19D (p—J> D),

Zh o \dw

t
2

— D 16 ("_J) /
8= D) |31 () | D

G = D(w) FD(v),
and
X = D(w) U D(v).

The four matrices A, B, X and G have dimension mg X mg, My X My, Mg X My and mg X my,
respectively. Lastly, the m, x m, matrices U and F have kl-th entries given by ug; and
kh 1h .
F@ho 1) = F(750r, 7o), respectively,
To obtain the approximate solution of equation (5.1), we need to solve the system for
U which requires solving (5.8) for X. To solve (5.8), see[5].

6. Numerical Examples. In this section, four examples will be tested by using the Sinc-
Galerkin method discussed above. For purposes of comparison, contrast and performance,
examples with known solutions were chosen. For the sake of comparison only, we will discuss
the first and the third examples that were investigated by Reddy [19] and Navon [14].

In all examples, d is taken to be 7/2 and we report absolute error which is defined as

absolute error = | Uexact solution — USinc-Galerkin|

EXAMPLE 6.1. [19] Consider the boundary-value problem

v du

and

whose exact solution is

(2e —1) (1 — e 7/%)
1—e1/e )

u(z)=z(x+1—2¢€)+

The parameters o = 3 = % and N = 100 are used. Maximum absolute error are tabulated in

Table 6.1 for Sinc-Galerkin together with the analogous results of Reddy [19], who use the
method of reduction of order.
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TABLE 6.1
Maximum absolute error for Example 6.1

€ The method of reduc- | Sinc-Galerkin method
tion of order [19]

10-3 | 0.213E-02 0.358E-08

104 | 0.112E-04 0.271E-08

10— 0.797E-10

EXAMPLE 6.2. Consider the boundary-value problem

2 1
ed—u+2d—u+u2: —Zte?) e 0<e <],
d z? dz €

and
u(0) =1, u(l) =e"Y/e
whose exact solution is
u(x) = e /",

The parameters a« = § = % and N = 100 are used. Maximum absolute error at different €
are tabulated in Table 6.2.

TABLE 6.2
Maximum absolute error for Example 6.2

€ | Maximum absolute error
10~2 | 0.135E-07
10~* | 0.432E-08
109 | 0.297E-10

EXAMPLE 6.3. [14] Consider the boundary-value problem

?u  0’u
—€ (WﬂLa—yQ) +2u = f(z,y),

and
u(0,y) = u(l,y) = u(z,0) = u(z,1) =0,

where f(x,y) is chosen such that the solution is

e_m/e +e_(1_m)/€ e_y/€ +e_(1_y)/5
u(m,y)—(l— Ipp—=vr ) (1— TREp=VE )
The parameters M, = N, = My = N, = 100 and o = 3 = % are used for the Sinc-

Galerkin solution. Table 6.3 exhibits a comparison between the errors obtained by using
Sinc-Galerkin method and errors of Li and Navon [ 14], who use the Finite Element method.
EXAMPLE 6.4. Consider the boundary-value problem

2u  O%u
—€ (ﬁ-’_@—gﬂ) —u= f(z,y),
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TABLE 6.3
[|tezact — Uapp||L2 for Example 6.3

€ The Finite Element | Sinc-Galerkin Method
Method [14] with
N = 5329

10~2 | 1.978E-03 0.387E-05

10~ | 0.457E-03 0.321E-05

10~5 | 0.704E-03 0.112E-06

10~% | 0.317E-04 0.137E-06

10~7 | 0.136E-04 0.133E-06

and
u(0,y) =u(l,y) = u(z,0) = u(z,1) = 0,
where f(z,y) is chosen such that the solution is
u(z,y) =zy ln z ln y.
The parameters M; = N, = My = Ny = 100and o = 8 = % are used for the Sinc-

Galerkin solution. Table 6.4 exhibits the maximum absolute errors at different €.

TABLE 6.4
Maximum absolute error for Example 6.4

€ | Maximum absolute error
102 0.1846E-07
10— 0.4697E-09
108 0.4032E-09
10719 | 0.2643E-09

The computations associated with the four examples discussed above were performed
using MATLAB.

7. Conclusions. The Sinc-Galerkin method was tested on four problems. A comparison
with finite element methods and the method of reduction of order is made and it was seen that
the Sinc-Galerkin method yields good results. The results of Example 6.4 clearly indicate
that our methods are accurate even when singularities occur at the boundaries.
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