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MODIFIED SPECHT’S PLATE BENDING ELEMENT AND ITS
CONVERGENCE ANALYSIS ∗

T.M. SHIH † AND JUNBIN GAO‡

Abstract. This paper discusses Specht’s plate bending element, shows the relationships between∫
Fρ
w ds or

∫
Fρ

∂w
∂n

ds and the nodal parameters (or degrees of freedom), further it sheds lights on

the construction methods for that element, and finally it introduces a new plate bending element
with good convergent properties (which passes the F-E-M-Test (cf.[11])) is derived.
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1. Introduction. The solution with a C1-continuity requirement of Kirchhoff
bending using a finite element models results in complicated higher elements (cf.[2],
[4], [7]). Besides the large number of unknowns, difficulties may also arise from mixed
second derivatives at the vertices taken as nodal variables (cf.[8]). To overcome such
difficulties, a splitting spline element method was introduced (cf.[5],[9]), but this result
in a complicated computation. From the practical point of view lower-degree poly-
nomial finite elements are more desirable. Unfortunately, the simple elements based
on lower degree polynomials for the displacement field are non-conforming (not C1

compatible). This may cause convergence problems and unreliable finite approxima-
tions. For non-conforming finite elements, one has some relaxed sufficient convergence
conditions, such as the well-known patch test, the interpolation test, the generalized
patch tests and the F-E-M-Test, instead of the strong C1 continuity.

Consider the simple triangular plate bending element whose nodal variables (or
degrees or freedom) are the deflection and two rotations at the vertices. Based on a
quadratic displacement expansion proposed by Zienkiewicz, this element is noncon-
forming because the normal slopes do not match continously along the interelement
boundaries. As this element fails in the (generalized) patch test (cf.[10]), Bergan in
[1] proposed a modified displacement basis, but the modified version does not satisfy
the patch test either. Later, with the aid of the interpolation test, B. Specht (cf.[13])
constructed an appropriate polynomial displacement basis. This modified element
passes the (generalized) patch test ensuring the convergence.

Specht’s construction is based on the requirement of weak continuity, i.e., the
displacement w and the normal slope ∂w

∂n (and tangent slope ∂w
∂τ ) are continuous in

the integral sense along the interelement boundaries. The intention of this article is to
derive the relationships between

∫
Fρ
w ds as well as

∫
Fρ

∂w
∂n ds and the nodal variables,

to examine a constructive method for Specht’s plate bending element, and to introduce
a new plate bending element with convergence by the aid of Shi’s F-E-M-Test (cf.[11]).

To facilitate our presentation, we must agree on certain notations. Given a tri-
angle K with the vertices Pi = (xi, yi)(i = 1, 2, 3) in counterclockwise order and the
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area ∆, we put

ξ1 = x2 − x3, ξ2 = x3 − x1, ξ3 = x1 − x2

η1 = y2 − y3, η2 = y3 − y1, η3 = y1 − y2

l212 = ξ2
3 + η2

3, l223 = ξ2
1 + η2

1, l231 = ξ2
2 + η2

2

r1 = 1
∆(ξ2ξ3 + η2η3), r2 = 1

∆ (ξ3ξ1 + η3η1), r3 = 1
∆(ξ1ξ2 + η1η2)

t1 = 1
∆(ξ2

1 + η2
1), t2 = 1

∆ (ξ2
2 + η2

2), t3 = 1
∆(ξ2

3 + η2
3)

.

Denote by Fi the edge of K opposite to the vertex Pi, and by τi and ni the unit
tangent and outward normal on Fi(i = 1, 2, 3), respectively. Now we let λi denote the
area coordinates relative to the vertices Pi, i.e., x = x1λ1 + x2λ2 + x3λ3

y = y1λ1 + y2λ2 + y3λ3

1 = λ1 + λ2 + λ3

such that the triangle K is transformed into the standard simplex K∗ = {(λ1, λ2,
λ3)|λ1 + λ2 + λ3 = 1, λi ≥ 0}.

2. Analysis for Specht’s element. Specht’s plate bending element was defined
in [13] as follows. Let K be a triangle with vertices at Pi = (xi, yi), (i = 1, 2, 3) in
counterclockwise order. Specht’s element has three degrees of freedom per vertex,
i.e., displacement at vertex and the two rotations expressed by the derivatives of the
transverse displacement, similar to Zienkiewicz’s element,

D(K,w) = (w(P1), wx(P1), wy(P1), w(P2), wx(P2), wy(P2),
w(P3), wx(P3), wy(P3))T

(2.1)

The shape function space of Specht’s element is

P (K) = {w ∈ R(K)|
∫
Fi

P
(i)
2

∂w

∂ni
ds = 0, 1 ≤ i ≤ 3},(2.2)

where P (i)
2 is the Legendre polynomial of order 2 on Fi and

R(K) = span{λ1, λ2, λ3, λ1λ2, λ2λ3, λ3λ1, λ
2
1λ2, λ

2
2λ3,

λ2
3λ1, λ

2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3}.

(2.3)

It is clear that dimP (K) = 9 and the interpolation problem (P (K), D(K,w))
is unisolvable, i.e., for any given constants C = (c1, c2, · · · , c9)T there exists unique
w ∈ P (K) such that D(K,w) = C. In [13], B. Specht wrote “The required three
higher terms are assumed linear combinations of the following cubic and quartic terms:
λ2

1λ2, λ
2
2λ3, λ

2
3λ1, λ

2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3. This assumption is successful”, but why did

B.Specht add those terms? To explain Specht’s element again, first, we introduce an
interpolation theorem.

Let πk(K) be polynomial space of order k defined on K, and denote by Λ(K,w)
the following interpolation conditions (or linear functionals defined on π(K))

Λ(K,w) = (w(P1), wx(P1), wy(P1), w(P2), wx(P2), wy(P2),
w(P3), wx(P3), wy(P3),

∫
F1
w ds,

∫
F2
w ds,∫

F3
wds,

∫
F1

∂w
∂n1

ds,
∫
F2

∂w
∂n2

ds,
∫
F3

∂w
∂n3

ds)T
.(2.4)
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Theorem 2.1. The interpolation problem (π4(K),Λ(K,w)) is unisolvable, that
is, for any given constants C = (c1, c2, · · · , c15)T , there exists a unique polynomial
w ∈ π4(K) such that

Λ(K,w) = C.

Proof. For w ∈ π4(K), by the Bernstein-Bezier representation, we have

w =
∑

i+j+k=4

4!
i!j!k!

wijk λ
i
1λ
j
2λ
k
3 .

It is not difficult to show that the coefficients wijk (i = 0 or j = 0 or k = 0) can
be represented by w(P1) = c1, wx(P1) = c2, wy(P1) = c3, w(P2) = c4, wx(P2) =
c5, wy(P2) = c6, w(P3) = c7, wx(P3) = c8, wy(P3) = c9,

∫
F1
w ds = c10,

∫
F2
wds =

c11,
∫
F3
wds = c12.

By the aid of the barycentric coordinates with respect to K, we obtain

l12
∂w
∂n3

= − 1
2 (r2 ∂w∂λ1

+ r1
∂w
∂λ2

+ t3
∂w
∂λ3

)

= −2

(
r2

∑
i+j+k=3

3!
i!j!k! wi+1 jkλ

i
1λ
j
2λ
k
3

+r1
∑

i+j+k=3

3!
i!j!k! wij+1 kλ

i
1λ
j
2λ
k
3

+t3
∑

i+j+k=3

3!
i!j!k! wijk+1λ

i
1λ
j
2λ
k
3

)
.

Substituting λ3 = 0 on the edge P1P2 yields the following relation:

l12
∂w
∂n3

∣∣∣
λ3=0

= −2

(
r2

∑
i+j=3

3!
i!j! wi+1 j0λ

i
1λ
j
2

+r1
∑

i+j=3

3!
i!j! wij+1 0λ

i
1λ
j
2

+t3
∑

i+j=3

3!
i!j! wij1λ

i
1λ
j
2

)
.

Integrating the above equation on the edge F3 yields

2l12

∫
F3

∂w
∂n3

ds

= −
(
r2

∑
i+j=3

wi+1j0 +
∑

i+j=3

wij+10 + t3
∑

i+j=3

wij1

)
.

Thus we have

t3(w211 + w121) = −2l12

∫
F3

∂w
∂n3

ds− t3(w301 + w031)
−r2

∑
i+j=3

wi+1j0 − r1
∑

i+j=3

wij+10
.

Similarily, the following relations are derived:

t1(w121 + w112) = −2l23

∫
F1

∂w
∂n1

ds− t1(w130 + w103)
−r3

∑
j+k=3

w0j+1k − r2
∑

j+k=3

w0jk+1



ETNA
Kent State University 
etna@mcs.kent.edu

T.M. Shih and Junbin Gao 95

t2(w211 + w112) = −2l31

∫
F2

∂w
∂n2

ds− t2(w301 + w103)
−r1

∑
i+k=3

wi0k+1 − r3
∑

i+k=3

wi+10k
.

Hence the coefficients w211, w121 and w112 can be represented by C = (c1, c2, c3,
c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15)T .

Now we consider the following interpolation problem: Find a 9-dimensional sub-
space Q(K) of π4(K) such that for any given values c1, c2, c3, c4, c5, c6, c7, c8, c9 there
exists a unique w ∈ Q(K) satisfying

 w(P1) = c1, wx(P1) = c2, wy(P1) = c3,
w(P2) = c4, wx(P2) = c5, wy(P2) = c6,
w(P2) = c7, wx(P3) = c8, wy(P3) = c9,

(2.5)



∫
F3
w ds = l12

2 [w(P1) + w(P2)] + l212
12

[
∂w
∂τ3

(P1)− ∂w
∂τ3

(P2)
]

= l12
2 [c1 + c2] + l12

12 [ξ3(c5 − c2) + η3(c6 − c3)] ,∫
F1
w ds = l23

2 [w(P2) + w(P3)] + l223
12

[
∂w
∂τ1

(P2)− ∂w
∂τ1

(P3)
]

= l23
2 [c2 + c3] + l23

12 [ξ1(c8 − c5) + η1(c9 − c6)] ,∫
F2
w ds = l31

2 [w(P3) + w(P1)] + l231
12

[
∂w
∂τ2

(P3)− ∂w
∂τ2

(P1)
]

= l31
2 [c3 + c1] + l31

12 [ξ2(c2 − c8) + η2(c3 − c9)] ,

(2.6)

and 

∫
F3

∂w
∂n3

ds = l12
2

[
∂w
∂n3

(P1) + ∂w
∂n3

(P2)
]

= 1
2 [−ξ3(c2 + c5) + η3(c3 + c6)],∫

F1

∂w
∂n1

ds = l23
2

[
∂w
∂n1

(P2) + ∂w
∂n1

(P3)
]

= 1
2 [−ξ1(c5 + c8) + η1(c6 + c9)],∫

F2

∂w
∂n2

ds = l31
2

[
∂w
∂n2

(P3) + ∂w
∂n2

(P1)
]

= 1
2 [−ξ2(c8 + c2) + η2(c9 + c3)].

(2.7)

Denoting by Q1 the coefficient matrix, with respect to C = (c1, c2, · · · , c9)T , of

the right hand sides of (2.6) and (2.7), and letting Q =
(

I
Q1

)
, then (2.5), (2.6) and

(2.7) can be written as

Λ(K,w) = QD(K,w).(2.8)

Let the interpolation polynomial be

w =
∑

i+j+k=4

4!
i!j!k!

wijk λ
i
1λ
j
2λ
k
3 .(2.9)

Substituting (2.9) into (2.4) yields the following relationship

Λ(K,w) = GX,(2.10)

where X = (wijk)Ti+j+k=4. Clearly G is a nonsingular matrix of order 15, in view of
Theorem 2.1. Then according to (2.8) and (2.10), we have

GX = QD(K,w),
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Defining

Q(K) =

w =
∑

i+j+k=4

4!
i!j!k!

wijk λ
i
1λ
j
2λ
k
3 ∈ π4(K)| GX = QD(K,w)

 ,

we obtain the following results.
Theorem 2.2. With assumptions as above we have Q(K) = P (K) (The shape

function space of Specht’s element), and (Q(K), D(K,w),K) is just the Specht’s plate
bending element.

Proof. It is necessary to show that for any polynomial w ∈ P (K), (2.6) and (2.7)
are valid. In [12], Shi and Chen have showed that the integrals of normal slopes of
Specht’s element on each edge of K are discretized by a linear integral formula. Thus
(2.7) is valid for Specht’s element. Let w ∈ P (K), then from [13] w is a polynomial of
order 3 on each edge of K. Hence equations (2.6) are also valid for w. This completes
the proof.

By (2.6) and (2.7), element (Q(K), D(K,w),K) (K ∈ ∆ a triangulation) passes
the strong F1 and strong F2 test (cf.[11]) which ensures convergence.

3. A new plate bending triangular element. It is known that the strong
F1 and the strong F2 tests ensure the Patch Test for the plate bending problem,
but the strong F1 and the strong F2 tests are indeed stronger conditions for the
convergence of finite element. In general, the F1 test (not the strong F1 test) can be
satisfied when the displacement values at the vertices of the triangular element are
used as the degrees of freedom (or parameters) of the finite element (cf.[11]). Thus it
is not essential how to discretize integrals

∫
Fρ
w ds (such as (2.6) in the construction

of Specht’s element). It is important to keep the strong F2 test.
Now let us discuss another interpolation problem given as follows: Find a poly-

nomial subspace R(K) such that for any given constants C = (c1, c2, · · · , c12)T there
exists a unique polynomial w ∈ R(K) satisfying the following interpolation conditions:


w(P1) = c1, wx(P1) = c2, wy(P1) = c3
w(P2) = c4, wx(P2) = c5, wy(P2) = c6
w(P3) = c7, wx(P3) = c8, wy(P3) = c9∫
F1

∂w
∂n1

ds = c10,
∫
F2

∂w
∂n2

ds = c11,
∫
F3

∂w
∂n3

ds = c13.

(3.1)

Let

F (K,w) = (w(P1), wx(P1), wy(P1), w(P2), wx(P2), wy(P2), w(P3),
wx(P3), wy(P3),

∫
F1

∂w
∂n1

ds,
∫
F2

∂w
∂n2

ds,
∫
F3

∂w
∂n3

ds)T .(3.2)

We will use the method introduced in [6] to find the interpolation subspace R(K).
For notation, set

R(K) = π3(K)⊕ {d1(r3λ2 + r2λ3 + t1λ1)(λ3
2 + λ3

3 + 3λ1λ2λ3)
+d2(r1λ3 + r3λ1 + t2λ2)(λ3

3 + λ3
1 + 3λ1λ2λ3)

+d3(r2λ1 + r1λ2 + t3λ3)(λ3
1 + λ3

2 + 3λ1λ2λ3) :
t1d1 + t2d2 + t3d3 = 0, di ∈ R}.

(3.3)

Referring to [6], in Section 5, we prove the following:
Theorem 3.1. The interpolation problem (R(K), F (K,w),K) is unisolvable and

dimR(K) = 12.
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Now let the interpolation polynomial be

w = β1λ
3
1 + β2λ

3
2 + β3λ

3
3 + β4λ

2
1λ2 + β5λ

2
2λ1

β6λ
2
2λ3 + β7λ

2
3λ2 + β8λ

2
3λ1 + β9λ

2
1λ3 + β10λ1λ2λ3

+d1(r3λ2 + r2λ3 + t1λ1)(λ3
2 + λ3

3 + 3λ1λ2λ3)
+d2(r1λ3 + r3λ1 + t2λ2)(λ3

3 + λ3
1 + 3λ1λ2λ3)

+d3(r2λ1 + r1λ2 + t3λ3)(λ3
1 + λ3

2 + 3λ1λ2λ3)

(3.4)

and t1d1 + t2d2 + t3d3 = 0. Substituting (3.4) into (3.2), we have

F (K,w) = C12×13X

where X = (β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, d1, d2, d3)T and t1d1 + t2d2 + t3d3 = 0,

or
(
F (K,w)

0

)
=
(
C12×13

t

)
X where t = (0, 0, 0, 0, 0, 0, 0, 0, 0, t1, t2, t3), then(

C12×13

t

)
is a nonsingular matrix from Theorem 3.1. Now if we discretize the

three integrals in (3.1) as in (2.7), then we have

F (K,w) = GD(K,w)

or (
GD(K,w)

0

)
=
(
C12×13

t

)
X,

and hence

X =
(
C12×13

t

)−1(
GD(K,w)

0

)
.(3.5)

Let P ∗(K) = {w ∈ R(K) | w is defined as (3.4) and (3.5) and D(K,w) is the
degree of freedom }. Then we have

Theorem 3.2. The new finite element (P ∗(K), D(K,w),K) passes the F1 test
and the strong F2 test, and hence it converges for the plate bending problem. P ∗(K) 6=
P (K) (shape function space of Specht’s element).

Proof. For (P (K), D(K,w),K), integral
∫
Fi

∂w
∂ni

ds depends only upon the param-
eters on the edge Fi in the sense of (2.7). Thus

∫
Fi

∆ ∂w
∂ni

ds = 0 along the interelement
boundary Fi. On the other hand, as the values at the vertices of the triangles are
degree of freedoms, we can easily prove that

∫
Fi

∆w ds = o(||h||2,K1∪K2), where Fi
is the common boundary of K1 and K2. This is just the F1 test. With the conclu-
sions of [11] the finite element (P ∗(K), D(K,w),K) is convergent over any regular
triangulation for the fourth order elliptic problems. Finally, it is not difficult to show
P ∗(K) 6= P (K) by direct computation.

4. Analysis for Convergent Orders. Consider the clamped plate problem,
which corresponds to the following data: Find u ∈ H2

0 (Ω) such that

a(u, v) = f(v), ∀v ∈ H2
0 (Ω),(4.1)

with

a(u, v) =
∫

Ω

{∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)} dxdy,
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and

f(v) =
∫

Ω

f · v dxdy,

where the constant σ (the Poisson coefficient of the material of which the plate is
composed) lies in the interval (0, 1

2 ).
For simplicity, we shall assume that the domain Ω is polygonal, so that it may be

covered by a triangulation ∆ which satisfies the ordinary regular conditions. Let hK
be the diameter of the triangular finite K and h = max

K
hK .

Now construct the modified Specht’s element introduced in the proceding section
on each triangle K of the triangulation. Consequently a finite element space Xh on
Ω can be obtained by standard method. Let

Vh = { vh ∈ Xh, vh
′s parameters on ∂Ω are zero}.

Then the variational problem (4.1) can be discretized as: Find uh ∈ Vh such that

ah(uh, vh) = f(vh), ∀vh ∈ Vh,(4.2)

where

ah(u, v) =
∑
K

∫
K

{∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)} dxdy.

Denote

|vh|2,h = (
∑
K

|vh|22,K)
1
2 .

First, we prove that |vh|2,h is a norm of the finite element space Vh, i.e., vh ∈ Vh
and |vh|2,h = 0 imply vh ≡ 0. In fact, if |vh|2,h = 0, then |vh|2,K = 0 for each triangular
element K. Hence ∂vh

∂x and ∂vh
∂y are constants, respectively, on each triangle. Let K0

be a boundary triangle satisfying F = K0 ∩ ∂Ω. Since the parameters of vh are zero
on F , one has ∫

F

∂vh
∂s

ds =
∫
F

∂vh
∂n

ds = 0,

that is, ∫
F

∂vh
∂x

ds =
∫
F

∂vh
∂y

ds = 0.

Hence

∂vh
∂x

=
∂vh
∂y

= 0 on K0,

as ∂vh
∂x and ∂vh

∂y are constants on K. On the other hand, the modified Specht’s element
passes the strong F2 test; hence we can conclude that ∂vh

∂x = ∂vh
∂y = 0 on each triangle

K. Consequently, vh is constant on K. Finally, the value of vh at each boundary
vertex is zero; hence vh ≡ 0.
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Assume that u and uh are the solutions of the variational problems (4.1) and
(4.2), respectively. To estimate the error between the finite element solution uh and
exact solution u is the next goal of ours.

Theorem 4.1. Let u ∈ H4(Ω) ∩H2
0 (Ω). Then

|u− uh|2,h ≤ Ch(|u|3 + h|u|4),(4.3)

|u− uh|0,h ≤ Ch2(|u|3 + h|u|4).(4.4)

Proof. From the well-known Strang’s Lemma, one has

|u− uh|2,h ≤ C
(

inf
vh∈Vh

|u− vh|2,h + sup
wh∈Vh

|Eh(u,wh)|
|wh|2,h

)
,(4.5)

where

Eh(u,w) = E1(u,w) +E2(u,w) +E3(u,w),

E1(u,w) =
∑
K

∫
∂K

(∆u− (1− σ)
∂2u

∂s2
)
∂w

∂n
ds,

E2(u,w) =
∑
K

∫
∂K

(1− σ)
∂2u

∂n∂s

∂w

∂s
ds,

E3(u,w) = −
∑
K

∫
∂K

∂(∆u)
∂n

w ds.

The first term on the right hand side of (4.5) is the approximation error. The second
one is the consistency error.

In the following the two error terms are estimated respectively.

(I) The approximation error: inf
vh∈Vh

|u− vh|2,h.

It is not difficult to prove that π2 ⊂ Vh. This is because, for any quadratic polynomial
u, (2.7) is exactly valid.

Define the interpolation operator Qh : v ∈ C1(Ω)→ Qhv ∈ Vh such that, on each
triangle K,

Qhv(Pi) = v(Pi), (Qhv)x(Pi) = vx(Pi), (Qhv)y(Pi) = vy(Pi), i = 1, 2, 3,

∫
F3

∂Phv

∂n3
ds =

1
2
[−ξ3(vx(P1) + vx(P2)) + η3(vy(P1) + vy(P2))],

∫
F1

∂Phv

∂n1
ds =

1
2
[−ξ1(vx(P2) + vx(P3)) + η1(vy(P2) + vy(P3))],
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and ∫
F2

∂Phv

∂n2
ds =

1
2
[−ξ2(vx(P3) + vx(P1)) + η2(vy(P3) + vy(P1))].

According to the theory of Hermite interpolation, we have

inf
vh∈Vh

|u− vh|2,h ≤ |u−Qhu|2,h ≤ Ch|u|3.

(II) The consistency error: sup
wh∈Vh

|Eh(u,wh)|
|wh|2,h .

By the construction of the modified Specht’s element,
∫
F
∂wh
∂s ds and

∫
F
∂wh
∂n ds are

continuous on any interelement boundary F = K1∩K2, and
∫
F
∂wh
∂s ds=

∫
F
∂wh
∂n ds = 0

on F = F0 ∩ ∂Ω. On the other hand, we may construct a cubic Hermite interpolation
IFwh for wh on each F (interelement edge and boundary edge) with finite element
parameters. So

∫
F
wh ds can be computed by

∫
F
IFwh ds with error term in higher

orders of derivatives. Then applying the standard analytical techniques for noncon-
forming finite elements, the following estimations can be easily proved:

|Ei(u,wh)| ≤ Ch|u|3 · |wh|2,h, i = 1, 2,

|E3(u,wH)| ≤ Ch(|u|3 + h|u|4)|wh|2,h.

Hence

sup
wh∈Vh

Eh(u,wh)|
|wh|2,h

≤ Ch(|u|3 + h|u|4).

Thus (4.3) is obtained.

Finally, (4.4) can be proved by the Nitsche’s technique or by the dual principle.

5. The Proof of Theorem 3.1. In this section we will use the construction
introduced in [6] to find the interpolation subspace R(K) related to the interpolation
conditions (3.1) or F (K,w) of (3.2).

Let w ∈ π(K) and w(x, y) ≡ w(λ1, λ2, λ3) where (λ1, λ2, λ3) is the berycentric
coordinate of (x, y) with respect to the triangle K. We associate a function analytic
at 0 with each interpolation condition of (3.1).

w(P1) = w(1, 0, 0)↔ eλ1 , w(P2) = w(0, 1, 0)↔ eλ2 , w(P3) = w(0, 0, 1)↔ eλ3 ,
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wx(P1) = 1
2∆

[
η1

∂
∂λ1

+ η2
∂
∂λ2

+ η3
∂
∂λ3

]
w(1, 0, 0)

↔ 1
2∆ (η1λ1 + η2λ2 + η3λ3)eλ1 = l1(λ1, λ2, λ3)eλ1 ,

wy(P1) = − 1
2∆

[
ξ1

∂
∂λ1

+ ξ2
∂
∂λ2

+ ξ3
∂
∂λ3

]
w(1, 0, 0)

↔ 1
2∆ (ξ1λ1 + ξ2λ2 + ξ3λ3)eλ1 = l2(λ1, λ2, λ3)eλ1 ,

wx(P2) = 1
2∆

[
η1

∂
∂λ1

+ η2
∂
∂λ2

+ η3
∂
∂λ3

]
w(0, 1, 0)

↔ 1
2∆ (η1λ1 + η2λ2 + η3λ3)eλ2 = l1(λ1, λ2, λ3)eλ2 ,

wy(P2) = − 1
2∆

[
ξ1

∂
∂λ1

+ ξ2
∂
∂λ2

+ ξ3
∂
∂λ3

]
w(0, 1, 0)

↔ 1
2∆ (ξ1λ1 + ξ2λ2 + ξ3λ3)eλ2 = l2(λ1, λ2, λ3)eλ2 ,

wx(P3) = 1
2∆

[
η1

∂
∂λ1

+ η2
∂
∂λ2

+ η3
∂
∂λ3

]
w(0, 0, 1)

↔ 1
2∆ (η1λ1 + η2λ2 + η3λ3)eλ3 = l1(λ1, λ2, λ3)eλ3 ,

wy(P3) = − 1
2∆

[
ξ1

∂
∂λ1

+ ξ2
∂
∂λ2

+ ξ3
∂
∂λ3

]
w(0, 0, 1)

↔ 1
2∆ (ξ1λ1 + ξ2λ2 + ξ3λ3)eλ3 = l2(λ1, λ2, λ3)eλ3 ,

∫
F3

∂w
∂n3

ds = l12
∂w
∂n3

(P1) + l212
2

∂2w
∂τ2

3∂n3
(P1) + l312

6
∂3w

∂τ2
3∂n3

(P1)

+ l412
24

∂4w
∂τ3

3∂n3
(P1) + · · ·

=
(
1 + 1

2 ( ∂
∂λ2
− ∂

∂λ1
) + 1

6 ( ∂
∂λ2
− ∂

∂λ1
)2 + 1

24 ( ∂
∂λ2
− ∂

∂λ1
)3 + · · ·

)
×
(
r2

∂
∂λ1

+ r1
∂
∂λ2

+ t3
∂
∂λ3

)
w(1, 0, 0)

↔
[
1 + 1

2 (λ2 − λ1) + 1
6 (λ2 − λ1)2 + 1

24 (λ2 − λ1)3 + · · ·
]
×

(r2λ1 + r1λ2 + t3λ3)eλ1

≡ p1(λ1, λ2, λ3)eλ1 .

Similarily,∫
F1

∂w
∂n1

ds ↔
[
1 + 1

2 (λ3 − λ2) + 1
6 (λ3 − λ2)2 + 1

24 (λ3 − λ2)3 + · · ·
]
×

(r3λ2 + r2λ3 + t1λ1)eλ2

≡ p2(λ1, λ2, λ3)eλ2 ,

∫
F2

∂w
∂n2

ds ↔
[
1 + 1

2 (λ1 − λ3) + 1
6 (λ1 − λ3)2 + 1

24 (λ1 − λ3)3 + · · ·
]
×

(r1λ3 + r3λ1 + t2λ2)eλ3

≡ p3(λ1, λ2, λ3)eλ3 ,

Define

H = span{eλ1 , eλ2 , eλ3 , l1(λ1, λ2, λ3)eλ1 , l2(λ1, λ2, λ3)eλ1 , l1(λ1, λ2, λ3)eλ2 ,
l2(λ1, λ2, λ3)eλ2 , l1(λ1, λ2, λ3)eλ3 , l2(λ1, λ2, λ3)eλ3 ,
p1(λ1, λ2, λ3)eλ1 , p2(λ1, λ2, λ3)eλ2 , p3(λ1, λ2, λ3)eλ3}.

,

and letH↓ = span{f↓ | f ∈ H} where f↓ is the leading term of the Taylor’s series of f
in H. Then from the conclusions of [6] H↓ is an interpolation polynomial space with
respect to F (K,w).

Let f be any function in H, i.e.

f = c1e
λ1 + c2e

λ2 + c3e
λ3 + c4l1(λ1, λ2, λ3)eλ1 + c5l1(λ1, λ2, λ3)eλ2

+c6l1(λ1, λ2, λ3)eλ3 + c7l2(λ1, λ2, λ3)eλ1 + c8l2(λ1, λ2, λ3)eλ2

+c9l2(λ1, λ2, λ3)eλ3 + c10p1(λ1, λ2, λ3)eλ1 + c11p2(λ1, λ2, λ3)eλ2

+c12p3(λ1, λ2, λ3)eλ3 .
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We expand f as a power series at (λ1, λ2, λ3) = (0, 0, 0) and let the coefficients
of all of the cubic terms be zero. Then we have a linear system of ten equations in
terms of c1, · · · , c12 which yields the following relations

c1 = 0, c2 = 0, c3 = 0

c4 = − 1
3∆ [η3c10 + η2c12], c7 = − 1

3∆ [ξ3c10 + ξ2c12],
c5 = − 1

3∆ [η3c10 + η1c11], c8 = − 1
3∆ [ξ3c10 + ξ1c11],

c6 = − 1
3∆ [η1c11 + η2c12], c9 = − 1

3∆ [ξ1c11 + ξ2c12]

where

t3c10 + t1c11 + t2c12 = 0

Then we can prove that the coefficients of 1, λ1, λ2, λ3, λ
2
1, λ

2
2, λ

2
3, λ1λ2, λ2λ3,

λ3λ1 are also zero and that f is of the following form (here only the quartic terms are
written):

f = 1
72c10(r2λ1 + r1λ2 + t3λ3)(3λ2

1λ2 + 3λ1λ
2
2 − λ3

1 − λ3
2)

+ 1
72c11(r3λ2 + r2λ3 + t1λ1)(3λ2

2λ3 + 3λ2λ
2
3 − λ3

2 − λ3
3)

+ 1
72c12(r1λ3 + r3λ1 + t2λ2)(3λ2

3λ1 + 3λ3λ
2
1 − λ3

3 − λ3
1) + · · ·

where t3c10 + t1c11 + t2c12 = 0. Hence we have, noting that λ1 + λ2 + λ3 ≡ 1,

H↓ = π3 ⊕ {c10(r2λ1 + r1λ2 + t3λ3)(3λ2
1λ2 + 3λ1λ

2
2 − λ3

1 − λ3
2)

+c11(r3λ2 + r2λ3 + t1λ1)(3λ2
2λ3 + 3λ2λ

2
3 − λ3

2 − λ3
3)

+c12(r1λ3 + r3λ1 + t2λ2)(3λ2
3λ1 + 3λ3λ

2
1 − λ3

3 − λ3
1) :

| t3c10 + t1c11 + t2c12 = 0}
≡ π ⊕ {d1(r3λ2 + r2λ3 + t1λ1)(λ3

2 + λ3
3 + 3λ1λ2λ3)

+d2(r1λ3 + r3λ1 + t2λ2)(λ3
3 + λ3

1 + 3λ1λ2λ3)
+d3(r2λ1 + r1λ2 + t3λ3)(λ3

1 + λ3
2 + 3λ1λ2λ3) :

| t1d1 + t2d2 + t3d3 = 0 : di ∈ R} = P ∗(K)

Thus the interpolation problem (P ∗(K), F (K,w),K) is unisovable.
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