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Abstract. Hamiltonian systems arise in many areas of physics, mechanics, and engineering sciences
as well as in pure and applied mathematics. To their symplectic integration certain Runge–Kutta–
type methods are profitably applied (see Sanz–Serna and Calvo [10]). In this paper Runge–Kutta and
partitioned Runge–Kutta methods are considered. Different features of symmetry are distinguished
using reflected and transposed methods. The property of DJ–irreducibility ensures symplectic meth-
ods having nonvanishing weights. A characterization of symplectic methods is deduced, from which
many attributes of such methods and hints for their construction follow. Order conditions up to order
four can be checked easily by simplifying assumptions. For symplectic singly–implicit Runge–Kutta
methods the order barrier is shown to be two.
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1. Introduction. Consider the partitioned system of differential equations

ṗ = f(p, q, t), q̇ = g(p, q, t),(1.1)

where the points (p, q) = (p1, ..., pn, q1, ..., qn)T are elements of the domain M in the
space IR2n and t ∈ I, where I is an open interval of the real line IR.

Suppose f and g are given as

f = (f1, . . . , fn)T =
(
−∂H
∂q1

, . . . ,−∂H
∂qn

)T
, g = (g1, . . . , gn)T =

(
∂H

∂p1
, . . . ,

∂H

∂pn

)T
,

where H = H(p, q, t) is a sufficiently smooth real function on M × I, i.e., H ∈
C(2)(M× I). Then (1.1) is called a nonautonomous Hamiltonian system, H Hamilto-
nian andM phase space. In many applications the Hamiltonian H does not explicitly
depend on t, and one has an autonomous Hamiltonian system. Every nonautonomous
Hamiltonian system can be written as an autonomous Hamiltonian system (see Sanz–
Serna and Calvo [10, p. 44]). First, we consider partitioned systems, and then
Hamiltonian systems.

Let the initial values (p(t0), q(t0)) = (p0, q0) ∈M be given. Then the initial value
problem for a system of ordinary differential equations can be treated by Runge–
Kutta methods. An s–stage Runge–Kutta method β is uniquely determined by a
generating matrix A = (c, A, b) consisting of the node vector c = (c1, . . . , cs)T , the
coefficient matrix A = (aij) with i, j = 1(1)s, and the weight vector b = (b1, . . . , bs)T .
Further, we use the shifted coefficient matrix C = A − 1

2eb
T and the abbreviations

B = diag(b1, . . . , bs)and e = (1, . . . , 1)T . A Runge–Kutta method β(A) is said to be
of (p, k, `)–type if it satisfies exactly the simplifying assumptions B(p), C(k) and D(`)
with max{k, `} ≤ p (Butcher [2], see Dekker and Verwer [5, p. 57]). Corresponding
assumptions are defined for partitioned Runge–Kutta methods.
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The stability functions relative to the concept of A–stability and AN–stability
are given by

W (z) = 1 + zbT (I − zA)−1e and K(Z) = 1 + bTZ(I −AZ)−1e,

respectively, where I is the unit matrix, and Z = diag(z1, ..., zs) with zj = zk whenever cj =
ck. We also need the representations

W (z) =
det(I + z(ebT −A))

det(I − zA)
and K(Z) =

det(I + (ebT −A)Z)
det(I −AZ)

.(1.2)

The stability matrix relative to the concept of B–stability is defined by

M = BC + CTB.

Further, we consider the reflected and, in case of det(B) 6= 0, the transposed
Runge–Kutta methods β∗ and βτ generated by

A∗ = (c∗, A∗, b∗) =
(
e−Pc,P(ebT −A)P ,Pb

)
,

Aτ = (cτ , Aτ , bτ ) =
(
e−Pc,P(BAB−1)TP ,Pb

)
(Scherer and Türke [12]), where the permutation matrix P is defined by Pb =
(bs, ..., b1)T . A method β is of (p, k, `)–type if and only if β∗ is of (p, k, `)–type,
and likewise if and only if βτ is of (p, `, k)–type. This provides interesting connections
to the well–known methods of Gauss–, Radau– and Lobatto–type. Reflected Runge–
Kutta methods were first studied in [11] (see Butcher [3, p. 221]); sometimes they are
called adjoint methods. One easily deduces the relations

C∗ = −PCP , M∗ = −PMP and Cτ = P(BCB−1)TP , Mτ = PMP .

It is very instructive to study different symmetry features of Runge–Kutta methods.
We distinguish the cases β = β∗ (usual symmetry), β = βτ , β∗ = βτ , and β = β∗ = βτ

(total symmetry; e.g., the Gauss–Runge–Kutta methods are totally symmetric). A
method with β = β∗ satisfies W (z) = (W (−z))−1. A method with β∗ = βτ satisfies
K(Z) = (K(−Z))−1 and M = 0, and further, it is of (p, `, `)–type for some ` ≤ p.
For Hamiltonian systems such methods are profitably used.

2. Partitioned Runge–Kutta methods. Consider the separable not–necessarily
Hamiltonian system

ṗ = f(q, t), q̇ = g(p, t),(2.1)

with the initial values (p(t0), q(t0)) = (p0, q0) and apply two s–stage Runge–Kutta
methods β(1)(A(1)) and β(2)(A(2)) in the following way

Pi = pm + h
s∑
j=1

a
(1)
ij f(Qj, tm + c

(2)
j h), i = 1(1)s,

Qi = qm + h
s∑
j=1

a
(2)
ij g(Pj , tm + c

(1)
j h), i = 1(1)s,

pm+1 = pm + h
s∑
i=1

b
(1)
i f(Qi, tm + c

(2)
i h),

qm+1 = qm + h
s∑
i=1

b
(2)
i g(Pi, tm + c

(1)
i h).
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Then, this method generated by A(1,2) = (A(1);A(2)) is called s–stage partitioned
Runge–Kutta method β(1,2). Changing the sequence yields the method β(2,1)(A(2,1)).
A partitioned Runge–Kutta method is called explicit if Pi and Qj are recursively
computable when applied to (2.1), and implicit otherwise. In the explicit case, after
certain permutations, Pi and Qj are computable with increasing indices. So, the
partitioned Runge–Kutta method β(1,2) (A(1,2)) is explicit if and only if the elements
of A(1) and A(2) satisfy

a
(1)
ij = a

(2)
ij = 0 (i < j) and a

(1)
ii a

(2)
ii = 0 for i, j = 1(1)s.

Further, we refer to the matrices

B(ν) = diag(b(ν)
1 , . . . , b(ν)

s ) and C(ν) = A(ν) − 1
2
eb(ν)T

with ν = 1, 2, and

M (1,2) = B(1)C(2) + C(1)TB(2).

In a similar way as for Runge–Kutta methods, reflected and transposed partitioned
methods β(1,2)∗ and β(1,2)τ are defined by the generating matrices

A(1,2)∗ = (A(1)∗ ;A(2)∗)

A(1,2)τ =
(
e−Pc(1),P

(
B(1)A(2)B(2)−1

)T
P ,Pb(1) ;

e−Pc(2),P
(
B(2)A(1)B(1)−1

)T
P ,Pb(2)

)
(det(B(ν)) 6= 0 for ν = 1, 2). One easily deduces the properties

β(1,2)∗∗ = β(1,2), β(1,2)ττ = β(1,2),

and the relations

C(ν)∗ = −PC(ν)P , C(ν)τ = P
(
B(ν)C(3−ν)B(3−ν)−1

)T
P , for ν = 1, 2,

and

M (1,2)∗ = −PM (1,2)P , M (1,2)τ = PM (1,2)P .

Further, we consider the symmetry features of partitioned Runge–Kutta methods
β(1,2) = β(1,2)∗ (i.e., β(1,2) is symmetric in the usual sense), β(1,2) = β(1,2)τ , β(1,2)∗ =
β(1,2)τ , and β(1,2) = β(1,2)∗ = β(1,2)τ (i.e., β(1,2) is totally symmetric).

Example 2.1. Consider the method β(1,2) (A(1,2)) with

c(1) =

 0

1

 , A(1) =

 0 0
1
2

1
2

 , b(1) =

 1
2

1
2

 , c(2) = 1
2e, A

(2) = A(1)τ , b(2) = b(1),

which is explicit in the following sense:

P1 = pm, Q1 = Q2 = qm + h
2 g(P1, tm), P2 = pm + hf

(
Q1, tm + h

2

)
,

pm+1 = P2, qm+1 = Q1 + h
2g(P2, tm + h).

(2.2)
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Notice that β(1) and β(2) are symmetric in the usual sense. The partitioned method
β(1,2) is totally symmetric with M (1,2) = 0 and has second order.

Example 2.2. Consider the method β(1,2) (A(1,2)) with weight vectors b(1), b(2),
the coefficient matrices

A(1) =


b
(1)
1 0
...

. . .

b
(1)
1 · · · b

(1)
s

 , A(2) =


0 0

b
(2)
1

. . .
...

. . . . . .

b
(2)
1 · · · b

(2)
s−1 0

 ,

and node vectors c(ν) = A(ν)e with ν = 1, 2, which is explicit and satisfies M (1,2) = 0
(see Sanz–Serna and Calvo [10, Sec. 8.4]). The 1–stage method of order one is
generated by

A(1,2) = ([1], [1], [1]; [0], [0], [1]).(2.3)

The 3–stage method of order three with the coefficients

b
(1)
1 =

7
24
, b

(1)
2 =

3
4
, b

(1)
3 = − 1

24
, b

(2)
1 =

2
3
, b

(2)
2 = −2

3
, b

(2)
3 = 1

is one of the first partitioned Runge–Kutta methods (Ruth [9]). Choosing the coeffi-
cients as

b
(1)
1 = 1, b

(1)
2 = −2

3
, b

(1)
3 =

2
3
, b

(2)
1 = − 1

24
, b

(2)
2 =

3
4
, b

(2)
3 =

7
24

yields also a third order method with M (1,2) = 0.
The reflected method of β(1,2)(A(1,2)) with A(1,2) as in (2.3) is the method β(2,1)

generated by A(2,1) = ([0], [0], [1]; [1], [1], [1]). Performing one step of β(2,1), with
steplength h

2 followed by one step of β(1,2) with steplength h
2 , yields method (2.2);

performing the steps in reverse sequence also yields a totally symmetric explicit par-
titioned Runge–Kutta method.

3. Reducibility of partitioned methods. A Runge–Kutta method is usually
assumed to be irreducible. Stages which are evidently equivalent are excluded from
the outset. But, there are finer concepts of reducibility (see Dekker and Verwer [5, p.
107]). Similar considerations are presented for partitioned methods.

Example 3.1. Consider the explicit 2–stage partitioned Runge–Kutta method of
order two generated by

A(1,2) =

 0

1

 ,
 0 0

0 1

 ,
 0

1

 ;

 0
1
2

 ,
 0 0

1
2 0

 ,
 1

2

1
2

 ,(3.1)

which consists of four half–stages computing P1, Q1, P2, Q2, where Q1 is superfluous.
The same numerical result is produced by three half–stages

P1 = pm,

P2 = pm + hf(Q1, tm + h
2 ),

pm+1 = P2.

Q1 = qm + h
2 g(P1, tm),

qm+1 = Q1 + h
2 g(P2, tm + h),

(3.2)
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Obviously, this method is generated by

A(1,2) =

 0

1

 ,
 0

1

 , [ 1
]

;
[

1
2

]
,
[

1
2 0

]
,

 1
2

1
2

 .

Hence, the method is called a (2,1)–stage partitioned Runge–Kutta method. Method
(2.2) produces the same numerical result as method (3.2).

Definition 3.2. The method, generated by A(1,2) = (c(1), A(1), b(1); c(2), A(2), b(2))
with c(1), b(2) ∈ IRs1 , A(1) ∈ IRs1×s2 , A(2) ∈ IRs2×s1, c(2), b(1) ∈ IRs2 in the following
way

Pi = pm + h

s2∑
j=1

a
(1)
ij f(Qj , tm + c

(2)
j h), i = 1(1)s1,

Qi = qm + h

s1∑
j=1

a
(2)
ij g(Pj , tm + c

(1)
j h), i = 1(1)s2,

pm+1 = pm + h
s2∑
i=1

b
(1)
i f(Qi, tm + c

(2)
i h),

qm+1 = qm + h

s1∑
i=1

b
(2)
i g(Pi, tm + c

(1)
i h),

is called an (s1, s2)–stage partitioned Runge–Kutta method β(1,2)(A(1,2)). Moreover,
for s1 = s2 = s it is called s–stage method. An (s1, s2)–stage partitioned Runge–Kutta
method is said to be explicit if Pi and Qj are recursively computable, and implicit
otherwise.

In the explicit case we assume that Pi and Qj are computable with increasing
indices. In view of symmetry features we are interested in methods with nonvanishing
weights. We next generalize the definition of DJ–reducibility for partitioned Runge–
Kutta methods from the DJ–reducibility of Runge–Kutta methods of Dahlquist and
Jeltsch [4]. The concept of S–reducibility is not discussed here.

Definition 3.3. A (s1, s2)–stage partitioned Runge–Kutta method β(1,2)(A(1,2))
is said to be DJ–reducible if there exist sets S1, T1, S2, and T2 such that S1 ∩ T1 = ∅,
S2 ∩ T2 = ∅, S1 6= ∅ or S2 6= ∅, S1 ∪ T1 = {1, . . . , s2}, S2 ∪ T2 = {1, . . . , s1} and

b
(1)
j = 0 (j ∈ S1), b

(2)
j = 0 (j ∈ S2),

a
(1)
ij = 0 (i ∈ T2, j ∈ S1), a

(2)
ij = 0 (i ∈ T1, j ∈ S2).

(3.3)

The method is said to be DJ–irreducible if it is not DJ–reducible.
Remark 3.4. Assume the existence of S1, T1, S2, and T2 as in Definition 3.3.

Then Qj with j ∈ S1 does not influence Pi with i ∈ T2 nor pm+1, and Pj with j ∈ S2

does not influence Qi with i ∈ T1 nor qm+1, and the following rule for DJ–reduction
holds:
If S1 6= ∅, then cancel the j–th element of b(1) and of c(2), the j–th row of A(2), and
the j–th column of A(1) with j ∈ S1.
If S2 6= ∅, then cancel the j–th element of b(2) and of c(1), the j–th row of A(1), and
the j–th column of A(2) with j ∈ S2.
For example, the method generated by (3.1) is DJ–reducible to (3.2) with S1 =
{1}, T1 = {2}, S2 = ∅, T2 = {1, 2}.
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Further, we refer to the matrices

B(ν) = diag(b(ν)
1 , . . . , b(ν)

s3−ν ) and C(ν) = A(ν) − 1
2esν b

(ν)T ,

where esν ∈ IRsν with ν = 1, 2, and

M (1,2) = B(1)C(2) + C(1)TB(2).

Reflected and transposed (s1, s2)–stage partitioned Runge–Kutta methods β(1,2)∗

and β(1,2)τ are defined by the generating matrices

A(1,2)∗ =
(
es1 −Ps1c(1),Ps1

(
es1b

(1)T −A(1)
)
Ps2 ,Ps2b(1) ;

es2 −Ps2c(2),Ps2
(
es2b

(2)T −A(2)
)
Ps1 ,Ps1b(2)

)
,

A(1,2)τ =
(
es1 −Ps1c(1),Ps1

(
B(1)A(2)B(2)−1

)T
Ps2 ,Ps2b(1) ;

es2 −Ps2c(2),Ps2
(
B(2)A(1)B(1)−1

)T
Ps1 ,Ps1b(2)

)
(det(B(ν)) 6= 0 for ν = 1, 2), where the permutation matrices Psν ∈ IRsν×sν are
defined by Psν b(3−ν) = (b(3−ν)

sν , . . . , b
(3−ν)
1 )T for ν = 1, 2. The properties

β(1,2)∗∗ = β(1,2), β(1,2)ττ = β(1,2),

and the relations

C(ν)∗ = −PsνC(ν)Ps3−ν , C(ν)τ = Psν
(
B(ν)C(3−ν)B(3−ν)−1

)T
Ps3−ν

for ν = 1, 2, and

M (1,2)∗ = −Ps2M (1,2)Ps1 , M (1,2)τ = Ps2M (1,2)Ps1

are easily deduced.
With regard to s–stage Runge–Kutta methods, the following simplifying assump-

tions are useful:

B̂(p) :
s2∑
i=1

b
(1)
i (c(2)

i )ν−1 =
s1∑
i=1

b
(2)
i (c(1)

i )ν−1 =
1
ν
, ν = 1(1)p;

Ĉ(k) :
s2∑
j=1

a
(1)
ij (c(2)

j )ν−1 =
1
ν

(c(1)
i )ν , i = 1(1)s1, ν = 1(1)k,

s1∑
j=1

a
(2)
ij (c(1)

j )ν−1 =
1
ν

(c(2)
i )ν , i = 1(1)s2, ν = 1(1)k;

D̂(`) :
s2∑
i=1

b
(1)
i (c(2)

i )ν−1a
(2)
ij =

1
ν
b
(2)
j

(
1− (c(1)

j )ν
)
, j = 1(1)s1, ν = 1(1)`,

s1∑
i=1

b
(2)
i (c(1)

i )ν−1a
(1)
ij =

1
ν
b
(1)
j

(
1− (c(2)

j )ν
)
, j = 1(1)s2, ν = 1(1)`.
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A partitioned Runge–Kutta method is said to be of (p, k, `)–type if it satisfies exactly
B̂(p), Ĉ(k) and D̂(`) with max{k, `} ≤ p.

The definitions of usual symmetry and total symmetry are analogous to the defi-
nitions for s–stage methods.

Example 3.5. The 4–stage method generated by

b
(1)
1 = 0, b

(1)
2 = 1

3 (2 + α), b
(1)
3 = − 1

3 (1 + 2α), b
(1)
4 = b

(1)
2 ,

b
(2)
1 = 1

6 (2 + α), b
(2)
2 = 1

6 (1− α), b
(2)
3 = b

(2)
2 , b

(2)
4 = b

(2)
1 ,

where α = 3
√

2 + 1
3√2

, and A(1), A(2), c(1), c(2) as in Example 2.2, is of order four

(Qin [7]) and DJ–reducible to the (4, 3)–stage method generated by A(1,2) =


0

c
(1)
2

c
(1)
3

c
(1)
4

,


0 0 0

b
(1)
2 0 0

b
(1)
2 b

(1)
3 0

b
(1)
2 b

(1)
3 b

(1)
4

,

b
(1)
2

b
(1)
3

b
(1)
4

;

c
(2)
2

c
(2)
3

c
(2)
4

,

b
(2)
1 0 0 0

b
(2)
1 b

(2)
2 0 0

b
(2)
1 b

(2)
2 b

(2)
3 0

,

b
(2)
1

b
(2)
2

b
(3)
3

b
(3)
4



 .

The relevant sets of Definition 3.3 are S1 = {1}, T1 = {2, 3, 4}, S2 = ∅, T2 =
{1, 2, 3, 4}.

The method with

b
(1)
1 = 1

6 (2 + α), b
(1)
2 = 1

6 (1− α), b
(1)
3 = b

(1)
2 , b

(1)
4 = b

(1)
1 ,

b
(2)
1 = 1

3 (2 + α), b
(2)
2 = − 1

3 (1 + 2α), b
(2)
3 = b

(2)
1 , b

(2)
4 = 0

is also of fourth order and DJ–reducible to a (3, 4)–stage method. The relevant sets
are S1 = ∅, T1 = {1, 2, 3, 4}, S2 = {4}, T2 = {1, 2, 3}.

The symmetry feature β(1,2)∗ = β(1,2) of these methods is easily checked by verfy-
ing A(1,2)∗ = A(1,2) in the DJ–irreducible form.

4. Symplectic Runge–Kutta methods. Now consider the autonomous Hamil-
tonian system

ṗ = f(p, q), q̇ = g(p, q)(4.1)

with the Hamiltonian H. The important property is that all elements Ft of the
Hamiltonian phase flow {Ft} are symplectic, i.e., they preserve the symplectic struc-
ture dp ∧ dq of the phase space M (see Arnol’d [1]). Recall that Ft is the mapping

Ft : (p0, q0) → (p(t), q(t)),

where (p(t), q(t)) is the solution of (4.1) with initial values (p0, q0) at time t = 0.
For given t ∈ IR it is possible that Ft is not defined or defined only on a subset of
M. An appropriate one–step method must meet this symplectic property, too, i.e.,
the mapping (pm, qm) → (pm+1, qm+1) must be symplectic. Methods with this
property when applied to Hamiltonian systems are called a–symplectic; methods with
this property when applied to separable Hamiltonian systems are called s–symplectic;
and methods with this property when applied to linear Hamiltonian systems are called
l–symplectic.
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First, we refer to the well–known results on symplectic methods of Lasagni, Sanz–
Serna and Suris (see Sanz–Serna and Calvo [10, Sec. 6.2 and 6.3]).

Theorem 4.1. A Runge–Kutta method β with M = 0 is a–symplectic.
A partitioned Runge–Kutta method with M (1,2) = 0 is s–symplectic.

For Runge–Kutta methods and partitioned Runge–Kutta methods without equiv-
alent stages, the conditions M = 0 and M (1,2) = 0 are also necessary (see Sanz–Serna
and Calvo [10, Sec. 6.5]).

By simple modifications of the proof of the second statement in Theorem 4.1 the
following result is given.

Corollary 4.2. An (s1, s2)–stage partitioned Runge–Kutta method with M (1,2) =
0 is s–symplectic.

The following results are important for the characterization of symplectic meth-
ods.

Theorem 4.3. A DJ–irreducible Runge–Kutta method β(A) with M = 0 sat-
isfies bi 6= 0 for i = 1(1)s. A DJ–irreducible (s1, s2)–stage Runge–Kutta method
β(1,2)(A(1,2)) with M (1,2) = 0 satifies b

(1)
i 6= 0 for i = 1(1)s2, and b

(2)
i 6= 0 for

i = 1(1)s1.
Proof. We show the second statement. The first is known from similar consid-

erations (Dahlquist and Jeltsch [4]). Suppose b(1)
ν = 0 for some index ν. Then all

elements in the ν–th row of B(1)A(2) and of b(1)b(2)T are zero. Since M (1,2) = 0, all
elements in the ν–th row of A(1)TB(2) must also be zero, i.e., b(2)

i a
(1)
iν = 0 for all i.

Now, suppose b(2)
µ = 0 for some index µ. Then all elements in the µ–th column of

A(1)TB(2) and of b(1)b(2)T are zero. Since M (1,2) = 0, all elements in the µ–th column
of B(1)A(2) must also be zero, i.e., b(1)

i a
(2)
iµ = 0 for all i. All of this implies (3.3) for

the sets

S1 = {ν | b(1)
ν = 0}, T1 = {1, ..., s2}\S1, S2 = {µ | b(2)

µ = 0}, T2 = {1, ..., s1}\S2,

a contradiction to DJ–irreducibility.
Now, we present characterizations of DJ–irreducible methods satisfying M = 0

and M (1,2) = 0, respectively.
Theorem 4.4. A DJ–irreducible Runge–Kutta method β(A) satisfies

M = 0 if and only if β∗ = βτ .

A DJ–irreducible (s1, s2)–stage partitioned Runge–Kutta method β(1,2)(A(1,2)) satis-
fies

M (1,2) = 0 if and only if β(1,2)∗ = β(1,2)τ .

Proof. Since the method is DJ–irreducible, M = 0 and M (1,2) = 0 imply nonva-
nishing weights. Hence, M = 0 is equivalent to

ebT −A = B−1ATB,(4.2)

and to

P
(
ebT −A

)
P = P

(
BAB−1

)T P .
In a similar way M (1,2) = 0 is equivalent to

es2b
(2)T −A(2) = B(1)−1

A(1)TB(2),
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and to

Ps2
(
es2b

(2)T −A(2)
)
Ps1 = Ps2

(
B(2)A(1)B(1)−1

)T
Ps1 .

Also, M (1,2)T = 0 is equivalent to

es1b
(1)T −A(1) = B(2)−1

A(2)TB(1),

and to

Ps1
(
es1b

(1)T −A(1)
)
Ps2 = Ps1

(
B(1)A(2)B(2)−1

)T
Ps2 .

Hence, the statements follow.
From these characterizations many attributes of such methods and hints for their

construction follow.
Corollary 4.5. A Runge–Kutta method β(A) with nonvanishing weights sat-

isfies diag(M) = 0 if and only if aii = 1
2bi for i = 1(1)s. A Runge–Kutta method

β(A) satisfies M = 0 if and only if the reflected method, and likewise the transposed
method, satisfies this condition. An (s1, s2)–stage partitioned method β(1,2)(A(1,2))
satisfies M (1,2) = 0 if and only if the reflected method, and likewise the transposed
method, satisfies this condition.

Further, symplectic Runge–Kutta methods are derived by composition of two or
more methods (Qin [8]) and by a subsequent reduction. With respect to partitioned
methods consider a method β(A), then the partitioned methods β(1,2)(A;A∗) and
β(1,2)(A;Aτ ) satisfy M (1,2) = 0.

Corollary 4.6. A DJ–irreducible Runge–Kutta method with M = 0 and a
DJ–irreducible (s1, s2)–stage partitioned Runge–Kutta method with M (1,2) = 0 are of
(p, `, `)–type for some ` ≤ p.

For the proof one has to study the symplifying assumptions under reflection and
transposition. Using β∗ = βτ and β(1,2)∗ = β(1,2)τ yield the statement.

A Runge–Kutta method is l–symplectic if and only if the stability function W
satisfies W (z) = (W (−z))−1 (see Sanz–Serna and Calvo [10, p. 76]). Similar consid-
erations are possible in the nonlinear case.

Theorem 4.7. A DJ–irreducible Runge–Kutta method β without equivalent
stages is a–symplectic if and only if the stability function K satisfies

K(Z) = (K(−Z))−1 .(4.3)

Proof. We use the fact that the method is a–symplectic if and only if M = 0.
First, we show the necessity of (4.3). Let X ∈ IRs×s. Then the equation of Schur (see
Gantmacher [6, p. 71]) yields

det(I + ZX) = det(I +XZ).(4.4)

Since M = 0 and BZ = ZB, from (4.2) and (4.4) it follows that

det(I + (ebT −A)Z) = det(I +B−1ATBZ) = det(I +ATZ) = det(I +AZ)

and that

det(I −AZ) = det(I − (ebT −B−1ATB)Z) = det(I − (ebT −A)TZ)
= det(I − (ebT −A)Z).
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With the representation (1.2) of K(Z) the necessity of (4.3) is shown.
The sufficiency of (4.3) follows from the relation

|K(iY )|2 − 1 = K(iY )K(−iY )− 1 = 0,

where Y =diag(y1, . . . , ys) with yj ∈ IR for j = 1(1)s, and from the representation of
the expression |K(Z)|2 − 1 (see Dekker and Verwer [5, p. 105]).

Since the condition M = 0 implies a (p, `, `)–type method with ` ≤ p, and since
assumptions B(p), C(`) and D(`) establish that order p = 2` + 1 (see Dekker and
Verwer [5, p. 59]), it is very easy to check the order of such Runge–Kutta methods.
In the case of autonomous systems, C(1) imports the definition of the nodes ci with
i = 1(1)s. At a glance, we recognize that B(1)and C(1) imply B(2), and hence,
the well–known result that a consistent Runge–Kutta method (i.e. B(1) holds) with
M = 0 has order two (see Sanz–Serna and Calvo [10, p. 90]) is obvious. Further, we
recognize that a method with M = 0 has order three if B(3) and C(1) are satisfied,
and order four if order three and the usual symmetry are satisfied.

With respect to an efficient implementation singly–implicit Runge–Kutta meth-
ods, i. e., methods with a single eigenvalue γ, were introduced and studied in detail
(see Dekker and Verwer [5, p. 76], Türke [13] ). Now we are interested in such methods
with M = 0, but there exists a strong order barrier.

Theorem 4.8. A singly–implicit Runge–Kutta method with M = 0 has at most
order two.

Proof. Without loss of generality we assume nonvanishing weights (see Theorem
4.3) and show that the order of approximation of W (z) to exp(z) is at most two. The
condition M = 0 implies that A∗ and Aτ are equal and similar to AT ; hence,

W (z) =
det(I + zPA∗P)

det(I − zA)
=

det(I + zA)
det(I − zA)

=
(

1 + γz

1− γz

)s
.

Observing that trace(A) = 1
2 , we find that sγ = 1

2 . With |z| < 1
γ , consider the power

series

W (z) = 1 + 2sγz + 2s2γ2z2 + 2
3s(2s

2 + 1)γ3z3 +O(z4)(z → 0).

Then 2sγ = 1, 2s2γ2 = 1
2 , and 2

3s(2s
2 + 1)γ3 6= 1

6 holds for all s.
Example 4.9. All DJ–irreducible a–symplectic semi–implicit Runge–Kutta meth-

ods are generated by

A =



b1
2 0

b1
. . .

...
. . .

. . .

b1 . . . bs−1
bs
2

 , b =


b1
...

bs

 with bi 6= 0, i = 1(1)s.

As mentioned earlier we assume that there are no equivalent half–stages in parti-
tioned Runge–Kutta methods. A detailed study of the generating matrix of explicit
partitioned methods yields the following result.

Corollary 4.10. All DJ–irreducible explicit (s1, s2)–stage partitioned Runge–
Kutta methods β(1,2) with M (1,2) = 0 are generated by A(1,2) where |s1 − s2| ≤ 1 and
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a
(1)
ij = 0 for i < j, i = 1(1)s1 and j = 1(1)s2,

a
(2)
ij = 0 for i < j, i = 1(1)s2 and j = 1(1)s1,

a
(1)
ij = b

(1)
j for i > j, i = 1(1)s1 and j = 1(1)s2,

a
(2)
ij = b

(2)
j for i > j, i = 1(1)s2 and j = 1(1)s1,

a
(1)
ii = 0 and a(2)

ii = b
(2)
i for i = 1(1)s2 if s1 = s2 + 1,

a
(1)
ii = b

(1)
i and a(2)

ii = 0 for i = 1(1)s1 if s1 = s2 − 1,

a
(1)
ii = 0 and a(2)

ii = b
(2)
i for i = 1(1)s or

a
(1)
ii = b

(1)
i and a(2)

ii = 0 for i = 1(1)s if s1 = s2 = s.

For Runge–Kutta methods, it is easy to check the order of (s1, s2)–stage partitioned
Runge–Kutta methods by using the simplifying assumptions. In the case of au-
tonomous systems Ĉ(1) imports the definition of the nodes c(1)

i and c(2)
i for i = 1(1)s1

and i = 1(1)s2, respectively. We consider methods up to order four. If M (1,2) = 0,
and if B̂(1) and Ĉ(1) are given, then in B̂(2) the two conditions for ν = 2 are equiva-
lent. Further, a (s1, s2)–stage partitioned Runge–Kutta method with M (1,2) = 0 has
order two if Ĉ(1) and B̂(2) hold, order three if Ĉ(1) and B̂(3) hold, and order four
if it is order three and the symmetry condition in the usual sense is satisfied. Order
conditions of s–stage partitioned Runge–Kutta methods with M (1,2) = 0 are known
(see Sanz–Serna and Calvo [10, Chap. 7]). These conditions are easily modified for
(s1, s2)–stage methods.
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