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ORTHOGONAL LAURENT POLYNOMIALS AND QUADRATURES ON THE
UNIT CIRCLE AND THE REAL HALF-LINE∗

RUYMÁN CRUZ-BARROSO AND PABLO GONZÁLEZ-VERA †

Abstract. The purpose of this paper is the computation of quadrature formulas based on Laurent polynomials
in two particular situations: the Real Half-Line and the Unit Circle. Comparative results and a connection with the
split Levinson algorithm are established. Illustrative numerical examples are approximate integrals of the form

∫

1

−1

f(x)

(x + λ)r

ω(x) dx , r = 1, 2, 3, . . .

with f(x) a continuous function on [−1, 1], ω(x) ≥ 0 a weight function on this interval and λ ∈ R such that
|λ| > 1 is required. Here the classical Gaussian quadrature is an extremely slow procedure.

Key words. orthogonal Laurent polynomials, L-Gaussian quadrature, Szegö quadrature, three-term recurrence
relations, split Levinson algorithm, numerical quadrature.
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1. Orthogonal Laurent Polynomials. The important role played by the theory of or-
thogonal polynomials in the construction of an n-point quadrature rule

(1.1) In(f) =
n

∑

j=1

Ajf(xj)

to approximate integrals of the form

(1.2) Iµ(f) =

∫ b

a

f(x)dµ(x) , −∞ ≤ a < b ≤ +∞

(µ being a positive measure) so that In(f) exactly integrates polynomials of degree as large
as possible, is well known. Indeed, let ϕn(x) be the n-th orthonormal polynomial with re-
spect to the measure µ and let x1, . . . , xn be its n distinct zeros. Then positive weights
A1, . . . , An can be uniquely determined so that the corresponding quadrature formula In(f)
satisfies In(P ) = Iµ(P ) for all P ∈ Π2n−1 (Πk: space of polynomials of degree k at most,
Π: space of all polynomials). This is the well known n-point Gauss-Christoffel (or Gaus-
sian) formula for the measure µ on (a, b) (for a comprehensive survey on this topic see [11]).
Furthermore, these formulas are “optimal” in the sense that there is not an n-point rule (1.1)
which is in Π2n. It holds

(1.3) Aj =
1

∑n−1
k=0 ϕ

2
k(xj)

, j = 1, . . . , n.

The numerical power and effectiveness of such rules when dealing with smooth inte-
grands f(x) has been convincingly demonstrated. However, convergence can become ex-
tremely slow if the integral has singularities near the integration interval (a, b). In order
to overcome this drawback, quadrature formulas exactly integrating rational functions with
prescribed poles outside (a, b) have been considered as an alternative in the last years (see
e.g. [12], [23] or [3]). Thus, in this paper we shall be concerned with quadrature formu-
las (1.1) exactly integrating rational functions with all their poles at the origin and the in-
finity (Laurent polynomials) in order to estimate an integral like

∫

S
f(z)dµ(z), µ being a
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positive measure supported on S ⊂ C with either S = (a, b) , 0 ≤ a < b ≤ +∞ or
S = T = {z ∈ C : |z| = 1} (the unit circle). Here the theory of orthogonal Laurent poly-
nomials will represent the basic ingredient in the construction of the corresponding quadrature
rules.

Thus, in general, let µ be a positive Borel measure in the complex plane and consider
the Hilbert space L2(µ) of measurable functions φ(z) for which

∫

|φ(z)|2dµ(z) < +∞. As
usual, in L2(µ) we can define the inner product

(1.4) < φ,ψ >=< φ,ψ >µ=

∫

φ(z)ψ(z)dµ(z), φ, ψ ∈ L2(µ).

Suppose that {φk(z)}n
k=0 is a system of linearly independent functions in L2(µ). By ap-

plying the Gram-Schmidt orthogonalization process to {φk(z)}n
k=0 a new system of linearly

independent functions {ϕk(z)}n
k=0 can be obtained such that ϕn(z) is a linear combination

of the n+ 1 functions {φk(z)}n
k=0 and

< ϕn(z), ϕm(z) >=

∫

ϕn(z)ϕm(z)dz = knδn,m, kn > 0.

When the process is repeated for each natural n, an essentially unique system
{ϕn(z)}∞n=0 of orthogonal functions with respect to the measure µ is obtained. If moreover

||ϕn(z)||2 =

∫

|ϕn(z)|2dµ(z) = 1,

then {ϕn(z)}∞n=0 is called an orthonormal system. For our purposes we will concentrate
on the linearly independent system of monomials both with positive and negative exponents,
say . . . , z−2, z−1, 1, z, z2, . . . yielding the so-called Laurent polynomials. Indeed, for p and
q integers such that p ≤ q, ∆p,q will denote the space of Laurent polynomials of the form
L(z) =

∑q
j=p αjz

j with αj ∈ C and ∆ the space of all Laurent polynomials. Observe that
∆0,k = Πk.

Now, in order to generate a sequence of nested subspaces of Laurent polynomials similar
to the sequence of subspaces {Πk}k≥0, we will start from two nondecreasing sequences of
nonnegative integers {p(n)}∞n=0 and {q(n)}∞n=0 such that p(n) + q(n) = n for all n =
0, 1, 2, . . . and set

Ln = ∆−p(n),q(n) = Span
{

zj ; −p(n) ≤ j ≤ q(n)
}

.

Observe that L0 = Span{1}, dim (Ln) = n + 1 and that Ln ⊂ Ln+1. Furthermore if
p(n) = 0 then q(n) = n and Ln = ∆0,n = Πn. In the sequel, in order to guarantee that
⋃∞

n=0 Ln = ∆, we will assume that limn→∞p(n) = limn→∞q(n) = ∞ and further restrict
ourselves to the particular case

(1.5) p(n) = E

[

n+ 1

2

]

, q(n) = n− p(n) = E
[n

2

]

, n ≥ 0,

where, as usual, E[x] denotes the integer part of x. In other words, the sequence {p(n)} has
induced the following “ordering” in ∆:

∆0,0 , ∆−1,0 , ∆−1,1 , ∆−2,1 , . . . .

Thus, according to this ordering we can construct a unique sequence (up to a sign)
{ϕn(z)}∞n=0 of Laurent polynomials satisfying:
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1. ϕn ∈ Ln\Ln−1 , n = 1, 2, . . ..
2. < ϕn(z), R >µ= 0 for all R ∈ Ln−1 (i.e.,ϕn ⊥ Ln−1).
3. ||ϕn(z)||2µ =< ϕn(z), ϕn(z) >µ= 1.

In this case, {ϕn(z)}∞n=0 will be called an orthonormal Laurent polynomial sequence cor-
responding to the measure µ and the ordering induced by p(n) = E

[

n+1
2

]

which has been
the most extensively treated case in the literature. For other choices of p(n), see, e.g., [27],
[4] or [30]. As already said, in the rest of the paper we will concentrate on measures µ sup-
ported not on the whole complex plane C but either on intervals (a, b) of the positive real
half-line or on the unit circle T . In the two following sections the differences and simi-
larities for sequences of orthogonal Laurent polynomials concerning both situations will be
displayed. In this respect and in order to fix a uniquely determined sequence of orthogonal
Laurent polynomials, we will use the concept of leading coefficient associated with a Laurent
polynomial (see [7]). Thus, for a given Laurent polynomial R there exists a unique natural
number n such that R ∈ Ln and R 6∈ Ln−1;n is called the “L-degree” of R for the ordering
established above. Observe that if P (z) is a polynomial of degree n, then its L-degree is just

2n. Indeed, P (z) ∈ ∆−n,n = L2n and P (z) 6∈ L2n−1. Setting R(z) =
∑q(n)

j=−p(n) αjz
j , one

defines the leading coefficient of R as αq(n) if n is even or α−p(n) if n is odd. Clearly, for an
orthogonal sequence {φn(z)}∞n=0 of Laurent polynomials, φn(z) has a non-zero leading co-
efficient for each n, which will be sometimes assumed positive. When equal to one, φn(z) is
said monic. Clearly, an orthonormal sequence {ϕn(z)} of Laurent polynomials with positive
leading coefficient for each n is uniquely determined.

The paper is organized as follows: In Section 2, n-point quadrature formulas for a mea-
sure µ on S = (a, b), 0 ≤ a < b ≤ ∞, exactly integrating Laurent polynomials be-
longing to certain subspaces of dimension 2n are characterized. A three-term recurrence
relation for the sequence of orthogonal Laurent polynomials and a Christoffel-Darboux for-
mula are also mentioned. The same problem is studied in Section 3 for the unit circle
T = {z ∈ C : |z| = 1} and unlike the situation in Section 2, it is proved that there
can not exist an n-point quadrature formula with nodes on T that is exact in an appropriate
subspace of ∆ of dimension 2n. The corresponding formulas with highest degree of exact-
ness in this situation (2n − 1) are characterized and a three-term recurrence relation for the
sequence of monic orthogonal Laurent polynomials on the unit circle is proved. In Section 4
we establish that the monic orthogonal Laurent polynomials are closely related to the first and
second singular predictor polynomials computed recursively for the split Levinson algorithm.
Finally, in Section 5 illustrative numerical examples are given.

2. The Real Half-Line: L-Gaussian Quadratures. In this section we will assume that
the measure µ is supported on the interval (a, b) where 0 ≤ a < b ≤ +∞. Thus, we are
interested in approximating

(2.1) Iµ(f) =

∫ b

a

f(x)dµ(x)

by means of an n-point quadrature rule

(2.2) In(f) =

n
∑

j=1

Ajf(xj)

where the nodes (which are assumed distinct and in (a, b)) and weights are to be determined
by imposing

(2.3) Iµ(R) = In(R)
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for any Laurent polynomial R with L-degree as large as possible, i.e., R ∈ LN , where
N = N(n) and as large as possible. For this purpose, proceed in a way similar to the
polynomial case. Thus, since Ln−1 is a Tchebyshev space of dimension n on any subinterval
of (a, b), given n distinct nodes x1, x2, . . . , xn on (a, b), the weights A1, . . . , An can be
determined so that

(2.4) Iµ(R) = In(R) =
n

∑

j=1

Ajf(xj), ∀R ∈ Ln−1.

Furthermore, it also holds that if Ln−1(f, ·) represents the unique Laurent polynomial in
Ln−1 interpolating f at the nodes {xj}n

j=1, then

(2.5) In(f) = Iµ(Ln−1(f, ·)).

For this reason In(f) given by (2.4) sometimes will be called of interpolatory type.
Now, in order to increase the “L-degree” of exactness we have the following result.
THEOREM 2.1. Let In(f) =

∑n
j=1 Ajf(xj) be an n-point quadrature formula such

that xi 6= 0 for i = 1, . . . , n. Then, In(f) = Iµ(f) for all f ∈ Ln+r with r ≥ 0 if and only if
1. In(f) is of interpolatory type
2.

(2.6) < Rn(x), h(x) >= 0 , ∀h(x) ∈ Lr (i.e., Rn(x) ⊥ Lr),

where Rn(x) = Qn(x)
xp(n) =

∏n
j=1(x−xj)

xp(n) ∈ Ln.
Proof. Similar to the proof of Theorem 3.1 (in the next section). See also [20] for the

polynomial situation with r = n− 1.
2

It should be taken into account that since we are dealing with real-valued functions, we
do not need complex conjugates in the inner product. On the other hand and concerning the
integer r, one actually has 0 ≤ r ≤ n − 1, since it is very easy to check that there does
not exist an n-point quadrature formula which is exact in LN with N ≥ 2n. Thus, we are
interested in constructing quadrature formulas, like (2.2), exact in Ln+r with 0 ≤ r ≤ n− 1.
From (2.6) it follows that

(2.7) Rn(z) =

n
∑

j=r+1

αjϕj(z),

where {ϕn(z)}∞n=0 is the corresponding sequence of orthonormal Laurent polynomials for
the measure µ on (a, b). Now, the following question immediately arises: Is it possible
to choose the parameters αj in (2.7) so that Rn(z) has exactly n distinct zeros in (a, b)?. A
positive response can be given when the largest domain of exactness is required, i.e. r = n−1.

THEOREM 2.2. Let ϕn(x) denote the n-th orthonormal Laurent polynomial with respect
to the measure µ on (a, b). Then,

1. ϕn(x) has exactly n distinct zeros on (a, b).
2. The zeros of ϕn(x) and ϕn+1(x) interlace.
3. Let x1, . . . , xn be the zeros of ϕn(x). Then there exist positive weights A1, . . . , An,

such that

(2.8) In(f) =
n

∑

j=1

Ajf(xj) = Iµ(f) =

∫ b

a

f(x)dµ(x), ∀f ∈ L2n−1.
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Proof. See [7], [19] or [16].
2

REMARK 2.3. The quadrature formulas given by (2.8) were earlier introduced in [19]
(see also [18]). Through this last paper a new area of mathematics was opened leading
to a strong moment problem and related topics (continued fractions, two-point Padé ap-
proximants, . . .) and where orthogonal Laurent polynomials made their appearance. These
quadrature rules which we shall refer to as L-Gaussian formulas, have been considered by
different authors in the last years (see [7], [4] or [5]). For alternative approaches see [26]
and [22]. As for numerical experiments see [26], [2] and [15].

In the rest of the section we will survey the most relevant features of the L-Gaussian
formulas in connection with the orthogonal Laurent polynomials. The closest parallelism
with classical Gaussian formulas and orthogonal polynomials will be specially emphasized.
We start with a three-term recurrence relation (see [26]):

THEOREM 2.4. Let {Rn(z)}∞n=0 be the sequence of orthogonal Laurent polynomials
normalized as follows. Set Rn(z) = Bn(z)

zp(n) , where Bn(z) is a monic polynomial of degree n.
Then

(2.9) Rn+1(z) = (z − βn+1)z
d(n)Rn(z) − αn+1Rn−1(z), n ≥ 0,

with R−1(z) ≡ 0, R0(z) ≡ 1, where

d(n) =

{

−1 if n is even
0 if n is odd

and

α1 = µ0 , β1 =
µ0

µ−1
, αn+1 =

ρn

ρn−1
, βn+1 = −αn+1

σn−1

σn
, n ≥ 1.

Here,

µk =

∫ b

a

xkdµ(x) , ρn =< Rn, t
p(n) > , σn =< Rn, t

−(q(n)+1) > .

(Recall p(n) = E
[

n+1
2

]

, q(n) = E
[

n
2

]

). Furthermore, both αn and βn are positive for
n ≥ 1.

2

REMARK 2.5. In [7] a Favard-type theorem for the sequence {Rn(z)}∞n=0 is proved.
For the weights A1, . . . , An in the n-point L-Gaussian formula, similar results to the

polynomial case are also true. Since ϕn ∈ Ln = ∆−p(n),q(n) and has n distinct zeros on
(0,∞) we can write ϕn(x) = vnx

−p(n) + · · · + unx
q(n) (unvn 6= 0). We will also require

the normalization conditions: un > 0 for all n = 0, 1, 2, . . .. First, we need the following
Christoffel-Darboux formula (see [24]):

THEOREM 2.6 (Christoffel-Darboux). Let {ϕn(x)}∞n=0 be the orthonormal sequence of
Laurent polynomials. Then, setting λ(n) = (−1)n, one has
(2.10)

n
∑

i=0

ϕi(x)ϕi(y) =
λ(n)vn

un+1






(xy)1/2

(

x
y

)λ(n)

ϕn+1(x)ϕn(y) −
(

y
x

)λ(n)
ϕn(x)ϕn+1(y)

x− y







2
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Let lj ∈ Ln−1 be such that lj(xk) = δj,k, where {x1, . . . , xn} as usual are the zeros of
the n-th orthonormal Laurent polynomial ϕn(x). Clearly l2j ∈ L2n−1, henceAj = Iµ

(

l2j
)

>
0 , j = 1, . . . , n. On the other hand, from (2.10) with x = xj and letting y tend to xj , the
following theorem can be proved (see [6] for details):

THEOREM 2.7. Let ϕn(x) be the n-th orthonormal Laurent polynomial for the measure
µ. Then, the weights {Aj}n

j=1 are given by

Aj =
1

∑n−1
i=0 ϕ

2
i (xj)

, j = 1, . . . , n.

REMARK 2.8. As a conclusion we can say that the n-point L-Gaussian quadrature
rule (1.1) is completely characterized in terms of the orthonormal Laurent polynomials
{ϕk(z)}n

k=0 which can be recursively computed by relation (2.9).

3. The Unit Circle: Szegö Quadratures. In this section we shall be concerned with
positive measures supported on the unit circle T which in the sequel will be denoted by σ (in
order to avoid a possible confusion with the measure µ on (0,∞) considered in Section 2).
Since we will deal now with complex-valued functions, complex conjugation will be again
required in the inner product induced by σ, i.e.

(3.1) < f, g >σ=

∫ π

−π

f
(

eiθ
)

g (eiθ)dσ(θ) , f, g ∈ Lσ
2 (T )

We are interested in approximating the integral

(3.2) Iσ(f) =

∫

T

f(z)dσ(z) =

∫ π

−π

f
(

eiθ
)

dσ(θ)

by an n-point quadrature rule with nodes on T,

(3.3) In(f) =

n
∑

j=1

λjf(zj) , zj 6= zk (j 6= k) , zj ∈ T , ∀j = 1, . . . , n

Thus, starting from n distinct nodes z1, . . . , zn on T, and since Ln−1 is also a Tcheby-
shev space of dimension n on T , weights λ1, . . . , λn can be determined so that

(3.4) Iσ(f) = In(f) , ∀f ∈ Ln−1.

Here it also holds that In(f), characterized by (3.4), can be represented as

(3.5) In(f) = Iσ (Rn−1(f, ·)) ,

where Rn−1(f, ·) is the Laurent polynomial in Ln−1 which interpolates f at the nodes
{zj}n

j=1. However, the first difference with the real half-line appears when an appropriate
selection of the nodes {zj}n

j=1 is required in order to increase the dimension of the subspace
of Laurent polynomials where exactness of the quadrature formula takes place. Because of
the inner product (3.1), we need the following subspaces for r ≥ 0,

Lr∗ = {f ∈ ∆ , f∗ ∈ Lr} = ∆−q(r),p(r),

where for f ∈ ∆: f∗(z) = f
(

1
z̄

)

(“substar-conjugation”). Under these conditions, orthogo-
nality immediately arises, as follows (compare with Theorem 2.1).

THEOREM 3.1. Let In(f) =
∑n

j=1 λjf(zj) be an n-point quadrature formula such that
zj 6= 0 for j = 1, . . . , n. Then In(f) is exact in LnLr∗ , r ≥ 0, if and only if
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1. In(f) is exact in Ln−1.
2.

(3.6) < Rn(z), g(z) >σ= 0 , ∀g ∈ Lr (i.e., Rn ⊥ Lr),

where Rn(z) = Qn(z)
zp(n) =

∏

n
j=1(z−zj)

zp(n) ∈ Ln.
Proof.- “=⇒” 1.- Trivial. 2.- Recall that LnLr∗ = ∆−(p(n)+q(r)),(q(n)+p(r)) and

Lr = ∆−p(r),q(r). Thus, < Rn(z), g(z) >σ= 0 for all g(z) ∈ Lr is equivalent to
< Rn(z), zj >σ= 0 for all −p(r) ≤ j ≤ q(r). Now,

< Rn(z), zj >σ=

∫ π

−π

Rn(z)z−jσ(θ)dθ =

∫ π

−π

Qn(z)

zp(n)+j
σ(θ)dθ.

For j = q(r) and since Qn(z) has exact degree n, we see that

Qn(z)

zp(n)+q(r) ∈ ∆−(p(n)+q(r)),(n−p(n)−q(r)) = ∆−(p(n)+q(r)),(q(n)−q(r)) ⊂

⊂ ∆−(p(n)+q(r)),(q(n)+q(r)) = LnLr∗.

On the other hand, for j = −p(r) we have

Qn(z)
zp(n)−p(r) ∈ ∆−(p(n)−p(r)),(n−p(n)−p(r)) = ∆−(p(n)−p(r)),(q(n)+p(r)) ⊂

⊂ ∆−(p(n)+q(r)),(q(n)+p(r)) = LnLr∗.

Thus, for −p(r) ≤ j ≤ q(r), Rn(z)z−j ∈ LnLr∗. Therefore one can write

< Rn(z), zj >σ= Iσ
(

Rn(z)z−j
)

= In
(

Rn(z)z−j
)

= 0

since Rn(zj) = 0.
“⇐=” Let z1, . . . , zn be the zeros of Rn(z) ∈ Ln so that (3.6) holds. Then a quadrature

formula based upon these nodes, such as In(f) =
∑n

j=1 λjf(zj), can be determined so that

it is exact in Ln−1. Setting L(j)(z) ∈ Ln−1 such that L(j)(zk) = δjk , then λj = Iσ(L(j))
for all j = 1, . . . , n.

Take L(z) ∈ LnLr∗ and define A(z) = L(z)−∑n
j=1 L(zj)L

(j)(z). Thus, A ∈ LnLr∗,
A(zj) = 0 for all j = 1, . . . , n, and we can write

A(z) =
Qn(z)S(z)

zp(n)+q(r)
, S(z) ∈ Πr.

Observe that A(z) = Rn(z)H(z) with H(z) = S(z)

zq(r) . Hence, setting T (z) = H∗(z) ∈ Lr,
we have

Iσ(A(z)) = Iσ(Rn(z)T∗(z)) =< Rn(z), T (z) >σ= 0,

which yields

Iσ(L(z)) = Iσ

(

A(z) +
∑n

j=1 L(zj)L
(j)(z)

)

= Iσ(A(z)) +

+ Iσ

(

∑n
j=1 L(zj)L

(j)(z)
)

=
∑n

j=1 Iσ(L(j)(z))L(zj) = In(L).

2
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Consider now the family of monic Szegö polynomials {ρn(z)}∞n=0 orthogonal with respect
to the inner product (3.1), i.e., for n = 0, 1, . . . then ρn(z) satisfies

(3.7) < ρn(z), zm >σ= 0 (0 ≤ m ≤ n− 1)

and

(3.8) < ρn(z), ρn(z) >σ= < ρn(z), zn >σ = ∆n/∆n−1,

where ∆n is the n-th Toeplitz determinant of the trigonometric moments of σ. Set ρ∗n(z) =
znρn∗(z) (reciprocal polynomial). Then, from the above orthogonality conditions both for
{ρn(z)}∞n=0 and {φn(z)}∞n=0 (recall that φn(z) denotes the n− th orthogonal Laurent poly-
nomial with respect to the measure σ) the following relation between φn(z) and ρn(z) is
deduced:

(3.9) φ2n(z) =
1

zn
ρ2n(z), φ2n+1(z) =

1

zn+1
ρ∗2n+1(z).

On the other hand, it is well known (see [1]) that the zeros of the polynomial ρn(z) are
located in D = {z ∈ C : |z| < 1} and consequently, the zeros of ρ∗n(z) in E = {z ∈ C :
|z| > 1}. From this fact and (3.9) we obtain the following result

LEMMA 3.2. The zeros of φ2n(z) and φ2n+1(z) are located in D and E respectively.
2

REMARK 3.3. Actually r in Theorem 3.1 should be taken such that 0 ≤ r ≤ n − 1.
Indeed, assume r ≥ n, i.e., r = n+k with k ≥ 0. Then, LnLr∗ = ∆−(n+q(k)),(n+p(k)) since
for p(n) = E

[

n+1
2

]

and q(n) = n− p(n) = E
[

n
2

]

it holds that p(r+ s) = p(r) + p(s) and
q(r + s) = q(r) + q(s). Thus, if Qn(z) =

∏n
j=1(z − zj), then

|Qn(z)|2 = Qn(z)Qn(z) ∈ ∆−n,n ⊂ LnLr∗ (z = eiθ).

Hence, 0 <
∫ π

−π
|Qn(z)|2dσ(θ) and In

(

|Qn(z)|2
)

= 0.
Let us next see what happens with the largest reachable domain of exactness, i.e., if

r = n− 1. Unlike the situation on the half-line we have the following negative result.
THEOREM 3.4. There can not exist an n-point quadrature formula with nodes on T to

be exact in LnL(n−1)∗. Proof.- Suppose that there exists such a formula:

In(f) =

n
∑

j=1

λjf(zj) = Iσ(f)

where |zi| = 1 for i = 1, . . . , n. Define Rn(z) = (z−z1)···(z−zn)
zp(n) ∈ Ln. Then by Theorem

3.1, Rn ⊥ Ln−1.
Thus, if {φk(z)}∞k=0 is a sequence of orthogonal Laurent polynomials, then Rn(z) =

λnφn(z) (λn 6= 0). So, the nodes z1, . . . , zn are the zeros of φn(z), which can not be located
on T by Lemma 3.2 and a contradiction arises.

2

Now, the next step would be to consider the case r = n− 2. More precisely, one might
wonder is it possible to construct an n-point quadrature formula with distinct nodes {zj} on

T to be exact in LnL(n−2)∗? By Theorem 3.1 if Rn(z) =
∏

n
j=1(z−zj)

zp(n) then Rn(z) ⊥ Ln−2.
Hence,

(3.10) Rn(z) = αφn(z) + βφn−1(z), α, β ∈ C,
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where {φk(z)}∞k=0 is a sequence of orthogonal Laurent polynomials. So, from (3.10) the
above question can be reformulated as follows: Is it possible to find α and β in (3.10) so that
Rn(z) has its zeros on T ?

THEOREM 3.5. Parameters α and β in (3.10) can be conveniently chosen so that
Rn(z) = αφn(z) + βφn−1(z) has exactly n distinct zeros on T.

Proof. Setting Rn(z) = Nn(z)
zp(n) , with Nn(z) being a polynomial of degree n at most

depending on α and β. These parameters should be chosen so that Nn(z) satisfies the fol-
lowing:

1. Nn(z) has exact degree n.
2. N∗

n(z) = λnNn(z) with λn 6= 0.
3. < Nn(z), zk >σ= 0, 1 ≤ k ≤ n− 1, < Nn(z), 1 >σ 6= 0, < Nn(z), zn >σ 6= 0.

Now by using Theorem 6.2 in [17] the proof follows.
2

Hence, from Theorems 3.1 and 3.5 we obtain the the following result
THEOREM 3.6. Let {z1 . . . , zn} be the n distinct zeros of Rn(z) = αφn(z)+βφn−1(z)

as given in Theorem 3.5. Then, there exist positive numbers λ1, . . . , λn such that

In(f) =
n

∑

j=1

λjf(zj) = Iσ(f) , ∀f ∈ LnL(n−2)∗.

Proof. It only remains to prove that the weights λ1, . . . , λn are positive. Indeed, for
1 ≤ j ≤ n, let L(j)(z) ∈ L(n−1) be such that Lj(zk) = δj,k for 1 ≤ j, k ≤ n. Then, for
z ∈ T , |Lj(z)|2 ∈ L(n−1)L(n−1)∗ = LnL(n−2)∗ as can be checked easily. Now, the proof
immediately follows, since

0 < Iσ
(

|Lj |2
)

=
n

∑

k=1

λk|Lj(zk)|2 = λj , j = 1, . . . .n.

2

So, from Theorems 3.1 and 3.6 quadrature formulas with nodes on T which are exact in
LnL(n−2)∗ can be essentially characterized by means of the Laurent polynomials of the form

(3.11) Rn(z) = αφn(z) + βφn−1(z),

which by analogy with the polynomial situation (see e.g. [1]) could be called “para-
orthogonal Laurent polynomials”. On the other hand, one also has that

LnL(n−2)∗ = L(n−1)L(n−1)∗ = ∆−(n−1),(n−1).

Quadrature formulas with nodes on T to be exact in ∆−(n−1),(n−1) were earlier introduced
by Jones, et al. ([17]) in connection with the solution of the trigonometric moment problem
(see also [29] and [14]). Such quadratures were named “Szegö formulas” and all studied in a
series of recent papers: [13], [25], [8] [9].

As a consequence, making Rn(z) = αφn(z) + βφn−1(z) = Nn(z)
zp(n) , by Theorem 6.1 in

[17] one can write

Nn(z) = λn [ρn(z) + τnρ
∗
n(z)] , λn 6= 0 , |τn| = 1.

In [17] polynomials of the form ρn(z)+τρ∗n(z) are called “para-orthogonal”. In the next
section we will concentrate on the particular cases τn = ±1.
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In the rest of this section we will continue to emphasize the analogies and differences
between the real half-line and the unit circle. The following theorem yields an alternative
expression for the weights λj (compare with Theorem 2.7).

THEOREM 3.7. Let {φ̃k}∞k=0 be the sequence of orthonormal Laurent polynomials and
set In(f) =

∑n
j=1 λjf(zj) = Iσ(f) for all f ∈ LnL(n−2)∗. Then

λj =
1

∑n−1
k=0

∣

∣

∣
φ̃k(zj)

∣

∣

∣

2 .

Proof. Direct consequence of Proposition 3.4 in [13] and (3.9).
2

REMARK 3.8. Observe that unlike the real half-line situation now the nodes {zj}n
j=1 in

the quadrature formula are not the zeros of φ̃n(z)
THEOREM 3.9 (Three-term recurrence relation). Let {δn}∞n=1 be the sequence of Schur

parameters (or reflection coefficients) for the measure σ, i.e., δn = ρn(0), where ρn(z) is
the n-th monic Szegö polynomial with respect to the measure σ, and let {φn(z)}∞n=0 be the
sequence of monic orthogonal Laurent polynomials. Then, it holds that

(3.12) φn(z) =
(

An +An−1z
(−1)n

)

φn−1(z) +
(

1 − |δn−1|2
)

z(−1)n

φn−2(z), n ≥ 2,

with

φ0(z) ≡ 1, φ1(z) = δ1 +
1

z
, An =







δn, if n is even,

δn, if n is odd.

Proof.- From the recurrence relations satisfied by the Szegö polynomials (see [28]):

(3.13)

ρ0(z) = ρ∗0(z) ≡ 1

ρn(z) = zρn−1(z) + δnρ
∗
n−1(z)

ρ∗n(z) = δnzρn−1(z) + ρ∗n−1(z)







n = 1, 2, . . .

we deduce the initial conditions φ0(z) = ρ0(z) ≡ 1, φ1(z) = 1
zρ

∗
1(z) = 1

z

(

1 + δ1z
)

=

δ1 + 1
z (since ρ1(z) = ρ1(0) + z = δ1 + z) and the relations

φ2n(z) =
1

zn
ρ2n(z) =

1

zn

[

zρ2n−1(z) + δ2nρ
∗
2n−1(z)

]

=
1

zn−1
ρ2n−1(z) +

+ δ2n
1

zn
ρ∗2n−1(z) =

1

zn−1

[

zρ2n−2(z) + δ2n−1ρ
∗
2n−2(z)

]

+ δ2n
1

zn
ρ∗2n−1(z) =

=
1

zn−2
ρ2n−2(z) + δ2n−1

1

zn−1
ρ∗2n−2(z) + δ2n

1

zn
ρ∗2n−1(z) =

1

zn−2
ρ2n−2(z) +

+ δ2n−1
1

zn−1

[

ρ∗2n−1(z) − δ2n−1zρ2n−2(z)
]

+ δ2n
1

zn
ρ∗2n−1(z) =

=
1

zn−2
ρ2n−2(z) + δ2n−1

1

zn−1
ρ∗2n−1(z) − δ2n−1δ2n−1

1

zn−2
ρ2n−2(z)+

+ δ2n
1

zn
ρ∗2n−1(z) = (δ2n+δ2n−1z)

1

zn
ρ∗2n−1(z) +

(

1−|δ2n−1|2
) 1

zn−2
ρ2n−2(z)

= (δ2n + δ2n−1z)φ2n−1(z) +
(

1 − |δ2n−1|2
)

zφ2n−2(z)

(3.14)
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and

φ2n+1(z) =
1

zn+1
ρ∗2n+1(z) =

1

zn+1

[

δ2n+1zρ2n(z) + ρ∗2n(z)
)

= δ2n+1
1

zn
ρ2n(z) +

+
1

zn+1
ρ∗2n(z) = δ2n+1

1

zn
ρ2n(z) +

1

zn+1

(

δ2nzρ2n−1(z) + ρ∗2n−1(z)
)

=

= δ2n+1
1

zn
ρ2n(z) + δ2n

1

zn
ρ2n−1(z) +

1

zn+1
ρ∗2n−1(z) = δ2n+1

1

zn
ρ2n(z)

+ δ2n
1

zn+1

(

ρ2n(z) − δ2nρ
∗
2n−1(z)

)

+
1

zn+1
ρ∗2n−1(z) = δ2n+1

1

zn
ρ2n(z)

+ δ2n
1

zn+1
ρ2n(z) − δ2nδ2n

1

zn+1
ρ∗2n−1(z) +

1

zn+1
ρ∗2n−1(z) =

=

(

δ2n+1 +
δ2n

z

)

1

zn
ρ2n(z) +

(

1 − |δ2n|2
) 1

zn+1
ρ∗2n−1(z) =

=

(

δ2n+1 +
δ2n

z

)

φ2n(z) +
(

1 − |δ2n|2
) 1

z
φ2n−1(z).

(3.15)

Now (3.12) follows from (3.14) and (3.15). 2

REMARK 3.10. For an alternative proof of Theorem 3.9 based upon certain continued
fractions, see [30]. On the other hand, if the trigonometric moments µk =

∫ π

−π e
−ikθdσ(θ)

are real, then δk ∈ R and (3.12) can be written as

(3.16) φn(z) =
(

δn + δn−1z
(−1)n

)

φn−1(z) +
(

1 − |δn−1|2
)

z(−1)n

φn−2(z), n ≥ 2.

EXAMPLE 3.11. Consider the biparametric family of measures

dσ(θ) =

∣

∣

∣

∣

sin

(

θ

2

)
∣

∣

∣

∣

2α+1 ∣

∣

∣

∣

cos

(

θ

2

)
∣

∣

∣

∣

2β+1

dθ, α, β > −1.

In this case it is known (see [28]) that

δ2n =
α+ β + 1

2n+ α+ β + 1
∈ R, δ2n+1 =

α− β

2n+ α+ β + 2
∈ R.

When β = − 1
2 , the measure and the Schur parameters are given by

dσ(θ) =

∣

∣

∣

∣

sin

(

θ

2

)∣

∣

∣

∣

2α+1

dθ, δn =
2α+ 1

2n+ 2α+ 1
, α > −1

and in the particular case α = β = − 1
2 , we have dσ(θ) = dθ (Lebesgue measure) and

δn = 0 ∀n = 1, 2, . . .. Now from Theorem 3.9, we deduce

φn(z) = z(−1)n

φn−2(z), φ0(z) ≡ 1, φ1(z) ≡
1

z
.

So, φ2n(z) = zn and φ2n+1(z) = 1
zn+1 for all n = 0, 1, 2, . . .. Since

< φk(z), φk(z) >σ=‖ φk(z) ‖2=

∫ π

−π

dθ = 2π, k = 0, 1, 2, . . .
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the orthonormal sequence {φ̃n}∞n=0 is given by

φ̃2n(z) =
zn

√
2π

, φ̃2n+1(z) =
1√

2πzn+1
, n = 0, 1, 2, . . .

and from (3.11) we obtain:
1. If n is even:

Rn(z) = αφn(z)+βφn−1(z) =
αzn+β

zn/2
= 0 ⇐⇒ αzn +β = 0, α 6= 0 ,

∣

∣

∣

∣

β

α

∣

∣

∣

∣

= 1.

2. If n is odd:

Rn(z) = αφn(z) + βφn−1(z) =
βzn + α

zn+1
, β 6= 0,

∣

∣

∣

∣

α

β

∣

∣

∣

∣

= 1.

Thus, the nodes {zj}n
j=1 of any n-point Szegö formula for the Lebesgue measure are the roots

of zn + τ = 0 , |τ | = 1 and the weights {λj}n
j=1 are given by

λj =
1

∑n−1
k=0

∣

∣

∣
φ̃k(zj)

∣

∣

∣

2 =
1

∑n−1
k=0

∣

∣

∣

zj√
2π

∣

∣

∣

2 =
2π

n
, j = 1, . . . , n

(compare with [20, pp. 73-74]).

4. A connection with the split Levinson algorithm. In general, when one needs to
compute an n-point Szegö formula for a measure σ on T, we start from the usual known
information about σ, i.e., its trigonometric moments µk =

∫ π

−π
e−ikθdσ(θ), k ∈ Z, so

that, as already seen through Section 3, we essentially need to calculate the (monic) Szegö
polynomials ρ0, . . . , ρn. As a rule, these polynomials are not explicitly known (unless for
some particular measures σ). Hence they should be computed from the relations (3.13).
Thus, the well known Levinson algorithm arises [21]. Assume now (as will be done in the
rest of the section) that the trigonometric moments µk are real (a very common situation as
illustrated in Section 5). In this case, Levinson’s algorithm is redundant, in the sense that more
operations than the required ones are carried out. To overcome this drawback a modification
of this algorithm was studied giving rise to the so-called “split Levinson algorithm” (see
[10]). Here, certain polynomials closely related to Szegö polynomials are computed so that
the number of required operations is halved. Let us next see how these polynomials arise in
the context of the construction of Szegö quadrature formulas. Indeed, in order to compute
the nodes of an n-point Szegö formula and since we are dealing with real moments, it seems
natural to handle polynomials (whose zeros provide us with the required nodes) with real
coefficients. In other words, the parameters α and β in (3.11) will be chosen so that

Rn(z) = αφn(z) + βφn−1(z) =
Nn(z)

zp(n)
=
λn (ρn(z) + τnρ

∗
n(z))

zp(n)
,

where λn 6= 0, τn ∈ R and |τn| = 1.
Set first τn = 1. Then by (3.13) it follows (now δn ∈ R )

Nn(z) = λn(1 + δn)
[

ρ∗n−1(z) + zρn−1(z)
]

.

Thus, taking λn = 1
1+δn

, one has

(4.1) Nn(z) = ρ∗n−1(z) + zρn−1(z) = Pn(z).
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By [10] it can be shown that the polynomial Pn(z) represents the basic ingredient in the
“symmetric version” of the Levinson-split algorithm (here it should be noted that from the
context of the solution of Toeplitz systems, ρ∗n(z) is called the “predictor polynomial”). For
this reason, Pn(z) given by (4.1) is sometimes called the “first singular predictor polynomial
of degree n”, since roughly speaking it can be interpreted as though in (3.13), δn is forced to
take the value 1.

Setting Pn(z) =
∑n

j=0 pn,jz
j in [10] it is proved that the sequence {Pn(z)} satisfies the

following three-term recurrence relation,

(4.2) Pn+1(z) − (1 + z)Pn(z) + αnzPn−1(z) = 0, n ≥ 1,

with initial conditions P0(z) ≡ 2, P1(z) = 1 + z, and where αn = γn

γn−1
with γn =

∑n
i=0 µipn,i for n ≥ 1 and γ0 = µ0.

On the other hand, for τn = −1, again by (3.13) it follows that

Nn(z) = λn(δn − 1)
[

ρ∗n−1(z) − zρn−1(z)
]

.

Thus, with λn = 1
δn−1 , one can write for n ≥ 1,

(4.3) Nn(z) = ρ∗n−1(z) − zρn−1(z) = P̃n(z).

Now, P̃n(z) is the basis of the “antisymmetric version” of the Levinson-split algorithm and
used to be called the “second singular predictor polynomial” (set δn = −1 in (3.13)). By
defining P̃0(z) ≡ 1, the polynomials P̃n(z) for n = 1, 2, . . . are given by P̃1(z) = 1 − z,
P̃2(z) = 1 − z2 and for n ≥ 2 it holds

(4.4) P̃n+1(z) − (1 + z)P̃n(z) + α̃nzP̃n−1(z) = 0,

where α̃n = γ̃n

γ̃n−1
with γ̃n =

∑n
i=0 µip̃n,i and P̃n(z) =

∑n
j=0 p̃n,jz

j .
In order to illustrate relations (4.2) and (4.4), let us consider the Lebesgue measure, i.e.,

dσ(θ) = dθ. Then,

µk =

∫ π

−π

e−ikθdθ = 0, k ≥ 1, µ0 = 2π.

From (4.2) it can be easily checked that Pk(0) = pk,0 = 1 for k ≥ 1, which gives
γk = µ0 for k ≥ 0, and hence αk = 1 for k ≥ 1. Then (4.2) becomes

(4.5) Pn+1(z) − (1 + z)Pn(z) + zPn−1(z) = 0, n ≥ 1,

with P0(z) ≡ 2 and P1(z) ≡ 1. Since (4.5) is a linear second order finite diference equation
with constant coefficients, it holds that

Pn(z) = C1 + C2z
n, C1, C2 ∈ R.

From the initial conditions, one has C1 = C2 = 1, so that an explicit expression for the
polynomial Pn(z) is obtained, namely

(4.6) Pn(z) = zn + 1, n = 0, 1, 2, . . .

Similarly for the sequence {P̃n(z)} one has

(4.7) P̃n+1(z) − (1 + z)P̃n(z) + zP̃n−1(z) = 0, n ≥ 2,
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with P̃1(z) = 1 − z and P̃2(z) = 1 − z2. Thus, for n ≥ 2,

(4.8) P̃n(z) = 1 − zn.

Clearly, (4.8) holds for n = 1.
When dealing with other measures σ, in general, equation (4.5) or (4.7) cannot be

explicitly solved so that we need to compute recursively the polynomials {Pn(z)}∞n=0 or
{P̃n(z)}∞n=0 (for details concerning stability, see [10]).

We conclude this section rewriting the polynomials {Pn(z)}∞n=0 and {P̃n(z)}∞n=0 in
terms of the orthogonal Laurent polynomials φn(z) and φn−1(z).

THEOREM 4.1. Let σ be a measure on T with real moments and let {φk}∞k=0 be the
sequence of monic orthogonal Laurent polynomials. Let Pn(z) and P̃n(z) be the first and
second singular predictor polynomials of degree n respectively. Then

1. Pn(z) = zE[n+1
2 ] [φn(z) + (1 − δn)φn−1(z)]

2. P̃n(z) = zE[n+1
2 ](−1)n+1 [φn(z) − (1 + δn)φn−1(z)]

Proof.
1. Recall that φ2n(z) = 1

zn ρ2n(z) and φ2n+1(z) = 1
zn+1 ρ

∗
2n+1(z). Now for α and β

complex numbers, consider

Rn(z) = αφn(z) + βφn−1(z).

Then, for n = 2m it follows that

R2m(z) =
αρ2m(z) + βρ∗2m−1(z)

zm

and for n = 2m+ 1

R2m+1(z) =
αρ∗2m+1(z) + βzρ2m(z)

zm+1
.

Now, making use of (3.13), we have

R2m(z) =
αzρ2m−1(z) + (αδ2m + β)ρ∗2m−1(z)

zm
.

Thus, taking α = 1 and β = 1 − δ2m, it follows that

R2m(z) =
P2m(z)

zm
,

or equivalently,

(4.9)
P2m(z) = zmR2m(z) = zm [αφ2m(z) + βφ2m−1(z)] =

= zm [φ2m(z) + (1 − δ2m)φ2m−1(z)] , m ≥ 1.

Similarly for n = 2m+ 1, taking α = 1 and β = 1 − δ2m+1, one can write

(4.10) P2m+1(z) = zm+1 [φ2m+1(z) + (1 − δ2m+1)φ2m(z)] .

So, from (4.9) and (4.10) the proof follows.
2. It can be proved in a similar way

2
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5. Numerical Examples. Suppose that the evaluation of integrals of the form

(5.1)
∫ 1

−1

f(x)

(x+ λ)r
ω(x) dx, r = 1, 2, 3, . . .

where f(x) is a continuous function on [−1, 1], ω(x) ≥ 0 a weight function on this interval
and λ ∈ R such that |λ| > 1, is required. Two methods are to be proposed:

Method 1
Let a and b be any two positive real numbers, such that

b

a
=

|λ| + 1

|λ| − 1
,

and introduce the change of variable x = h(t) = |λ|
λ ·

(

2t−b−a
b−a

)

. Then

(5.2)
∫ 1

−1

f(x)

(x+ λ)r
ω(x) dx =

(

b− a

2

)r ( |λ|
λ

)r ∫ b

a

g(t)
µ(t)

tr
dt,

where g(t) = f(h(t)) and µ(t) = ω(h(t)). The integral of the right-hand side in formula
(5.2) can be approximated by a Gauss-Laurent quadrature formula.

Method 2
Set z = eiθ , x = 1

2 (z+ z−1) = cosθ and define the symmetric weight function σ(θ) on
[−π, π] by

(5.3) σ(θ) =
2r|α|rω(cosθ)|sinθ|

|z − α|r ,

where α 6= 0 is the root of the equation z2 + 2λz + 1 = 0 with |α| < 1, that is,

α =







−λ+
√
λ2 − 1, if λ > 0,

−λ−
√
λ2 − 1, if λ < 0.

Then

(5.4)
∫ 1

−1

f(x)

(x + λ)r
ω(x)dx =

∫ π

−π

g(eiθ)σ(θ) dθ

with

g(eiθ) =
1

2
f

(

eiθ + e−iθ

2

)

.

The integral on the right side in formula (5.4) can be approximated by an n-point Szegö
quadrature formula.

For the numerical experiments we will consider two particular weight functions:
Case 1: ω(x) = 1√

1−x2
:Tchebyshev weight function of the first kind (x ∈ (−1, 1)). The

weight function µ(t) = ω(h(t)) is the strong Tchebyshev weight function of the first kind on
(a, b) given by
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µ(t) =
1√

b− t
√
t− a

, 0 < a < b < +∞

In this particular situation explicit formulas for the weights and nodes are known (see
[26]):

xn+1−m = (β + ανm) +
√

(β + ανm)2 − β2, xm =
β2

xn+1−m
,

where m = 1, 2, . . . , p(n) = E
[

n+1
2

]

,

α =
(
√
b−√

a)2

4
, β =

√
ab, νm = 1 + cos

(

2m− 1

n
π

)

and

Ak =
2π

n

xk

xk + β
, k = 1, 2, . . . , n, n ≥ 1.

On the other hand, the weight function σ(θ) on [−π, π] given by (5.3) is a rational modifica-
tion of the Lebesgue measure, namely

σ(θ) =
2r|α|r
|z − α|r , z = eiθ.

Choosing the particular values λ = 1.1, 1.01, r = 1, 2, the smooth function f(x) = ex

and n = 10 (number of nodes) fixed we will approximate the next four integrals where exact
values were computed with MATHEMATICA:

I1 =

∫ 1

−1

ex

√
1 − x2|x+ 1.1|

dx = 4.398898203 . . .

I2 =

∫ 1

−1

ex

√
1 − x2|x+ 1.01|

dx = 10.26398779 . . .

I3 =

∫ 1

−1

ex

√
1 − x2|x+ 1.1|2

dx = 15.06117492 . . .

I4 =

∫ 1

−1

ex

√
1 − x2|x+ 1.01|2

dx = 414.4873459 . . .

For the Tchebyshev weight function of the first kind ω(x), the nodes and weights of
the Gaussian quadrature formula have explicit expressions. Because of the presence of a
singularity near the interval of integration, we can expect to obtain poor results using this
formula, as is established in the next tables:
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Table 1 Table 2

r = 1 Approximation Exact value

λ = 1.01 9.36117219... 10.2639877...

λ = 1.1 4.39825773... 4.39889820...

r = 2 Approximation Exact value

λ = 1.01 247.983129... 414.487345...

λ = 1.1 15.0292310... 15.0611749...

In order to improve the slow convergence in this situation we use the two above men-
tioned methods:

Results for Method 1
Choosing a = 1 implies b = 21 when λ = 1.1 and b = 201 when λ = 1.01.
The nodes and weights obtained are:

Table 3 Table 4

λ = 1.1 n = 10

Nodes Weights

1.015968076

1.153792215

1.490163636

2.180737182

3.529658620

5.949583872

9.629771149

14.09241206

18.20085084

20.66994082

0.1140210017

0.1263777081

0.1541804078

0.2025926653

0.2733833654

0.3549351653

0.4257258654

0.4741381229

0.5019408226

0.5142975291

λ = 1.01 n = 10

Nodes Weights

196.7288912

164.9922240

113.4050389

60.84072229

24.34950355

8.254788423

3.303708313

1.772408016

1.218239230

1.021710633

0.5860819973

0.5786005592

0.5584974065

0.5095745959

0.3971049908

0.2312135400

0.1187439348

0.0698211241

0.0497179710

0.0422365330

The approximations of the above four integrals are:
Table 5 Table 6

r = 1 Approximation Exact value

λ = 1.01 10.26398781.. 10.26398779..

λ = 1.1 4.398898202.. 4.398898203..

r = 2 Approximation Exact value

λ = 1.01 414.487344.. 414.4873459..

λ = 1.1 15.06117499.. 15.06117492..

Results for Method 2
Expressions for the trigonometric moments for r = 1, 2 are given by

µk =

∫ π

−π

e−ikθσ(θ)dθ =











4π|α|
1−α2α

k , if r = 1,

8παk+2

(1−α2)3 (k(1 − α2) + 1 + α2), if r = 2.
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By using the split Levinson algorithm computed in FORTRAN with double precision,
the following nodes and weights are obtained:

Table 7

r = 1, λ = 1.1 n = 10

Nodes Weights

0.5231956081 ± 0.8522126235i

−0.9718655888 ± 0.2355361486i

−0.6941445801 ± 0.7198356076i

0.9425118124 ± 0.3341728347i

−0.1205684668 ± 0.992705014i

0.4170158485

3.8990461817

1.5283999088

0.3334871136

0.6775681574

Table 8

r = 1, λ = 1.01 n = 10

Nodes Weights

0.5077320439 ± 0.8615150443i

−0.1556028488 ± 0.9878196968i

0.9406267445 ± 0.3394426719i

−0.7396737275 ± 0.672965658i

−0.9871949772 ± 0.1595182654i

0.4552583228

0.8023120227

0.3550340683

2.4403459272

18.1061357088

Table 9

r = 2, λ = 1.1 n = 10

Nodes Weights

−0.7826063935 ± 0.6225168535i

−0.2523182279 ± 0.9676443106i

0.9315406380 ± 0.3636372365i

0.4439464841 ± 0.8960533016i

−0.9823049310 ± 0.1872886076i

5.7286222677

0.9628770791

0.1801413420

0.3067180364

28.7314933198
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Table 10

r = 2, λ = 1.01 n = 10

Nodes Weights

0.9264937183 ± 0.376310231i

−0.8669062623 ± 0.4984711951i

0.4037996706 ± 0.9148474332i

−0.3361546099 ± 0.9418068158i

−0.9954580194 ± 0.0952015315i

0.2056746266

30.7425691490

0.3833193864

1.6432603190

1080.4916890184

The approximation of the above four integrals are

Table 11 Table 12

r = 1 Approximation Exact value

λ = 1.01 10.26398785.. 10.26398779..

λ = 1.1 4.398898196.. 4.398898203..

r = 2 Approximation Exact value

λ = 1.01 414.4873471.. 414.4873459..

λ = 1.1 15.06117499.. 15.06117492..

From Tables 5-6 and 11-12 one can see that both methods provide us with similar numerical
results. In both cases results given by Gaussian formulas are strongly improved.

Case 2: ω(x) =
√

1 − x2 :Tchebyshev weight function of the second kind (x ∈ [−1, 1]).
The weight function µ(t) = ω(h(t)) is the strong Tchebyshev weight function of the second
kind on [a, b] given by

µ(t) =
√
b− t

√
t− a.

Choosing the particular values λ = 1.1, 1.01, r = 1, the smooth function f(x) = ex and
again n = 10 (number of nodes) fixed, we will approximate the next two integrals with exact
values computed with MATHEMATICA:

I1 =

∫ 1

−1

ex
√

1− x2

|x+ 1.1| dx = 1.67594127475 . . .

I2 =

∫ 1

−1

ex
√

1− x2

|x+ 1.01| dx = 2.03543204817 . . .

For the Tchebyshev weight function of the second kind ω(x), the nodes and weights of
the Gaussian quadrature formula have also explicit expressions. As in case 1, because of the
presence of a singularity near the interval of integration, we can expect to obtain poor results
using this formula as displayed in the next table:
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Table 13

r = 1 Approxiamtion Exact value

λ = 1.01 2.421155521 . . . 2.03543204817 . . .

λ = 1.1 1.608794159 . . . 1.67594127475 . . .

Again, in order to improve the slow convergence in this situation we use the two men-
tioned methods:

Results for Method 1
From the relation

∫ 1

−1

f(x)
√

1− x2

|x+ λ|r dx =

∫ 1

−1

g(x)√
1 − x2|x+ λ|r

dx

with

g(x) = f(x)(1 − x2),

the mentioned explicit formulas for the nodes and weights in case 1 can be used. The approx-
imation of the above two integrals are

Table 14

r = 1 Approximation Exact value

λ = 1.01 2.035432052 . . . 2.03543204817 . . .

λ = 1.1 1.675941276 . . . 1.67594127475 . . .

Results for Method 2
Expressions for the trigonometric moments are given by

µk =























2π|α|, if k = 0,

πα|α|, if k = 1,

−π|α|αk−2(1 − α2), if k ≥ 2,

when r = 1, and

µk =















−4π
1−α2 , if k = 0,

−2π αk

1−α2

(

2α+ k − 1 − α2(k + 3)
)

, if k ≥ 1,

when r = 2. By the split Levinson algorithm computed in FORTRAN with double precision,
nodes and weights are given by:
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Table 15

r = 1, λ = 1.1 n = 10

Nodes Weights

0.8473567133 + ±0.5310241053i

−0.9095350917 + ±0.4156271369i

−0.5968012792 + ±0.8023890784i

0.4377179772 + ±0.8991123247i

−0.0996095352 + ±0.9950266029

0.0809799064

0.4250829076

0.6749529041

0.2923674821

0.5427101048

and,

Table 16

r = 1, λ = 1.01 n = 10

Nodes Weights

0.8432691294 + ±0.5374915584i

−0.9380253965 + ±0.3465665239i

−0.6342873464 + ±0.7730973821i

0.4228259917 + ±0.906210892i

−0.1278951430 + ±0.9917876952i

0.0884264387

0.8084274344

0.8785194976

0.3244615048

0.6277760750

Finally the approximation of the two integrals are displayed in:

Table 17

r = 1 Approximation Exact value

λ = 1.01 2.03543204774 . . . 2.03543204817 . . .

λ = 1.1 1.67594127382 . . . 1.67594127475 . . .

Again, numerical results offered by both methods are quite similar.
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pp. 111-130.
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[23] G. LÓPEZ-LAGOMASINO AND J. ILLÁN-GONZÁLEZ, Quadrature formulas for unbounded intervals, Rev.
Cienc. Mat., 3 (1982), pp. 29-47.
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