
Electronic Transactions on Numerical Analysis.
Volume 19, pp. 1-17, 2005.
Copyright  2005, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu
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�
Abstract. In this paper we study the orthogonality conditions satisfied by Jacobi polynomials � ���	� 
�� when the

parameters � and � are not necessarily ����� . We establish orthogonality on a generic closed contour on a Riemann
surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the
plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the
orthogonality conditions characterize the Jacobi polynomial � ���	� 
�� of degree � up to a constant factor.
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1. Introduction. The Jacobi polynomials � ����� ���� are given explicitly by� � �!� ���� "$#&%('*)	+ � �,-/.10 2!35476398;:=< 2!354?>:@< "A# 8CB % - "A# 4DB % � + -&E
or, equivalently, by the well-known Rodrigues formula

(1.1) � ����� ���� "$#&%(' B) � 3�F "A# 8CB % + � "$# 4DB % + � 2HGG # < �JI "A# 8CB % �LK � "$# 4DB % �MK �!NPO
These expressions show that � ���!� �&�� are analytic functions of the parameters

6
and

>
, and

thus can be considered for general
6 E >?Q�R

.
The classical Jacobi polynomials correspond to parameters

6 E >?S*8TB
. For these param-

eters, the Jacobi polynomials are orthogonal on U 8TB E BWV
with respect to the weight function" BX8 #&% � " BY4 #	% � . As a result, all their zeros are simple and belong to the interval " 8TB E B % .

For general
6 E >

, this is no longer valid. Indeed, the zeros can be non-real, and there can be
multiple zeros. In fact, � ����� ���� may have a multiple zero at #?' B

if
6ZQ\[�8TB E OWO]O E 8Y3_^

,
at #H' 8TB

if
>`Qa[�8TB E O]OWO E 8Y3_^

or, even, at #H'cb (which means a degree reduction) if3d47694e>;Qf[�8TB E OWO]O E 8Y3_^
.

More precisely, for
:5QH[�B E O]OWO E 3_^

, we have (see [29, formula (4.22.2)]),

(1.2) � � + - � �&�� "A#	%(' g " 3d47>54hB %g " 354?>J4DBY8;: % " 398;: % F3�F 2 # 8iB) < - � � - � ���� + - "$#&% O
This implies in particular that � � + - � ���� "$#&%(jDk if additionally ldm�n [o: E 8Y>�^Tpi3fpC:q8d>r8sB

.
Analogous relations hold for � � �!� +=t �� when u Q*[�B E OWO]O E 3_^

. Thus, when both
: E u Qiv

and:T4 u pi3
, we have

(1.3) � � + - � +wt �� "x#	%_'y)	+ - +wt!"x# 8iB % - "$# 4hB % t � � - � t �� + - +=t "A#	% Oz
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2 Orthogonality of Jacobi polynomials with general parameters

Furthermore, when
3{47694e> ' 8|:JQ}[&8TB E OWOWO E 8Y3_^

,

(1.4) � �~��� ���� "A#	%('�g " 354e6�4hB %g " :�476 % " :�8CB % F3�F � ���!� �&�- +�� "$#&%=�
see [29, Eq. (4.22.3)]. See � 4.22 of [29] for a more detailed discussion. Formulas (1.2)–(1.4)
allow us to exclude these special integer parameters from our analysis.

In this paper we will show that for general
6 E >�QHR

, but excluding some special cases,
the Jacobi polynomials � ���!� �&�� may still be characterized by orthogonality relations. The
case

6 E >`S�8TB
is classical, and standard orthogonality on the interval U 8TB E B/V

takes place,
this being the key for the study of many properties of Jacobi polynomials. Thus, our goal
is to establish orthogonality conditions for the remaining cases. We will show that � ����� ����
satisfies orthogonality conditions on certain curves in the complex plane. In some cases the
orthogonality conditions on a single curve are enough to characterize the Jacobi polynomial,
while in others a combination of orthogonality conditions on two or three curves is required.
This last phenomenon is called multiple orthogonality; see e.g. [3, 27]. In some particular
cases this orthogonality has been established before (see e.g. [4]–[9]), and used in the study
of asymptotic behavior of these polynomials [25]. Similar orthogonality conditions, but for
Laguerre polynomials, have been applied in [26] in order to study the zero distribution in
the case of varying parameters, and in [23]–[24], in order to establish the strong asymptotics
by means of the Riemann-Hilbert techniques. A different kind of orthogonality involving
derivatives has been found for negative integer values of the parameters of � � �!� ���� ; see [1]–
[2].

We believe that these new orthogonality conditions can be useful in the study of the zeros
of Jacobi polynomials. For general

6 E >;QsR
the zeros are not confined to the interval U 8TB E B/V

but they distribute themselves in the complex plane. K. Driver, P. Duren and collaborators
[11]–[20] noted that the behavior of these zeros is very well organized; see also [25]. We
believe that the orthogonality conditions we find, and in particular the Riemann-Hilbert prob-
lem derived from that (see Section 3 below) can be used to establish asymptotic properties of
Jacobi polynomials. In particular this could explain the observed behavior of zeros.

2. Orthogonality on a Riemann surface. Consider the path g encircling the points
4rB

and
8TB

first in a positive sense and then in a negative sense, as shown in Fig. 2.1. The point� Q " 8TB E B % is the beginning and endpoint of g .

Γ

1−1
ξ

FIG. 2.1. Path � .

For
6 E >?Q9R

, define� "A#w� 6 E > %q��'\" BY8 #	% � "$# 4DB % � 'h� n!��U 6��~��� " B�8 #	% 4e>T�~��� "A# 4hB % V O
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It is a multi-valued function with branch points at b and � B
. However, if we start with a value

of � "$#�� 6 E > % at a particular point of g , and extend the definition of � "A#w� 6 E > % continuously
along g , then we obtain a single-valued function � "A#w� 6 E > % on g if we view g as a contour
on the Riemann surface for the function � "A#w� 6 E > % . For definiteness, we assume that the
“starting point” is

� Q " 8TB E B % , and that the branch of � is such that � " � � 6 E > % S k .
In the sequel we prefer to view g as a subset of the complex plane. Then g has points

of self-intersection; see Fig. 2.1. At points of self-intersection the value of � "A#w� 6 E > % is not
well-defined.

The following is our main result. It shows that the Jacobi polynomials satisfy non-
hermitian orthogonality conditions on g .

THEOREM 2.1. Let
6 E >�Q\R

, and let g , � "A#w� 6 E > % have the meaning as described
above. Then for

:JQH[ k E B E OWO]O E 3_^
,

(2.1) �	��� - � ����� ���� " � % � " � � 6 E > % G � ' 8Y��� ) �LK � K � K��/�o�L� � � K �&�g "$) 3d47694e>54 )M% g " 8Y3J8f6 % g " 8Y3�8H> %(  - � O
Proof. In the proof we use ¡ � - �

to denote the
:

-th derivative of ¡ .
By the Rodrigues formula (1.1),

(2.2) � ���!� �&�� " � %¢' " 8TB % �) � 3�F � � � � " � � 3{4e6 E 354e> %� " � � 6 E > % O
Integrating in (2.1)

3
times by parts and using (2.2), we get� � � - � ����� ���� " � % � " � � 6 E > % G � ' " 8TB % �) � 3�F � +��,£ .10 " 8TB % £ I � - N � £ � � � � + £ +1� � " � � 3d476 E 354?> %�¤¤¤¤ �4 B) � 3�F �&� I � - N � � � � " � � 35476 E 354?> % G � O(2.3)

Since � "A#w� 6 E > % is single-valued on g ,I � - N � £ � � � � + £ +1� � " � � 3d476 E 354?> % ¤¤¤¤ � '*k E
for k p;¥{pi398iB O

Thus, if
:9pC3�8iB

, all the terms in the right-hand side of (2.3) vanish, which proves that the
integral in (2.1) is k for

: '*k E B E O]OWO E 3J8CB
. Furthermore, for

: ' 3
, we get¦ � " 6 E > %q��' �&�q� � � ����� ���� " � % � " � � 6 E > % G � '*)!+ � �&� � " � � 3{476 E 354?> % G � O

Observe that
¦ � " 6 E > % is an analytic function of

6
and

>
, so that we may compute it for a cer-

tain range of parameters and then extend it analytically elsewhere. Following [30, � 12.43], we
assume § � 6CS k , § � >iS k and deform the path g , tautening it between

8TB
and

4rB
. Thus,g will become the union of two small circles around � B

and two straight lines along U 8TB E BWV
,

each piece traversed twice, once in a positive direction and once in a negative direction.
Since the integrand is bounded in the neighborhoods of � B

,
¦ � " 6 E > % splits into the fol-

lowing four integrals:¦ � " 6 E > %¨' � �+1� ¡ " � % G � 8 � � �L� ��� K�� � � �+1� ¡ " � % G �4 � � �L� ��� K � K � � � � �+1� ¡ " � % G � 8 � � �L� �©� K�� � � �+1� ¡ " � % G � E
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where ¡ " � %('y) + � � " � � 3J4e6 E 3{4?> % S k for � Q " 8TB E B % O
Thus, ¦ � " 6 E > %¨'«ª BY8 � � �L� ��� K�� �¬ ª B�8 � � �L� �©� K�� �®¬ � �+1� ¡ " � % G �' 8Y¯ � �M� ��� K ���&°²±~³ " ��6 % °²±�³ " �1> % � �+1� ¡ " � % G � O

Changing the variable, � 'c)�´ 8µB
, we get immediately the integral defining the beta

function, and as a consequence¦ � " 6 E > %�' 8 ) �LK � K � K�� � �L� ��� K ����°¶±�³ " ��6 % °²±~³ " �1> % g " 6�4?3{4hB % g " >J4e354hB %g "x) 3{4e6�4?>J4 )M% O
Using

°¶±�³ " � ´=% g "·´¸% g " B�8 ´¸%q' �
, we obtain (2.1) for

: ' 3
and for

6
and

>
with § � 6

and§ � >
positive. By analytic continuation the identity (2.1) holds for every

6 E >;QsR
.

Observe that the right hand side in (2.1) vanishes for
: ' 3

if and only if either
8 ) 3986{8�>¹8 ) , or

3�4H6
or

3�4º>
is a non-negative integer. In some of these cases the zero comes

from integrating a single-valued analytic function along a curve in the region of analyticity;
other values of

6
and

>
correspond to the special cases mentioned before when there is a zero

at � B
.

3. A Riemann-Hilbert problem for Jacobi polynomials. In this section we construct a
Riemann-Hilbert problem whose solution is given in terms of the Jacobi polynomials � ����� ����
with parameters satisfying

(3.1)
8Y3J8;6º8f>*»Qsv E

and
3{4e6y»Qsv E

and
3d4e>*»Q�v O

We consider g as a curve in
R

with three points of self-intersection. We let g�¼ be the
curve without the points of self-intersection. The orientation of g , as in Fig. 2.1, induces
a

4
and

8
side in a neighborhood of g , where the

4
side is on the left while traversing gaccording to its orientation and the

8
side is on the right. We say that a function ½ on

Re¾ ghas a boundary value ½ K " � % for � Q g¿¼ if the limit of ½ "A#	% as #dÀ � with # on the
4

side ofg exist. Similarly for ½ + " � % .
The Riemann-Hilbert problem asks for a )qÁÂ) matrix valued function ½ � RT¾ g À R(��Ã!�

such that the following four conditions are satisfied.
(a) ½ is analytic on

R?¾ g .
(b) ½ has continuous boundary values on g�¼ , denoted by ½ K and ½ + , such that½ K " � %¢' ½ + " � % 2 B � " � � 6 E > %k B < for � Q g ¼ O
(c) As #�ÀÄb , ½ "A#	%(' 2 ¦ 4iÅ 2YB# <�< 2 # � kk # + � < �
(d) ½ "$#&% remains bounded as #rÀ � Q g ¾ g_¼ .
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This Riemann-Hilbert problem is similar to the Riemann-Hilbert problem for orthogonal
polynomials due to Fokas, Its, and Kitaev [21]; see also [10]. Also the solution is similar.
It is built out of the Jacobi polynomials � � �!� ���� and � ����� ���� +1� . For parameters satisfying (3.1),
the polynomial � ����� ���� has degree

3
; recall that there is a degree reduction if and only if8Y3J8;6º8f>;Q}[&B E OWOWO E 3_^

. Therefore there is a constant Æ � such that

(3.2) Æ � � ����� ���� is a monic polynomial
O

From Theorem 2.1 and the condition (3.1) on the parameters, it follows that � ���!� �&�� +�� satisfies¦ � +1� " 6 E > %¢' � �q� � +�� � ����� ���� +1� " � % � " � � 6 E > % G �TÇ'hk O
Thus we can define the constant

G � +�� ' 8 ) �1È¶» ¦ � +�� " 6 E > % such that

(3.3)
G � +�� � �q� � +�� � ����� ���� +1� " � % � " � � 6 E > % G � ' 8 ) �1È O

Then we can state the following result.
PROPOSITION 3.1. The unique solution of the Riemann-Hilbert problem is given by

(3.4) ½ "A#	%('ÊÉËÌ Æ � � ���!� �&�� "$#&% Í®Î� �L�¸Ï �dÐ¿ÑÓÒLÔ ÕWÖÎ �©×·�·ØP�~×$Ù ��� ���× +¸Ú G �G � +1� � ����� ���� +1� "A#	%ÜÛ Î�Ý&Þ� �L��Ï � Ð ÑÓÒLÔ ÕWÖÎ�Ý&Þ �©×·�AØP�©×$Ù �!� ���× +¸Ú G �
ßWàá O

Proof. The proof that (3.4) satisfies the Riemann-Hilbert problem is similar to the proof
for usual orthogonal polynomials; see e.g. [10, 22]. The condition (a) is obviously satisfied
by (3.4). The jump condition (b) follows from the Sokhotskii-Plemelj formula¡ K " � %¢' ¡ + " � % 4?â " � % E � Q g ¼ E
which is satisfied for ¡ "$#&%�' �� �L� Ï �dã �©×·�× +¸Ú G � . The asymptotic condition (c) follows because
of the normalizations (3.2)–(3.3) and the orthogonality conditions given in Theorem 2.1. For
example, for the "$) E )M% entry of ½ the condition (c) is ½ �ä� "$#&%('D# + � 4fÅ "$# + � +1� % as #�Àåb ,
and this is satisfied by the "$) E )�% entry of (3.4) sinceG � +1�) �1È �&� � � �!� ���� +�� " � % � " � � 6 E > %� 8 # G � ' 8çæ,-è.10 2 G � +1�) �1È �&�q� - � � �!� ���� +�� " � % � " � � 6 E > % G � < #�+ - +1�' 2 8 G � +1�) �1È � �q� � +�� � ����� ���� +1� " � % � " � � 6 E > % G � < #�+ � 4iÅ "A#�+ � +��/% as #rÀåb'*#�+ � 4iÅ "A#�+ � +��/% as #rÀåb O
For the first equality we used the Laurent expansion of �× +=Ú around #º'éb , for the second

equality we used the orthogonality conditions satisfied by � ���!� �&�� +�� on g , and for the third
equality we used (3.3). Finally, the boundedness condition (d) is certainly satisfied for the
first column of (3.4). It is also satisfied by the second column, since by analyticity we may
deform the contour g from which it follows that the entries in the second column have analytic
continuations across g . Then they are certainly bounded.

The proof of uniqueness is as in [10, 22] and we omit it here.
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Using the Riemann-Hilbert problem, we can easily prove that the orthogonality condi-
tions in Theorem 2.1 characterize the Jacobi polynomial in case the parameters satisfy (3.1).

THEOREM 3.2. Assume that
6 E >;QsR

satisfy (3.1), and that g , � "A#w� 6 E > % are as above.
Then the monic Jacobi polynomial Æ � � � �!� ���� is the only monic polynomial ê � of degree

3
that

satisfies

(3.5) � �q� - ê � " � % � " � � 6 E > % G � 'Dk E
for

: '*k E B E O]OWO E 3J8CB O
Proof. The orthogonality conditions (3.5) are what is necessary to fill the first row of ½ .

That is, if ê � is a monic polynomial of degree
3

, satisfying (3.5), then

ÉËÌ ê � "A#	% �� �L�wÏ �rë Î �©×·�·ØP�©×$Ù ��� ���× +=Ú G �G � +�� � ����� ���� +1� "$#&%ìÛ Î�Ý&Þ� �L��Ï � Ð Ñ©Ò�Ô ÕWÖÎ�Ý&Þ �©×·�·ØP�©×$Ù ��� ���× +=Ú G �
ß àá

satisfies all conditions in the Riemann-Hilbert problem for ½ . Since the solution is unique
and given by (3.4) it follows that ê � "A#	%(' ½ �²� "A#	%(' Æ � � ���!� �&�� "$#&% .

4. Non-hermitian quasiorthogonality. In the rest of this paper we assume for simplic-
ity that

6
and

>
are real, although extension to non-real parameters is possible. We also take6

,
>

,
6�4?>D»Q�í

, so that (3.1) is automatically guaranteed.
Since in (2.1) we are integrating an analytic function, we may deform the universal pathg freely within the region of analyticity. In particular, if the integrand is integrable in the

neighborhood of a branch point ( � B
or b ), we may allow g to pass through this point, taking

care of using the correct branch of the integrand.

Γ
1

Γ
−1

Γ
∞

1−1

FIG. 4.1. Paths of integration.

We define the following paths of integration (see Fig. 4.1): g � will be an arbitrary curve
oriented clockwise, connecting

B�8JÈ k with
B¿4sÈ k and lying entirely in

R¹¾ U 8TB E 4 bi% , except
for its endpoints. The circle

[ # Q?R ��î # 4yB î�'ï) ^
, oriented clockwise, is a good instance

of a curve g � . Analogously, g +1� will be an arbitrary curve oriented clockwise, connecting
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8TBX8eÈ k and lying entirely in

Ri¾ " 8 b E BWV
, except for its endpoints. Finally,g æ is a curve in

R�¾�ð " 8 b E 8TB/Vòñ U B E 4 bi%¶ó , extending from
4ôÈ b to

8YÈ b (for example, the
imaginary axis, oriented downward, might do as g æ ).

In what follows, we denote by õ � the set of all algebraic polynomials with complex
coefficients of degree

pZ3
(for

3aö k we assume õ � 'ø÷ ), and by õ �� ' õ � ¾ õ � +1� , the
subset of polynomials of degree exactly

3
. Also, for Æ Q?ù

, we use U Æ V to denote the largest
integer

p Æ , as usual.
The following theorem shows that for certain combinations of parameters a number of or-

thogonality relations are valid on g +1� , g � , or g æ . These are called quasi-orthogonality rela-
tions, since in general there are less than

3
conditions on the polynomial � � �!� ���� , so that these

relations do not characterize the polynomial. When integrating over g�ú , û QH[&8TB E B E b ^
, we

mean by � " � � 6 E > % a branch of the weight function " BY8 � % � " � 4hB % � which is continuous ong¿ú ¾|[ û ^
.

THEOREM 4.1. Assume that
6 E > E 694e>?Q9ù?¾�í

.
i) If

354?>;Sµ8TB
, and

: ' ldm�n [ k E U 8Y>1Vx^
, then

(4.1) �&� Ý&Þ1ü " � % � ����� ���� " � % � " � � 6 E :�4e> % G �Pý 'hk Ecþ ü Q õ � + - +�� EÇ'hk Ecþ ü Q õ �� + - O
ii) If

354e6eSy8TB
, and

: ' l¹mLn [ k E U 8�6�Vx^
, then

(4.2) �!� Þ=ü " � % � ���!� �&�� " � % � " � � :r4e6 E > % G � ý '*k Eøþ ü Q õ � + - +1� EÇ'*k Eøþ ü Q õ �� + - O
iii) If

354e6�4?>;öµ8TB
and ÿ ' l ±�³ [ò358CB E U 8 " 3{47694e>J4hB % Vx^ , then

(4.3) � ��� ü " � % � ����� ���� " � % � " � � 6 E > % G � 'Dk E þ ü Q õ�� O
If additionally,

3{4e6�4?>;öµ8Y3J8CB
, then�&��� ü " � % � ���!� �&�� " � % � " � � 6 E > % G � ý '*k Eøþ ü Q õ � +1� EÇ'*k Eøþ ü Q õ �� O

Proof. Assume that for a polynomial ü Q õ � the function ¡ " � %*' ü " � % � ����� ���� " � %� " � � 6 E > % is integrable at � ' 8TB
. Then we can deform the path g in (2.1) into g +�� tra-

versed twice (in opposite directions), so that� � ¡ " � % G � ' ð � � �L� � 8iB ó � � Ý&Þ ¡ " � % G � O
If

3J47>7S`8TB
, then

: ' ldm�n [ k E U 8Y>1Vx^�Q?[ k E B E OWO]O E 3_^
,
:Â47>7S`8TB

, and the integrability
of ¡ at

8TB
is guaranteed takingü " � %¢' " � 4DB % - � " � % E � Q õ � + - O

Then,�&� ü " � % � ����� ���� " � % � " � � 6 E > % G � ' ð � � �M� � 8CB ó �&� Ý&Þ=ü " � % � ����� ���� " � % � " � � 6 E > % G �' ð � � �M� � 8CB ó �&� Ý&Þ � " � % � ����� ���� " � % � " � � 6 E :�4e> % G � E
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and (4.1) follows from Theorem 2.1.
The proof of (4.2) follows by reversing the roles of

6
and

>
.

The proof of part iii) uses similar arguments. If for a polynomial ü ,
3T4}6�4º>r4�� � � ü ö8TB

, then ¡ ' ü � ���!� �&�� � "���� 6 E > % is integrable at b , and we can deform the path g in (2.1)
into g æ traversed four times (two in each direction), each time with a different branch of the
integrand. Then again�&� ü " � % � ����� ���� " � % � " � � 6 E > % G � ' ÆT�	� � ü " � % � ����� ���� " � % � " � � 6 E > % G � E ÆrÇ'hk O
In particular,

354e6�47>J4 ÿ öa8TB
, and we may apply (2.1) with

: '*k E O]OWO E ÿ p�3�8iB
to

establish (4.3). Furthermore, if
394�6}4i>Dö�8Y3s8DB

, then (2.1) can be used up to
: ' 3

.
This concludes the proof.

REMARKS: If
8TB�öi3|45>;ö k , then ldmLn [ k E U 8Y>1Vx^ ' 3

, and (4.1) is reduced to a single
condition, � � Ý&Þ � ���!� �&�� " � % � " � � 6 E 3J4e> % G �ôÇ'Dk O
An analogous degenerate situation is observed when

8TB�öi3{4i6?ö k . On the other hand, if8Y398iB�öC3d47694e>?ö*8TB
, the integral in (4.3) diverges for ü Q õ �� K � .

5. Orthogonality on a single contour. Sometimes it is possible to obtain a full set of
orthogonality conditions on g +�� , g � or g æ .

THEOREM 5.1 (Non-hermitian orthogonality). If for
6 E > E 6º4i>CQ;ù7¾Yí

, at least one
of the following conditions is fulfilled:

(5.1)
67S*8TB E >?S*8TB E ) 3{47694e>?ö k E

then Jacobi polynomials � ����� ���� satisfy a full set of non-hermitian (complex) orthogonality
conditions:

(5.2) ��	 ü " � % � ����� ���� " � % � " � � 6 E > % G �Pý '*k E ü Q õ � +1� EÇ'*k E ü Q õ �� E
where


 ' �� �� g � E
if

6?Sµ8TB Eg +�� E
if

>;Sy8TB Eg æ E
if ) 3{47694e>fö k O

(If
8TB�ö ) 3d47694e>;ö k the integral in (5.2) diverges for 
 ' g æ and ü Q õ �� ).

The conditions (5.2) characterize the Jacobi polynomial � ���!� �&�� of degree
3

up to a con-
stant factor.

Proof. This is an immediate consequence of Theorem 4.1, since under our assumptions,: '\k in (4.1)–(4.2). It is straightforward to show that orthogonality conditions in (5.2) are
equivalent to (3.5), and thus by Theorem 3.2 characterize the polynomial.

The following result, describing the real orthogonality of Jacobi polynomials, is classical,
but we put it within the general framework.
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COROLLARY 5.2 (Real orthogonality). If for
6 E > E 6J4;>?Q�ùf¾¨í

, two of the three con-
ditions in (5.1) are fulfilled, then Jacobi polynomials � � �!� ���� satisfy a full set of orthogonality
conditions on the real line:

(5.3) ��� ü " � % � � �!� ���� " � % � " � � 6 E > % G �_ý 'Dk E ü Q õ � +�� EÇ'Dk E ü Q õ �� E
where

(5.4) � ' �� �� U 8TB E B/V E
if

6 E >?S*8TB E" 8 b E 8TB/V E
if ) 3{4e6�4?>;ö k and

>?S*8TB EU B E 4 b7% E
if ) 3{4e6�4?>;ö k and

6eSy8TB O
(If

8TBXö ) 3{476J4?>?ö k the integral in (5.3) diverges for ü Q õ �� ).
The conditions (5.3) characterize the Jacobi polynomial � � �!� ���� of degree

3
up to a con-

stant factor.
Proof. This is a consequence of Theorem 5.1. For instance, if ) 3d476947>?ö k , by (5.2)

we have non-hermitian orthogonality on g æ ; if additionally
6?Sµ8TB

, we can deform g æ intoU B E 4 bi% traversed twice, and the statement follows.

6. Multiple orthogonality. Theorem 5.1 provides orthogonality conditions, character-
izing Jacobi polynomials when their parameters belong to the region in the " 6 E > % -plane given
by at least one of the conditions (5.1).

For other combinations of parameters we still have some orthogonality relations accord-
ing to Theorem 4.1, but each of the three orthogonality relations (4.1), (4.2), (4.3) does not
give enough conditions to determine � � �!� ���� by itself. However, the three relations taken to-
gether give

3
or more relations for � ���!� �&�� . They constitute what we call a set of multiple

orthogonality conditions. In many cases there will be more than
3

conditions, so that the
relations of Theorem 4.1 overdetermine � ���!� �&�� .

We are going to discuss this in more detail now.

6.1. Multiple orthogonality as an alternative to orthogonality on a single contour.
We will consider the following subcases of the situation described in Theorem 5.1.

THEOREM 6.1. Let
6 E > E 6�47>7Qºù7¾�í

such that exactly one of the conditions (5.1) is
satisfied, and such that either

8Y3HöC6?öµ8TB
or

8Y3Höi>;öµ8TB
. Then� 	 ü " � % � ����� ���� " � % � " � � 6 E > % G � 'hk E ü Q õ - +�� E

(6.1)

and ��� ü " � % � ����� ���� " � % � " � � 6 � E > � % G ��ý '*k E ü Q õ � + - +�� EÇ'*k E ü Q õ �� + - E(6.2)

where the corresponding parameters are gathered in the following table:

Cases 
 � 6 � > � k6eSy8TB
,
8Y3}öC>;öy8TB g � U 8TB E B/V 6 >J4 U 8Y>1V U 8Y>�V>;Sµ8TB

,
8Y3HöC6eöy8TB g +�� U 8TB E B/V 694 U 8�6�V > U 8�6�V) 3d47694e>;ö k ,

8Y3}öC>;öy8TB g æ " 8 b E 8TBWV 6 >J4 U 8Y>1V U 8Y>�V) 3{47694e>?ö k ,
8Y3HöC6eö*8TB g æ U B E 4 b7% 694 U 8�6�V > U 8�6�V
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(If
8TB�ö ) 3d47694e>;ö k the integral in (6.2) diverges for ü Q õ �� + - ).

In each case, these multiple orthogonality conditions characterize the Jacobi polynomial� ����� ���� of degree
3

up to a constant factor.
Proof. Assume for instance that

>iS 8TB
and

8Y3eö*6Cö 8TB
. Then we have on the one

hand by Theorem 5.1 that

(6.3) �&� Ý&Þ¸ü " � % � ����� ���� " � % � " � � 6 E > % G �Pý '*k E ü Q õ � +1� EÇ'*k E ü Q õ �� E
and on the other hand by Theorem 4.1 ii), that

(6.4) � � Þ ü " � % � ����� ���� " � % � " � � 6�4i: E > % G �_ý 'Dk E ü Q õ � + - +1� EÇ'Dk E ü Q õ �� + - E
where

: ' U 8�6�V
. By Euclid’s algorithm, any ü Q õ � , ÿ�� :

, may be represented in the
form ü " � %Y'�" � 8CB % - � " � % 4 û " � % with � Q õ � + - and û Q õ - +1� . Thus, (6.3) is equivalent to
(6.1) and

(6.5) �&� Ý&Þ¸ü " � % � � �!� ���� " � % � " � � 6º47: E > % G �_ý 'Dk E ü Q õ � + - +�� EÇ'Dk E ü Q õ �� + - O
Since in (6.4)–(6.5) we can deform the path of integration and the functions are integrable
at the singularities � B

, these two identities are equivalent to (6.2) with � ' U 8TB E BWV
,
6 � '6r4 U 8�6�V

, and
> � ' >

. Thus, (6.1)–(6.2) are equivalent to (6.3), and they characterize � ����� ����
up to a constant factor by Theorem 5.1.

The other cases are handled in a similar fashion.

THEOREM 6.2. Let
6 E > E 6d4H>?Q�ù}¾�í

be such that
8Y3föi6{4H>d4H3Höµ8TB

and either6?Sµ8TB
or

>;Sy8TB
. Then with ÿ ' U 8 " 35476J4?>J4DB % V ,��� ü " � % � ����� ���� " � % � " � � 6 E > % G � '*k E ü Q õ�� E

and

��	¢� - � ����� ���� " � % � " � � 6 E > % G � ý 'Dk E
if

:JQ�v E ÿ 4DBTp�:5pi398CB EÇ'Dk E
if

: ' 3 E
where

ý � ' U B E 4 bi% E 
 ' g � E
if

6eS*8TB E
� '`" 8 b E 8TBWV E 
 ' g +�� E

if
>?S*8TB O

In each case, these multiple orthogonality conditions characterize the Jacobi polynomial� ����� ���� of degree
3

up to a constant factor.
Proof. This is a corollary of Theorem 5.1 and (4.3).
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6.2. Multiple orthogonality when there is no orthogonality on a single contour. As
we have seen, in the cases analyzed so far the multiple orthogonality was in a certain sense
“optional”: whenever at least one of the conditions in (5.1) is satisfied, we can restrict our-
selves to orthogonality on a single contour g +1� , g � or g æ , as in Theorem 5.1. In the remain-
ing cases there are quasi-orthogonality conditions on g +�� , g � and g æ as specified in Theorem
4.1, but we need at least two of these sets of quasi-orthogonality relations to characterize the
Jacobi polynomial.

So in this part we assume that
67öy8TB

,
>?öy8TB

and ) 3{4e6�4?>?S k . In our next result
we consider cases where the parameters are such that a combination of two of the cases in
Theorem 4.1 give at least

3
orthogonality conditions. The theorem says how to obtain from

that
3

conditions that characterize � ���!� �&�� .
THEOREM 6.3. Let

6 E > E 6�4J>;Q9ùÂ¾�í
such that

6eöy8TB
,
>;öµ8TB

and ) 3ô496T4J>}S k .
i) If

694e>J4e3HSµ8TB
, then� � Ý&Þ ü " � % � ����� ���� " � % � " � � 6 E >94 U 8Y>�V % G � 'hk E ü Q õ�� + ��� +1� E

(6.6) � � Þ ü " � % � ����� ���� " � % � " � � 6º4 U 8�6�V E > % G � 'Dk E ü Q õ�� + ��� +�� E
(6.7)

and

� �+1� ü " � % � ����� ���� " � % � " � � 6�4 U 8�6�V E >J4 U 8Y>�V % G � ý '*k E ü Q õ � + � + ��� + � + ��� +�� EÇ'*k E ü Q õ � + � + ��� + � + ��� O(6.8)

ii) If
6eöy8Y3

, then� +1�+ æ ü " � % � ����� ���� " � % � " � � 6 E >�4 U 8Y>�V % G � 'Dk E ü Q õ�� + ��� + � +�� E
(6.9) � � � ü " � % � ����� ���� " � % � " � � 6 E > % G � 'hk E ü Q õ�� + ��� +�� E
(6.10)

and

�	� Ý&Þ¸ü " � % � ���!� �&�� " � % � + �LK � + ��� � " � � 6 E >94 U 8Y>1V % G �rý 'hk E ü Q õ � � + � + ��� + � + ��� +�� EÇ'hk E ü Q õ � � + � + ��� + � + ��� O(6.11)

iii) If
>?ö*8Y3

, then� K æ� ü " � % � ���!� �&�� " � % � " � � 6s4 U 8�6�V E > % G � 'hk E ü Q õ�� + ��� + � +1� E
(6.12) � � � ü " � % � ����� ���� " � % � " � � 6 E > % G � 'Dk E ü Q õ�� + ��� +1� E
(6.13)

and

�&� Þ=ü " � % � ����� ���� " � % � + �LK � + ��� � " � � 6�4 U 8�6�V E > % G ��ý '*k E ü Q õ � � + � + ��� + � + ��� +1� EÇ'*k E ü Q õ � � + � + ��� + � + ��� O(6.14)
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In all three cases, these orthogonality conditions characterize the Jacobi polynomial� ����� ���� of degree
3

up to a constant factor.
Proof. Indeed, by parts i) and ii) of Theorem 4.1 we have� � Ý&Þ ü " � % � ����� ���� " � % � " � � 6 E >94 U 8Y>1V % G �_ý '*k E ü Q õ � + � + ��� +�� EÇ'*k E ü Q õ �� + � + ��� E(6.15)

and �&� Þ=ü " � % � ����� ���� " � % � " � � 6�4 U 8�6�V E > % G � ý 'hk E ü Q õ � + � + ��� +�� EÇ'hk E ü Q õ �� + � + ��� O(6.16)

Since U 8�6�V�4 U 8Y>1Vdp 3
, we obtain (6.6) and (6.7). For ü Q õ � + � + ��� + � + ��� , we take the

polynomial " � 8CB % � + ��� ü " � % in (6.6) and deform the contour g +1� to U 8TB E BWV
, to obtain (6.8) as

well.
To prove that the conditions characterize the Jacobi polynomial, let ê � be a polynomial

of degree
pD3

that satisfies (6.6), (6.7), (6.8). These conditions imply (6.15) and (6.16), and
passing to the contour g , we obtain�	� ü " � %/" � 4hB % � + ��� ê � " � % � " � E 6 E > % G � '*k E ü Q õ � + � + ��� +1� E
and � � ü " � %W" � 8CB % � + ��� ê � " � % � " � E 6 E > % G � '*k E ü Q õ � + � + ��� +1� O
Thus

(6.17) �	� ü " � % ê � " � % � " � E 6 E > % G � 'Dk
for every ü Q õ � +�� of the form ü " � %(' " � 4eB % � + ��� � " � % 4 " � 8;B % � + ��� û " � % with � Q õ � + � + ��� +1�
and û Q õ � + � + ��� +1� . The linear mapping

(6.18) õ � + � + ��� +1� Á õ � + � + ��� +1� À õ � +1� ��" � E û %��À ü " � %¨'`" � 4ºB % � + ��� � " � % 4 " � 89B % � + ��� û " � %
has a kernel consisting of pairs " � E û % such that " � 49B % � + ��� � " � % 4 " � 8{B % � + ��� û " � %¢jhk . Then it is
easy to see that � " � %¢'\" � 8dB % � + ��� ê " � % and û " � %(' 8 " � 4JB % � + ��� ê " � % with ê Q õ � + � + ��� + � + ��� +1� .
So the kernel of the mapping (6.18) has dimension

358 U 8�6�V�8 U 8Y>1V
. Then by the dimension

theorem from linear algebra the range of the mapping (6.18) has dimension " 3ô8 U 8Y>�V % 4 " 3X8U 8�6�V % 8 " 3Â8 U 8�6�Vo8 U 8Y>1V %(' 3
, and so the mapping is surjective. It follows that (6.17) holds

for every ü Q õ � +1� , and then it follows from Theorem 3.2 that ê � is a multiple of the Jacobi
polynomial of degree

3
, so that the orthogonality conditions (6.6), (6.7), (6.8) characterize� ����� ���� up to a constant factor. This proves part i) of the theorem.

The other parts are proved in a similar way.

What remains is the case where the parameters are such that we need all three cases of
Theorem 4.1 in order to obtain at least

3
conditions on � ����� ���� .

THEOREM 6.4. Let
6 E > E 6Â49>;Q�ù�¾�í

be such that
6?Sµ8Y3

,
>?S*8Y3

and
6Â49>T493}ö8TB

. Then the following hold:�&� Ý&Þ¸ü " � % � ����� ���� " � % � " � � 6 E >94 U 8Y>1V % G � '*k E ü Q õ � + � + ��� +�� E
(6.19) �&� Þ=ü " � % � ����� ���� " � % � " � � 6�4 U 8�6�V E > % G � 'hk E ü Q õ � + � + ��� +�� E
(6.20)
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and � � � ü " � % � ����� ���� " � % � " � � 6 E > % G � '*k E ü Q õ�� + ��� K � + ��� + � +1� E
(6.21)

and these orthogonality conditions characterize the Jacobi polynomial � ����� ���� of degree
3

up
to a constant factor.

Proof. The relations (6.19)–(6.21) were already established in (4.1)–(4.3) from Theorem
4.1.

To show that these conditions characterize the Jacobi polynomial, we assume that ê � is a
polynomial of degree

ph3
, that satisfies (6.19)–(6.21). Passing to the contour g , we then get

that

(6.22) �&� ü " � % ê � " � % � " � � 6 E > % G � 'Dk
for every polynomial ü satisfying either ü " � %º' " � 4ïB % � + ��� � " � % with � Q õ � + � + ��� +1� , orü " � %¢' " � 8CB % � + ��� û " � % with û Q õ � + � + ��� +1� , or ü " � % Q õ�� + ��� K � + ��� + � +1� .

In the rest of the proof we will show that every polynomial of degree
p 3H8*B

can be
written in the form " � 4DB % � + ��� � " � % 4 " � 8iB % � + ��� û " � % 4 ü " � %
with � Q õ � + � + ��� +1� , û Q õ � + � + ��� +1� and ü Q õ�� + ��� K � + ��� + � +�� � . Having that, we get that
(6.22) holds for every ü Q õ � +�� , and this characterizes the Jacobi polynomial up to a constant
factor by Theorem 3.2.

So we want to prove that the linear mapping

(6.23)
õ � + � + ��� +1� Á õ � + � + ��� +�� Á õ�� + ��� K � + ��� + � +�� À õ � +1� �" � E û E ü %��À " � 4DB % � + ��� � " � % 4 " � 8iB % � + ��� û " � % 4 ü " � %

is surjective. Since it is a mapping between
3

-dimensional vector spaces, it suffices to show
that (6.23) is injective.

Assume that " � E û E ü % belongs to the kernel of (6.23). We are going to count the possible
sign changes among the coefficients of " � 4ºB % � + ��� � " � % 4 ü " � %¨' 8 " � 8JB % � + ��� û " � % with respect
to the standard monomial basis. Here we use the following lemma which can be found, for
instance, in [28, Section V, Ch. 1, problems 4 and 32].

LEMMA 6.5. If ê "$#&%(' �,£ .�0�� £ # £
and "A# 4DB % ê "$#&%�' �LK �,£ .10 � £ # £ E

then the number of sign changes among the � £ ’s is not more than the number of sign changes
among the � £ ’s.

Applying the lemma U 8Y>�V
times, we get that the number of sign changes among the

coefficients of " � 4yB % � + ��� � " � % is at most the number of sign changes among the coefficients
of � " � % , which is at most

3º8 U 8Y>1V�8DB
, since � Q õ � + � + ��� +1� . When we add a polynomial

of degree
p :d8DB

, the number of sign changes among the coefficients can increase with at
most

:
. Hence,

8 " � 8CB % � + ��� û " � % has at most
398 U 8Y>1Vw8CB¨4 U 8�6�V!4 U 8Y>1V=8H3 ' U 8�6�Vw8CB

sign changes among its coefficients. Then by the Descartes rule of signs, see e.g. [28, Section
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β = −1

α = −1α = − n

β = − n

α + β = −1− n

α + β = −2 n

FIG. 6.1. Contours with orthogonality conditions (black dots denote ��� and � ).

V, Ch. 1, problem 36],
8 " � 8*B % � + ��� û " � % has at most U 8�6�V�8*B

positive real zeros, counted
according to their multiplicities, unless it is identically zero. So we conclude that û j k .
Then also � j`k and ü j`k . This shows that (6.23) is indeed injective, which completes the
proof of Theorem 6.4.

To summarize, the paths of orthogonality, corresponding to different cases studied, are
represented schematically in Fig. 6.1.

7. Zeros. Finally, it is interesting to discuss the implication of the orthogonality rela-
tions derived to the location of the zeros of the Jacobi polynomials.

Standard (hermitian) orthogonality conditions with respect to a positive measure on the
real line yield a lower bound (and in some situation, the exact number) of different zeros of
the orthogonal polynomial on the convex hull of the support of the measure of orthogonality.
For instance, by a classical argument, if two of the three conditions in (5.1) are fulfilled,
orthogonality (5.3) ensures that � ����� ���� has exactly

3
real and simple zeros, all located in the

interval � given by (5.4).
In the situation of Theorem 6.1, that is when " 6 E > % or " > E 6 % Q " 8TB E 4 bi%�Á;" 8Y3 E 8TB % ,

quasi-orthogonality (6.2) implies that � ����� ���� has at least
3H8�:

different zeros on " 8TB E B % ,
where

: ' U 8�6�V
if

8Y3Hö�6?öµ8TB
, and

: ' U 8Y>1V
if

8Y3Höi>;öµ8TB
; see [8].

Finally, in the situation of Theorem 6.3,
6 E >;Q " 8Y3 E 8TB % and

6¹4º>r4}3fS*8TB
, we have

that � ����� ���� has at least
398 U 8�6�V�8 U 8Y>1V

different zeros on " 8TB E B % .
In the other situations we have no quasi-orthogonality on the real line, and the informa-

tion on the real zeros is void.
It is interesting to compare these values with the well-known Hilbert-Klein formulas [29,

Theorem 6.72] that give us the exact number of zeros of � ����� ���� on the real line. It is sufficient
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to restrict our attention to U 8TB E B/V
, since the other two intervals of

ù
can be analyzed similarly.

Following [29], let

! "#"1%(' �� �� k E
if " p k E

" 8CB E
if " Q�v EU " V E
otherwise,

and let �%$�� ³ "#"1% (resp.,
�&�'� "#"1% ) be the even (resp., odd) value from the set

[ " E " 4*BL^
, when" Qsv

. Then the number of zeros of � ���!� �&�·�� in " 8TB E B % is given by

(7.1) ( ' � � �%$�� ³ ª ! ª�) � �MK � K � K � ) + ) � ) + ) � ) K �� ¬1¬ E
if * � " 6 E > % S k E�&�'� ª ! ª�) � �MK � K � K � ) + ) � ) + ) � ) K �� ¬=¬ E
if * � " 6 E > % ö k E

where * � " 6 E > %¨'`" 8TB % � " 694DB %+�%�%�ò" 6�4?3 %W" >J4DB %,�-�%�W" >94?3 % .
It is straightforward to check that ( is positive only in one of the following cases:. 6 E >?S*8TB

. Then ( ' 3
, as ensured by (5.3).. " 6 E > % or " > E 6 % Q " 8TB E 4 bi%�Áf" 8Y3 E 8TB % . For instance, if

>?Sµ8TB
and

8Y3föC67ö8TB
, then! 2 î ) 3{47694e>J4hB î 8 î 6 î 8 î > î 4hB) < ' U 3d47694DB/V ' 3�8 U 8�6�V E

since for
6\ö k , U 6�V14 U 8�6�V ' 8TB

. In other words, this value matches the lower
bound on the number of zeros ( , predicted by the quasi-orthogonality relation onU 8TB E BWV

given in Theorem 6.1.. If
6 E >?Q " 8Y3 E 8TB % and

694e>J4?3fSµ8TB
,! 2 î ) 3¹47694e>J4hB î 8 î 6 î 8 î > î 4hB) <

' ý U 35476J47>54hBWV ' 398 U 8�6s8f>1V E
if

6�4?>*»Q�í E354e6J4e> E
otherwise.

Observe that for /6 ' 694 U 8�6�V
, /> ' >54 U 8Y>1V

," 8TB % � + � + ��� + � + ��� * � " 6 E > %¢'r" 8�6}8iB %,�%�-�W" 8 /6 %W" /694DB %+�%�%�ò" 6�4?3 %LÁ" 8Y>s8CB %,�-�%�W" 8 /> %/" />J4hB %,�%�-�W" >J4e3 % S k O
Since

3�8 U 8�658J>1V¿pi3�8 U 8�6�VM8 U 8Y>1VPp73�8 U 8�6{89>1Vo4eB
, we get from (7.1) that( ' 3�8 U 8�6�Vw8 U 8Y>�V

, which coincides again with the lower bound on the number
of zeros, predicted by Theorem 6.3.

Thus, quasi-orthogonality sheds a new light on the Hilbert-Klein formulas, explaining
the lower bound on the number of zeros on

ù
.

This connection seems to go beyond the real zeros. In the example in Fig. 7.1 the number
of zeros on U 8TB E BWV

, g +1� , and g � matches the number of orthogonality conditions on the
corresponding curves, given by Theorem 6.3. We cannot prove this experimental fact, but we
expect to be able to establish this in an asymptotic sense by means of the techniques from
[23]–[26].

Note added in proof: After submission of this manuscript we were indeed able to use
the Riemann-Hilbert problem to derive strong asymptotics of the Jacobi polynomials which
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FIG. 7.1. Zeros of � �10&2�354 6ä� 0&79854 :$�398 . We have �<;>=e�T�@? ����A��B? ���CA zeros on DA���FE²�5G , HFI>=J? ���CA zeros
aligned on a curve on the left ( � : ), and ;LK�=M? ����A zeros aligned on a curve on the right ( � 0N: ).
explains the observed behavior of the zeros in an asymptotic sense. More precisely, we stud-
ied Jacobi polynomials � ��� Î � � Î �� with varying parameters

6 � and
> � such that

6 � »�3 ÀPO
and

> � »o3 ÀRQ as
3 À b . In [31] the case O E Q S`8TB

with O 4 Q ö`8TB
was considered,

which corresponds to the multiple orthogonality on three contours, as given in Theorem 6.4.
In [32] the case O ö k ö Q with O 4 Q Sµ8TB

was treated in detail.

Acknowledgements. Arno Kuijlaars and Andrei Martı́nez-Finkelshtein thank the orga-
nizers of the International Workshop on Orthogonal Polynomials IWOP’02 for the invitation
to speak at this workshop.

The research of A.B.J.K. and A.M.F. was partially supported by the European Research
Network “NeCCA” INTAS 03-51-6637, by the Ministry of Science and Technology (MCYT)
of Spain through grant BFM2001-3878-C02, and by NATO Collaborative Linkage Grant “Or-
thogonal Polynomials: Theory, Applications and Generalizations,” ref. PST.CLG.979738.
A.B.J.K. was also supported by FWO research projects G.0176.02 and G.0455.04, and by
K.U. Leuven research grant OT/04/24. Additionally, A.M.F. acknowledges the support of
Junta de Andalucı́a, Grupo de Investigación FQM 0229. The research of R.O. was partially
supported by Research Projects of Spanish MCYT and Gobierno Autónomo de Canarias,
under contracts BFM2001-3411 and PI2002/136, respectively.

REFERENCES
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